Linear System Theory and Design Answer

Embed Size (px)

Citation preview

  • 8/20/2019 Linear System Theory and Design Answer

    1/106

    Linear System Theory and Design SA01010048 LING QING

    1

    2.1 Consider the memoryless system with characteristics shown in Fig 2.19, in which u denotes

    the input and y the output. Which of them is a linear system? Is it possible to introduce a new

    output so that the system in Fig 2.19(b) is linear?

    Figure 2.19

    Translation: 考虑具有图 2.19中表示的特性的无记忆系统。其中u表示输入, y表示输出。  下面哪一个是线性系统?可以找到一个新的输出,使得图 2.19(b)中的系统是线性

    的吗? 

    Answer: The input-output relation in Fig 2.1(a) can be described as:

    ua y   *=  

    Here a is a constant. It is a memoryless system. Easy to testify that it is a linear system.

    The input-output relation in Fig 2.1(b) can be described as:

    bua y   +=   *  

    Here a and  b are all constants. Testify whether it has the property of additivity. Let:

    bua y   +=   11   *  

    bua y   +=   22   *  

    then:

    buua y y   *2)(*)( 2121   ++=+  

    So it does not has the property of additivity, therefore, is not a linear system.

    But we can introduce a new output so that it is linear. Let:

    b y z   −=  

    ua z   *=   z is the new output introduced. Easy to testify that it is a linear system.

    The input-output relation in Fig 2.1(c) can be described as:

    uua y   *)(=  

     a(u) is a function of input u. Choose two different input, get the outputs:

    111   *ua y   =  

  • 8/20/2019 Linear System Theory and Design Answer

    2/106

    Linear System Theory and Design SA01010048 LING QING

    2

    222   *ua y   =  

    Assure:

    21   aa   ≠  

    then:

    221121   **)(   uaua y y   +=+  

    So it does not has the property of additivity, therefore, is not a linear system.

    2.2 The impulse response of an ideal lowpass filter is given by

    )(2

    )(2sin2)(

    0

    0

    t t 

    t t t g

    −=

    ω 

    ω ω   

    for all t, where w and to are constants. Is the ideal lowpass filter causal? Is is possible to built

    the filter in the real world?

    Translation: 理想低通滤波器的冲激响应如式所示。对于所有的 t,w 和  to,都是常数。理

    想低通滤波器是因果的吗?现实世界中有可能构造这种滤波器吗? 

    Answer: Consider two different time: ts and tr, ts < tr, the value of g(ts-tr) denotes the output at

    time ts, excited by the impulse input at time tr. It indicates that the system output at time

     ts is dependent on future input at time  tr. In other words, the system is not causal. We

    know that all physical system should be causal, so it is impossible to built the filter in

    the real world.

    2.3 Consider a system whose input u and output y are related by

    >

    ≤==

    at  for 

    at  for t ut uPt  y a

    0

    )(:))(()(  

    where a is a fixed constant. The system is called a truncation operator, which chops off the

    input after time a. Is the system linear? Is it time-invariant? Is it causal?

    Translation: 考虑具有如式所示输入输出关系的系统, a是一个确定的常数。这个系统称作 

    截断器。它截断时间 a之后的输入。这个系统是线性的吗?它是定常的吗?是因果 的吗? 

    Answer: Consider the input-output relation at any time t, ta:

    0= y  

    Easy to testify that it is linear. So for any time, the system is linear.

    Consider whether it is time-invariable. Define the initial time of input to, system input is

    u(t), t>=to. Let to=to:

  • 8/20/2019 Linear System Theory and Design Answer

    3/106

    Linear System Theory and Design SA01010048 LING QING

    3

      ≤≤

    =t other  for 

    at t  for t ut  y

    0

    )()(

    Shift the initial time to to+T . Let to+T>a , then input is u(t-T), t>=to+T . System output:

    0)('   =t  y  

    Suppose that u(t) is not equal to 0, y’(t) is not equal to y(t-T). According to the definition,

    this system is not time-invariant.

    For any time t, system output y(t) is decided by current input u(t) exclusively. So it is a

    causal system.

    2.4 The input and output of an initially relaxed system can be denoted by y=Hu, where H  is some

    mathematical operator. Show that if the system is causal, then

    u HPP HuP yPaaaa

      ==  

    where Pa is the truncation operator defined in Problem 2.3. Is it true PaHu=HPau?

    Translation: 一个初始松弛系统的输入输出可以描述为: y=Hu,这里 H 是某种数学运算,

    说明假如系统是因果性的,有如式所示的关系。这里 Pa是题 2.3中定义的截断函

    数。 PaHu=HPau是正确的吗? 

    Answer: Notice y=Hu, so:

     HuP yP aa   =  

    Define the initial time 0, since the system is causal, output y begins in time 0.

    If a0, we can divide u to 2 parts:

      ≤≤

    =t other  for 

    at  for t ut  p

    0

    0)()(  

      >

    =t other  for 

    at  for t ut q

    0

    )()(  

    u(t)=p(t)+q(t). Pay attention that the system is casual, so the output excited by q(t) can’t

    affect that of  p(t). It is to say, system output from 0 to a is decided only by p(t). Since

     PaHu chops off Hu after time a, easy to conclude PaHu=PaHp(t). Notice that p(t)=Pau,

    also we have:

    u HPP HuP aaa   =  

    It means under any condition, the following equation is correct:

    u HPP HuP yPaaaa

      ==  

     PaHu=HPau is false. Consider a delay operator H , Hu(t)=u(t-2), and a=1, u(t) is a step

    input begins at time 0, then PaHu covers from 1 to 2, but HPau covers from 1 to 3.

  • 8/20/2019 Linear System Theory and Design Answer

    4/106

    Linear System Theory and Design SA01010048 LING QING

    4

    2.5 Consider a system with input u and output y. Three experiments are performed on the system

    using the inputs u1(t), u2(t) and u3(t) for t>=0. In each case, the initial state x(0) at time t=0 is

    the same. The corresponding outputs are denoted by y1,y2 and y3. Which of the following

    statements are correct if x(0)0?

    1.  If u3=u1+u2, then y3=y1+y2.

    2.  If u3=0.5(u1+u2), then y3=0.5(y1+y2).

    3.  If u3=u1-u2, then y3=y1-y2.

    Translation: 考虑具有输入 u 输出 y的系统。在此系统上进行三次实验,输入分别为 u1(t),

    u2(t) 和 u3(t), t>=0。每种情况下,零时刻的初态 x(0)都是相同的。相应的输出表

    示为 y1,y2 和 y3。在 x(0)不等于零的情况下,下面哪种说法是正确的? 

    Answer: A linear system has the superposition property:

    02211

    02211

    022011),()(

    ),()(

    )()(t t t  yt  y

    t t t ut u

    t  xt  x≥+→

    ≥+

    +α α 

    α α 

    α α  

    In case 1:

    11  =α    12  =α   

    )0()0(2)()( 022011   x xt  xt  x   ≠=+α α   

    So y3y1+y2.

    In case 2:

    5.01  =α    5.02  =α   

    )0()()( 022011   xt  xt  x   =+α α   

    So y3=0.5(y1+y2).

    In case 3:

    11 =α    12   −=α   

    )0(0)()( 022011   xt  xt  x   ≠=+α α   

    So y3y1-y2.

    2.6 Consider a system whose input and output are related by

    =−

    ≠−−=

    0)1(0

    0)1()1(/)()(

    2

    t uif 

    t uif t ut ut  y  

    for all t.

    Show that the system satisfies the homogeneity property but not the additivity property.

    Translation: 考虑输入输出关系如式的系统,证明系统满足齐次性,但是不满足可加性.

    Answer: Suppose the system is initially relaxed, system input:

    )()(   t ut  p   α =  

     a is any real constant. Then system output q(t):

  • 8/20/2019 Linear System Theory and Design Answer

    5/106

    Linear System Theory and Design SA01010048 LING QING

    5

    =−

    ≠−−=

    0)1(0

    0)1()1(/)()(

    2

    t  pif 

    t  pif t  pt  pt q  

    =−

    ≠−−=

    0)1(0

    0)1()1(/)(2

    t uif 

    t uif t ut uα  

    So it satisfies the homogeneity property.

    If the system satisfies the additivity property, consider system input  m(t)  and  n(t),

     m(0)=1, m(1)=2; n(0)=-1, n(1)=3. Then system outputs at time 1 are: 

    4)0(/)1()1( 2 ==   mmr   

    9)0(/)1()1( 2 −==   nns  

    0)]0()0(/[)]1()1([)1( 2 =++=   nmnm y  

    )1()1(   sr    +≠  

    So the system does not satisfy the additivity property.

    2.7 Show that if the additivity property holds, then the homogeneity property holds for all rational

    numbers a . Thus if a system has “continuity” property, then additivity implies homogeneity.

    Translation: 说明系统如果具有可加性,那么对所有有理数 a具有齐次性。因而对具有某种

    连续性质的系统,可加性导致齐次性。 

    Answer: Any rational number a can be denoted by:

    nma   /=  Here m and n are both integer. Firstly, prove that if system input-output can be described

    as following:

     y x →  

    then:

    mymx →  

    Easy to conclude it from additivity.

    Secondly, prove that if a system input-output can be described as following:

     y x →  

    then:

    n yn x   //   →  

    Suppose:

    un x   →/  Using additivity:

    nu xn xn   →=)/(*  

    So:

    nu y =  

    n yu   /=  

  • 8/20/2019 Linear System Theory and Design Answer

    6/106

    Linear System Theory and Design SA01010048 LING QING

    6

    It is to say that:

    n yn x   //   →  

    Then:

    nm ynm x   /*/*   →  

    ayax →  

    It is the property of homogeneity.

    2.8 Let g(t,T)=g(t+a,T+a) for all t,T and a. Show that g(t,T) depends only on t-T .

    Translation: 设对于所有的 t,T 和  a, g(t,T)=g(t+a,T+a)。说明 g(t,T)仅依赖于 t-T 。 

    Answer: Define:

    T t  x   +=   T t  y   −=  

    So:

    2

     y xt 

      +=  

    2

     y xT 

      −=  

    Then:

    )2

    ,2

    (),(  y x y x

    gT t g  −+

    =  

    )2

    ,2

    (   a y x

    a y x

    g   +−

    ++

    =  

    )

    22

    ,

    22

    (  y x y x y x y x

    g  +−

    +−+−

    ++

    =  

    )0,( yg=  

    So:

    0)0,(),(=

    ∂=

     x

     yg

     x

    T t g 

    It proves that g(t,T) depends only on t-T .

    2.9 Consider a system with impulse response as shown in Fig2.20(a). What is the zero-state

    response excited by the input u(t) shown in Fig2.20(b)?

    Fig2.20

  • 8/20/2019 Linear System Theory and Design Answer

    7/106

    Linear System Theory and Design SA01010048 LING QING

    7

    Translation: 考虑冲激响应如图 2.20(a)所示的系统,由如图 2.20(b)所示输入 u(t)激励的零状 

    态响应是什么? 

    Answer: Write out the function of g(t) and u(t):

    ≤≤−

    ≤≤=

    212

    10)(

    t t 

    t t t g  

    ≤≤−

    ≤≤=

    211

    101)(

    t t u  

    then y(t) equals to the convolution integral:

    ∫   −=t 

    dr r t ur gt  y0

    )()()(  

    If 0=

  • 8/20/2019 Linear System Theory and Design Answer

    8/106

    Linear System Theory and Design SA01010048 LING QING

    8

    2.10 Consider a system described by

    uu y y y   −=−+  ••••

    32  

    What are the transfer function and the impulse response of the system?

    Translation: 考虑如式所描述的系统,它的传递函数和冲激响应是什么? 

    Answer: Applying the Laplace transform to system input-output equation, supposing that the

    System is initial relaxed:

    )()()(3)(2)(2 sY ssY sY ssY sY s   −=−+  

    System transfer function:

    3

    1

    32

    1

    )(

    )()(

    2 +=

    −+

    −==

    sss

    s

    sY 

    sU sG  

    Impulse response:

    t e

    s LsG Lt g

      311 ]3

    1[)]([)(   −−− =+

    ==  

    2.11 Let y(t) be the unit-step response of a linear time-invariant system. Show that the impulse

    response of the system equals dy(t)/dt.

    Translation:  y(t)是线性定常系统的单位阶跃响应。说明系统的冲激响应等于 dy(t)/dt.

    Answer: Let m(t) be the impulse response, and system transfer function is G(s):

    ssGsY 

      1*)()(   =  

    )()(   sGs M    =  

    ssY s M    *)()(   =  

    So:

    dt t dyt m   /)()(   =  

    2.12 Consider a two-input and two-output system described by

    )()()()()()()()(212111212111

      t u p N t u p N t  y p Dt  y p D   +=+  

    )()()()()()()()( 222121222121   t u p N t u p N t  y p Dt  y p D   +=+  

    where Nij and Dij are polynomials of p:=d/dt. What is the transfer matrix of the system?

    Translation: 考虑如式描述的两输入两输出系统,  Nij 和 Dij 是 p:=d/dt的多项式。系统的

    传递矩阵是什么? 

    Answer: For any polynomial of p, N(p), its Laplace transform is N(s).

    Applying Laplace transform to the input-output equation:

    )()()()()()()()( 212111212111   sU s N sU s N sY s DsY s D   +=+  

    )()()()()()()()( 222121222121   sU s N sU s N sY s DsY s D   +=+  

  • 8/20/2019 Linear System Theory and Design Answer

    9/106

    Linear System Theory and Design SA01010048 LING QING

    9

    Write to the form of matrix:

    )(

    )(

    )()(

    )()(

    2

    1

    2221

    1211

    sY 

    sY 

    s Ds D

    s Ds D=

    )(

    )(

    )()(

    )()(

    2

    1

    2221

    1211

    sU 

    sU 

    s N s N 

    s N s N  

    )(

    )(

    2

    1

    sY 

    sY =

    1

    2221

    1211

    )()(

    )()(  −

    s Ds D

    s Ds D

    )(

    )(

    )()(

    )()(

    2

    1

    2221

    1211

    sU 

    sU 

    s N s N 

    s N s N  

    So the transfer function matrix is:

    )(sG =

    1

    2221

    1211

    )()(

    )()(  −

    s Ds D

    s Ds D

    )()(

    )()(

    2221

    1211

    s N s N 

    s N s N  

    By the premising that the matrix inverse:

    1

    2221

    1211

    )()(

    )()(  −

    s Ds D

    s Ds D 

    exists.

    2.11 Consider the feedback systems shows in Fig2.5. Show that the unit-step responses of the

     positive-feedback system are as shown in Fig2.21(a) for a=1 and in Fig2.21(b) for a=0.5.

    Show also that the unit-step responses of the negative-feedback system are as shown in Fig 

    2.21(c) and 2.21(d), respectively, for a=1 and a=0.5.

    Fig 2.21 

    Translation: 考虑图 2.5中所示反馈系统。说明正反馈系统的单位阶跃响应,当  a=1时,如

    图 2.21(a)所示。当 a=0.5 时,如图 2.21(b)所示。说明负反馈系统的单位阶跃响应

    如图 2.21(c)和 2.21(b)所示,相应地,对 a=1和 a=0.5。 

  • 8/20/2019 Linear System Theory and Design Answer

    10/106

    Linear System Theory and Design SA01010048 LING QING

    10

    Answer: Firstly, consider the positive-feedback system. It’s impulse response is:

    ∑∞

    =

    −=1

    )()(i

    iit at g   δ   

    Using convolution integral:

    ∑∞

    =

    −=1

    )()(i

    i it r at  y  

    When input is unit-step signal:

    ∑=

    =n

    i

    ian y1

    )(  

    )()(   n yt  y   =   1+≤≤   nt n  

    Easy to draw the response curve, for a=1 and a=0.5, respectively, as Fig 2.21(a) and Fig 

    2.21(b) shown.

    Secondly, consider the negative-feedback system. It’s impulse response is:

    ∑∞

    =

    −−−=1

    )()()(i

    iit at g   δ   

    Using convolution integral:

    ∑∞

    =

    −−−=1

    )()()(i

    i it r at  y  

    When input is unit-step signal:

    ∑=

    −−=n

    i

    ian y

    1

    )()(  

    )()(   n yt  y   =   1+≤≤   nt n  

    Easy to draw the response curve, for a=1 and a=0.5, respectively, as Fig 2.21(c) and Fig 

    2.21(d) shown.

    2.14 Draw an op-amp circuit diagram for

    u x x

    −+

    −=

    4

    2

    50

    42 

    [ ]   u x y   2103   −=  

    2.15 Find state equations to describe the pendulum system in Fig 2.22. The systems are useful to

    model one- or two-link robotic manipulators. If θ  , 1θ    and 2θ    are very small, can you

    consider the two systems as linear?

  • 8/20/2019 Linear System Theory and Design Answer

    11/106

    Linear System Theory and Design SA01010048 LING QING

    11

    Translation: 试找出图 2.22所示单摆系统的状态方程。这个系统对研究一个或两个连接的机

    器人操作臂很有用。假如角度都很小时,能否考虑系统为线性? 

    Answer: For Fig2.22(a), the application of Newton’s law to the linear movements yields:

    )cossin()cos(cos

    2

    2

    2

    θ θ θ θ θ θ 

    •••

    −−==−  mlldt 

    mmg f   

    )sincos()sin(sin2

    2

    2

    θ θ θ θ θ θ 

    •••

    −==−   mlldt 

    d m f u  

    Assuming θ    and•

    θ    to be small, we can use the approximation θ sin =θ  , θ cos =1.

    By retaining only the linear terms in θ    and•

    θ  , we obtain mg f   =   and:

    umll

    g   1+−=

    ••

    θ θ   

    Select state variables as θ =1 x ,•

    =θ 2 x   and output θ = y  

    uml

     xlg

     x

    +

    −=

    /1

    1

    0/

    10 

    [ ] x y   01=  

    For Fig2.22(b), the application of Newton’s law to the linear movements yields:

    )cos(coscos 1122

    112211   θ θ θ    ldt 

    d mgm f  f    =−−  

    )cossin( 12

    11111   θ θ θ θ 

    •••

    −−=   lm  

    )sin(sinsin 112

    2

    11122   θ θ θ    ldt 

    d m f  f    =−  

    )sincos( 12

    11111   θ θ θ θ 

    •••

    −=   lm  

    )coscos(cos 22112

    2

    2222   θ θ θ    lldt 

    d mgm f    +=−  

    )cossin( 12

    11112   θ θ θ θ 

    •••

    −−=   lm )cossin( 22

    22222   θ θ θ θ 

    •••

    −−+   lm  

    )sinsin(sin 22112

    2

    222   θ θ θ    lldt 

    d m f u   +=−  

    )sincos( 12

    11112   θ θ θ θ 

    •••

    −=   lm )sincos( 22

    22222   θ θ θ θ 

    •••

    −+   lm  

  • 8/20/2019 Linear System Theory and Design Answer

    12/106

    Linear System Theory and Design SA01010048 LING QING

    12

    Assuming 1θ  , 2θ  and 1•

    θ  , 2•

    θ    to be small, we can use the approximation 1sinθ  = 1θ  ,

    2sinθ  = 2θ  , 1cosθ  =1, 2cosθ  =1. By retaining only the linear terms in 1θ  , 2θ    and

    1

    θ  , 2•

    θ  , we obtain gm f  22  = , gmm f  )( 211   +=   and:

    2

    11

    21

    11

    211

    )(θ θ θ 

    lm

    gm

    lm

    gmm+

    +−=

    ••

     

    ulmlm

    gmm

    lm

    gmm

    22

    2

    21

    211

    21

    212

    1)()(+

    +−

    +=

    ••

    θ θ θ   

    Select state variables as 11   θ = x , 12•

    =θ  x , 23   θ = x , 24•

    =θ  x   and output

    =

    2

    1

    2

    1

    θ 

    θ 

     y

     y:

    +−+

    +−=

    4

    3

    2

    1

    22212121

    1121121

    4

    3

    2

    1

    0/)(0/)(

    1000

    0/0/)(

    0010

     x

     x

     x

     x

    lmgmmlmgmm

    lmgmlmgmm

     x

     x

     x

     x

    +   u

    lm 

    22/1

    0

    0

    0

     

    =

    0100

    0001

    2

    1

     y

     y

    4

    3

    2

    1

     x

     x

     x x

     

    2.17 The soft landing phase of a lunar module descending on the moon can be modeled as shown

    in Fig2.24. The thrust generated is assumed to be proportional to the derivation of m, where

    m is the mass of the module. Then the system can be described by

    mgmk  ym   −−=

      •••

     Where g is the gravity constant on the lunar surface. Define state variables of the system as:

     y x   =1 ,•

    =  y x2 , m x   =3 ,•

    = m y  

    Find a state-space equation to describe the system.

    Translation: 登月舱降落在月球时,软着陆阶段的模型如图 2.24  所示。产生的冲激力与 m

    的微分成正比。系统可以描述如式所示形式。g是月球表面的重力加速度常数。定

    义状态变量如式所示,试图找出系统的状态空间方程描述。 

    Answer: The system is not linear, so we can linearize it.

    Suppose:

  • 8/20/2019 Linear System Theory and Design Answer

    13/106

    Linear System Theory and Design SA01010048 LING QING

    13

    +−=   ygt  y 2/2  

    −••

    +−=   ygt  y  

    −••••

    +−=   yg y  

    +=   mmm 0  

    −••

    = mm  

    So:

    )( 0

    + mm

    −••

    +− )(   yg =

    −•

    −   mk    gmm   )( 0−

    +−  

    +−−  −

    gmgm0

    −••

    = ym0

    −•

    −   mk gmgm−

    −−   0  

    −••

    = ym0

    −•

    −   mk   

    Define state variables as:

    −−

    =  y x1 ,

    −•−

    =  y x 2 ,−−

    = m x3 ,

    −•−

    = m y  

    Then:

    •−

    •−

    •−

    3

    2

    1

     x

     x

     x

    =

    000

    000

    010

    3

    2

    1

     x

     x

     x

    +

    1

    /

    0

    0mk −

    u  

     y = [ ]001

    3

    2

    1

     x

     x

     x

     

    2.19 Find a state equation to describe the network shown in Fig2.26.Find also its transfer function.

    Translation: 试写出描述图 2.26所示网络的状态方程,以及它的传递函数。 

    Answer: Select state variables as:

    1 x : Voltage of left capacitor

    2 x : Voltage of right capacitor

    3 x : Current of inductor

    Applying Kirchhoff’s current law:

  • 8/20/2019 Linear System Theory and Design Answer

    14/106

    Linear System Theory and Design SA01010048 LING QING

    14

    3 x =   R x L x   /)( 32

    −  

     R x xC u 11+=  •

     

    32   x xC u   +=  •

     

    2 x y =  

    From the upper equations, we get:

    C uCR x x   //11   +−=•

    u x   +−= 1  

    C uC  x x //32   +−=•

    u x   +−= 3  

     L Rx L x x // 323   −=•

    32   x x   −=  

    2 x y =  

    They can be combined in matrix form as:

    3

    2

    1

     x

     x

     x

    =

    110

    100

    001

    3

    2

    1

     x

     x

     x

    +   u

    0

    1

    1

     

    [ ]

    =

    3

    2

    1

    010

     x

     x

     x

     y  

    Use MATLAB to compute transfer function. We type:

    A=[-1,0,0;0,0,-1;0,1,-1];

    B=[1;1;0];

    C=[0,1,0];

    D=[0];

    [N1,D1]=ss2tf(A,B,C,D,1)Which yields:

     N1 =

    0 1.0000 2.0000 1.0000

    D1 =

    1.0000 2.0000 2.0000 1.0000

    So the transfer function is:

    122

    12)(

    23

    2^

    +++

    ++=

    sss

    sssG

    1

    12 ++

    +=

    ss

  • 8/20/2019 Linear System Theory and Design Answer

    15/106

    Linear System Theory and Design SA01010048 LING QING

    15

    2.20 Find a state equation to describe the network shown in Fig2.2. Compute also its transfer

    matrix.

    Translation: 试写出描述图 2.2所示网络的状态方程,计算它的传递函数矩阵。 

    Answer: Select state variables as Fig 2.2 shown. Applying Kirchhoff’s current law:

    1u = 323121111   x R x L x x xC  R   ++++  ••

     

    22211

    ••

    =+   xC u xC   

    223

    =   xC  x  

    3231212311   )(   x R x L x xu x Ru   ++++−=  •

     

    3231   x R x L y   +=  •

     

    From the upper equations, we get:

    12131 //   C uC  x x   −=•

     

    232   /C  x x   =•

     

    12111131112113 ///)(//   Lu R Lu L x R R L x L x x   +++−−−=•

     

    2113121   u Ru x R x x y   ++−−−=  

    They can be combined in matrix form as:

    3

    2

    1

     x

     x

     x

    =

    +−−−   12111

    2

    1

    /)(

    /100

    /100

     L R R L L

    3

    2

    1

     x

     x

     x

    +

      −

    2

    1

    11

    1

    1   /

    0

    /1

    /1

    0

    0

    u

    u

     L R

     L

     

    [ ]

    −−−=

    3

    2

    1

    111

     x

     x

     x

     R y + [ ]  

    2

    1

    21u

    u R  

    Applying Laplace Transform to upper equations:

    )(/1/1

    )(   1^

    21111

    21^

    susC sC  R Rs L

     Rs Ls y

    ++++

    +=  

    )(/1/1

    )/1)((2

    ^

    21111

    2121 susC sC  R Rs L

    sC  R Rs L

    ++++

    +++  

    ++++

    +=

    sC sC  R Rs L

     Rs LsG

    21111

    21^

    /1/1)(  

    ++++

    ++

    sC sC  R Rs L

    sC  R Rs L

    21111

    2121

    /1/1

    )/1)(( 

  • 8/20/2019 Linear System Theory and Design Answer

    16/106

    Linear System Theory and Design SA01010048 LING QING

    16

    2.18 Find the transfer functions from u   to 1 y   and from 1 y   to  y of the hydraulic tank system

    shown in Fig2.25. Does the transfer function from u   to  y   equal the product of the two

    transfer functions? Is this also true for the system shown in Fig2.14?

    Translation: 试写出图 2.25所示水箱系统从u到 1 y  的传递函数和从 1 y  到  y的传递函数。从

    u到  y的传递函数等于两个传递函数的乘积吗?这对图2.14所示系统也是正确的吗? 

    Answer: Write out the equation about u , 1 y   and  y :

    111   / R x y   =  

    222   / R x y   =  

    dt  yudx A   /)(111

      −=  

    dt  y ydx A   /)( 122   −=  

    Applying Laplace transform:

    )1/(1/ 11

    ^

    1

    ^

    s R Au y   +=  

    )1/(1/ 221

    ^^

    s R A y y   +=  

    )1)(1/(1/ 2211

    ^^

    s R As R Au y   ++=  

    So:

    =^^

    /u y   )/(^

    1

    ^

    u y )/( 1

    ^^

     y y  

    But it is not true for Fig2.14, because of the loading problem in the two tanks.

  • 8/20/2019 Linear System Theory and Design Answer

    17/106

     

    3.1consider Fig3.1 ,what is the representation of the vector  x   with respect to the basis ( )21   iq ?

    What is the representation of 1q   with respect ro ( )22   qi ?图 3.1 中,向量 x 关于 ( )21   iq   的表

    示是什么? 1q   关于 ( )22   qi   的表示有是什么?

    If we draw from  x   two lines in parallel with 2i   and 1q   , they tutersect at 13

    1q   and 2

    3

    8i as

    shown , thus the representation of  x   with respect to the basis ( )21   iq   is′

    3

    8

    3

    1, this can

     be verified from [ ]

    =

    =

    =

    38

    31

    11

    03

    3

    83

    1

    3

    122   iq x  

    To find the representation of 1q   with respect to ( )22   qi ,we draw from 1q two lines in

     parallel with 2q   and 2i , they intersect at -2 2i   and 22

    3q , thus the representation of 1q  

    with respect to ( )22   qi , is′

    2

    32 , this can be verified from

    [ ]

    =

    −=

    =

    23

    2

    21

    20

    23

    2

    1

    3

    221

      qiq  

    3.2 what are the 1-morm ,2-norm , and infinite-norm of the vectors [ ] [ ]′=′−=   111,132 21   x x , 问向量

    [ ] [ ]′=′−=   111,132 21   x x   的 1-范数,2-范数和   −∞   范数是什么?

    1max3max

    3)111(14)1)3(2(

    31116132

    2211

    21

    222

    222

    1222

    1

    '

    121

    12

    3

    1

    11

    1

    =====++==+−+==

    =++==++==

    ∞∞

    =∑

    iiii

    i

    i

     x x x x x x

     x x x x

     x x x

     

    3.3 find two orthonormal vectors that span the same space as the two vectors in problem 3.2 , 求与题 3.2 中的两个向量

    张成同一空间的两个标准正交向量.

    Schmidt orthonormalization praedure ,

  • 8/20/2019 Linear System Theory and Design Answer

    18/106

     

    [ ] [ ]

    [ ]′===−=

    ′−==

    ′−==

    1113

    1)(

    13214

    1132

    2

    22212

    '

    122

    1

    1111

    u

    uq xq xq xu

    u

    uq xu

     

    The two orthomormal vectors are

    =

    −=

    1

    1

    1

    3

    1

    1

    3

    2

    14

    121   qq  

    In fact , the vectors 1 x   and 2 x are orthogonal because 01221   =′=′   x x x x   so we can only

    normalize the two vectors

    ==

    −==

    1

    1

    1

    3

    1

    1

    3

    2

    14

    1

    2

    2

    2

    1

    1

    1 x

     xq

     x

     xq  

    3.4 comsider an mn × matrix A with mn ≥   , if all colums of A are orthonormal , then

    m I  A A   =′ , what can you say abort  A A   ′ ? 一个   mn×   阶矩阵A(   mn ≥ ), 如果 A 的所有列都是

    标准正交的,则 m I  A A   =′   问   A A   ′ 是怎么样?

    Letmnijm

      aaaa A×

    ==   21 , if all colums of A are orthomormal , that is

    ∑=  

    =≠==

    n

    i

    liliii jiif  jiif aaaa

    1

    '

    10  

    then

    [ ]

    [ ]

    =≠

    ≠≠=

    ==

    =′

    =

    =

    =

    =′

    ∑∑

    =

    ×==

     jiif 

     jiif aageneralin

    aaaa

    a

    a

    a

    aaa A A

     I 

    aaaaaa

    aaaaaa

    aaa

    a

    a

    a

     A A

     jl

    m

    i

    il

    nn jl

    m

    i

    il

    m

    i

    ii

    m

    mi

    m

    mmmm

    m

    mi

    m

    1

    0

    )(

    100

    010

    001

    1

    11

    '

    '

    '2

    '

    1

    ''

    2

    '

    '

    2

    '

    1

    '

    '

    12

    '

    11

    '

    1

    ''

    2

    '

    '

    '

    2

    '

    1

     

    if A is a symmetric square matrix , that is to say , n=m jlil aa   for every nli   2,1,   =  

    then m I  A A   =′  

  • 8/20/2019 Linear System Theory and Design Answer

    19/106

     

    3.5 find the ranks and mullities of the following matrices 求下列矩阵的秩和化零度 

    −−=

      −

    =

    =

    1000

    2210

    4321

    011

    023

    114

    100

    000

    010

    321   A A A  

    134)(033)(123)(

    3)(3)(2)(

    321

    321

    =−==−==−=

    ===

     A Nullity A Nullity A Nullity

     Arank  Arank  Arank  

    3.6 Find bases of the range spaces of the matrices in problem 3.5 求题 3.5 中矩阵值域空间的基 

    the last two columns of 1 A are linearly independent , so the set

    1

    0

    0

    ,

    0

    0

    1

    can be used as a

     basis of the range space of 1 A , all columns of 2 A are linearly independent ,so the set

    0

    0

    1

    1

    2

    2

    1

    3

    4

      can be used as a basis of the range spare of 2 A  

    let 43213   aaaa A   = ,where ia denotes of 3 A   4321   aand aand aand a   are

    linearly independent , the third colums can be expressed as 213   2aaa   +−= , so the set

    321   aaa can be used as a basis of the range space of 3 A  

    3.7 consider the linear algebraic equation  x x   −

    =

    1

    0

    1

    21

    33

    12

      it has three equations and two

    unknowns does a solution  x exist in the equation ? is the solution unique ? does a solution exist if

    [ ]′= 111 y ?

    线性代数方程   x x   −

    =

    1

    0

    1

    21

    33

    12

    有三个方程两个未知数, 问方程是否有解?若有解是否

    唯一?若   [ ]′= 111 y   方程是否有解?

  • 8/20/2019 Linear System Theory and Design Answer

    20/106

     

    Let [ ],21

    33

    12

    21   aa A   =

    = clearly 1a and 2a are linearly independent , so rank(A)=2 ,

     y is the sum of 1a and 2a ,that is rank([A  y ])=2, rank(A)= rank([A  y ]) so a solution  x  

    exists in A x = y  

     Nullity(A)=2- rank(A)=0

    The solution is unique [ ]′=   11 x   if [ ]′= 111 y , then rank([A  y ])=3 ≠   rank(A), that is

    to say there doesn’t exist a solution in A x = y  

    3.8 find the general solution of

    =

    −−

    1

    2

    3

    1000

    2210

    4321

     x   how many parameters do you have ?

    求方程

    =

    −−

    1

    2

    3

    1000

    2210

    4321

     x   的同解,同解中用了几个参数?

    Let

    =

    −−=12

    3

    10002210

    4321

     y A   we can readily obtain rank(A)= rank([A  y ])=3 so

    this  y lies in the range space of A and [ ]′−=   101   o x p is a solution Nullity(A)=4-3=1 that

    means the dimension of the null space of A is 1 , the number of parameters in the general solution

    will be 1 , A basis of the null space of A is [ ]′−=   on   121   thus the general solution of

    A x = y   can be expressed an

    +

    =+=

    0

    1

    2

    1

    1

    0

    0

    1

    α α n x x  p   for any real α  

    α   is the only parameter

    3.9 find the solution in example 3.3 that has the smallest Euclidean norm 求例 3 中具有最小欧氏

    范数的解,

  • 8/20/2019 Linear System Theory and Design Answer

    21/106

     

    the general solution in example 3.3 is

    −+=

    +

    −+

    −=

    2

    1

    21

    1

    21

    42

    1

    0

    2

    0

    0

    1

    1

    1

    0

    0

    4

    0

    α 

    α 

    α α 

    α 

    α α  x   for

    any real 1α  and 2α   

    the Euclidean norm of  x is

    16168453

    )()()42(

    2121

    2

    2

    2

    1

    2

    2

    2

    1

    2

    21

    2

    1

    +−−++=

    −+−+−++=

    α α α α α α 

    α α α α α  x 

    −=⇒

    =

    =⇒

    =−+⇒=∂

    =−+⇒=∂

    11

    1611

    411

    811

    4

    11

    1611

    4

    082502

    042302

    2

    1

    12

    2

    21

    1  x x

     x

    α 

    α 

    α α α 

    α α α 

      has the smallest Euclidean

    norm ,

    3.10 find the solution in problem 3.8 that has the smallest Euclidean norm 求题 3.8 中欧氏范数

    最小的解,

    −+

    =

    0

    1

    2

    1

    1

    0

    0

    1

    α  x for any real α  

    the Euclidean norm of  x is

    =⇒=⇒=−⇒=∂∂

    +−=++−+−=

    16

    163

    6

    5

    6

    102120

    2261)2()1( 2222

     x x

     x

    α α α 

    α α α α α 

      has the

    smallest Euclidean norm

    3.11 consider the equation ]1[]2[]1[]0[]0[}{ 21 −+−++++=   −− nubnub Aub Aub A x An x   nnn  

    where A is an nn× matrix and b is an 1×n column vector ,under what conditions on A and b   will there

  • 8/20/2019 Linear System Theory and Design Answer

    22/106

     

    exist ]1[],1[],[   −nuuou     to meet the equation for any ]0[],[   xand n x ?

    令 A 是   nn ×   的矩阵, b 是   1×n   的列向量,问在 A 和b 满足什么条件时,存在   ]1[],1[],[   −nuuou   ,对所有的

    ]0[],[   xand n x ,它们都满足方程 ]1[]2[]1[]0[]0[}{ 21 −+−++++=   −− nubnub Aub Aub A x An x  nnn ,

    write the equation in this form

    ==   −

    ]0[

    ]2[

    ]1[

    ],[]0[}{   1

    u

    nu

    nu

    b Ab Ab x An x   nn

     

    where ],[   1b Ab Ab   n−   is an nn× matrix and ]0[}{   x An x   n− is an 1×n column vector , from the equation we

    can see , ]1[],1[],[   −nuuou     exist to meet the equation for any ]0[],[   xand n x   ,if and only if

    nb Ab Ab   n =− ],[   1 ρ    under this condition , there will exist ]1[],1[],[   −nuuou     to meet the equation for any

    ]0[],[   xand n x .

    3.12 given

    =

    =

    =

    1

    3

    2

    1

    1

    0

    0

    1000

    0200

    0120

    0012

    bb A   what are the representations of A with respect to

    the basis b Ab Ab Ab   32   and the basis b Ab Ab Ab   32 , respectively? 给定

    =

    =

    =

    1

    3

    2

    1

    1

    0

    0

    1000

    0200

    0120

    0012

    bb A   请问 A 关于   b Ab Ab Ab  32

    和基   b Ab Ab Ab   32 的表

    示分别是什么?

    =⋅=

    =⋅=

    =

    1

    16

    32

    24

    ,

    1

    4

    4

    1

    ,

    1

    2

    1

    0

    232 b A Ab Ab A Ab Ab A  

    we have[ ] [ ]

    ==∴

    +−+−=

    7100

    18010

    20001

    8000

    718208

    3232

    324

    b Ab Ab Abb Ab Ab Ab A

    b Ab Ab Abb A

      thus the representation of A

  • 8/20/2019 Linear System Theory and Design Answer

    23/106

     

    with respect to the basis b Ab Ab Ab   32 is

    =

    7100

    18010

    20001

    8000

     A  

    b Ab Ab Abb A

    b Ab Ab Ab A

    324

    432

    718208

    1

    48

    128

    152

    ,

    1

    24

    52

    50

    ,

    1

    12

    20

    15

    ,

    1

    6

    7

    4

    +−+−=

    =

    =

    =

    [ ] [ ]

    ==∴

    710018010

    20001

    8000

    3232 b Ab Ab Abb Ab Ab Ab A   thus the representation of A with

    respect to the basis b Ab Ab Ab   32 is

    =

    7100

    18010

    20001

    8000

     A  

    3.13 find Jordan-form representations of the following matrices

    写出下列矩阵的 jordan 型表示:

    .

    20250

    16200

    340

    .

    200

    010

    101

    .

    342

    100

    010

    ,

    300

    020

    1041

    4321

    −−

    =

      −

    =

    −−−

    =

    =   A A A A  

    the characteristic polynomial of 1 A is )3)(2)(1()det( 11   −−−=−=∆   λ λ λ λ    A I    thus the eigenvelues of 1 A   are

    1 ,2 , 3 , they are all distinct . so the Jordan-form representation of 1 A   will be diagonal .

    the eigenvectors associated with 3,2,1   ===   λ λ λ  ,respectively can be any nonzero solution of

    [ ]

    [ ]

    [ ]′=⇒=

    ′=⇒=

    ′=⇒=

    1053

    0142

    001

    3331

    2221

    1111

    qqq A

    qqq A

    qqq A

      thus the jordan-form representation of 1 A with respect to

    321   qqq is

    =

    300

    020

    001

    ˆ1 A  

    the characteristic polynomial of 2 A   is

  • 8/20/2019 Linear System Theory and Design Answer

    24/106

     

    223

    22 )1)(1)(1(243()det()(   Aii A I    −++++=+++=−=∆   λ λ λ λ λ λ λ λ    has

    eigenvalues  jand  j   −−+−−   11,1   the eigenvectors associated with

     jand  j   −−+−−   11,1   are , respectively

    [ ] [ ] [ ]′−−′−−′−   j jand  j j   211211,111   the we have

    Q AQ

     j

     j Aand 

     j j

     j jQ 21

    2

    100

    010

    001

    ˆ

    220

    111

    111−=

    −−

    +−

    =

    −−+−−=  

    the characteristic polynomial of 3 A   is )2()1()det()(  2

    33   −−=−=∆   λ λ λ λ    A I    theus the

    eigenvalues of 3 A   are 1 ,1 and 2 , the eigenvalue 1 has multiplicity 2 , and nullity

    213)(3)( 33   =−=−−=−   I  Arank  I  A   the 3 A   has two tinearly independent eigenvectors

    associated with 1 ,[ ] [ ]

    [ ]′−=⇒=−

    ′=

    ′=⇒=−

    1010)(

    0100010)(

    333

    213

    qq I  A

    qqq I  A  thus we have

    Q AQ Aand Q 31

    3

    200010

    001

    ˆ100011

    101−

    =

    =

    −−=  

    the characteristic polynomial of 4 A   is3

    44 )det()(   λ λ λ    =−=∆   A I    clearly 4 A   has lnly one

    distinct eigenvalue 0 with multiplicity 3 , Nullity( 4 A -0I)=3-2=1 , thus 4 A   has only one

    independent eigenvector associated with 0 , we can compute the generalized , eigenvectors

    of 4 A from equations below

    [ ]

    [ ]

    [ ]′−=⇒=

    ′−=⇒=

    ′=⇒=

    430

    540

    0010

    3231

    2121

    111

    vvv A

    vvv A

    vv A

    , then the representation of 4 A  

    with respect to the basis 321   vvv   is

    −==

    =   −

    450

    340

    001

    000

    100

    010

    ˆ4

    1

    4   QwhereQ AQ A  

  • 8/20/2019 Linear System Theory and Design Answer

    25/106

     

    3.14 consider the companion-form matrix

      −−−−

    =

    0100

    0010

    0001

    4321   α α α α 

     A   show that its

    characterisic polynomial is given by 433

    2

    3

    1

    4)(   α λ α λ α λ α λ λ    ++++=∆  

    show also that if iλ    is an eigenvalue of A or a solution of 0)(   =∆  λ    then

    133 ′iii   λ λ λ  is an eigenvector of A associated with iλ   

    证明 矩阵 A的特征 项式 433

    2

    3

    1

    4)(   α λ α λ α λ α λ λ    ++++=∆   并且,如果 iλ    是 iλ   的一

    个特征值, 0)(   =∆  λ    的一个解, 那么向量

    [ ]133 ′

    iii

      λ λ λ    是 A 关于i

    λ   的一个特征向量 

     proof:

    43223

    14

    432

    31

    4

    432

    1

    4321

    2

    1det

    1

    0det

    10

    01det

    10

    01

    00

    det)(

    100

    010

    001det)det()(

    α λ α λ α λ α λ 

    λ 

    α α 

    λ 

    λ α λ α λ 

    λ 

    λ 

    α α α 

    λ 

    λ 

    λ 

    α λ 

    λ 

    λ 

    λ 

    α α α α λ 

    λ λ 

    ++++=

    −+

    −++=

    −+

    −+=

    +

    =−=∆   A I 

     

    if iλ    is an eigenvalue of A , that is to say , 0)(   =∆   iλ    then we have

    =

    =

      −−−−

    =

      −−−−

    1110100

    0010

    0001   2

    3

    2

    3

    4

    2

    43

    2

    2

    3

    1

    2

    34321

    i

    i

    i

     I 

    i

    i

    i

    i

    i

    i

    iii

    i

    i

    i

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    α λ α λ α λ α 

    λ 

    λ 

    λ α α α α 

     

    that is to say [ ]133 ′iii   λ λ λ    is an eigenvetor oa A associated with iλ   

  • 8/20/2019 Linear System Theory and Design Answer

    26/106

     

    3.15 show that the vandermonde determinant

    1111

    4321

    2

    4

    2

    3

    2

    2

    2

    1

    3

    4

    3

    3

    3

    2

    3

    1

    λ λ λ λ 

    λ λ λ λ 

    λ λ λ λ 

    equals

    )(41   i j ji   λ λ   −Π   ≤

  • 8/20/2019 Linear System Theory and Design Answer

    27/106

     

    ))(())()()((

    1111

    0

    0

    0

    det

    1111

    det222

    333

    2222

    3333

    bd cd bcd abacbd cd d cb

    d cb

    d cb

    d cba

    d cba

    d cba

    −−=−−−−=

    =

     

    so we can see

    −=

    1111

    0

    0

    0

    det

    1111

    0

    0

    0

    det222

    333

    222

    333

    d cb

    d cb

    d cb

    d cb

    d cb

    d cb

      ,

    that is to say d and cbabd cd bcd    ,,,0))((   ⇒=−−   are not distinet

    this implies the assumption is not true , that is , the matrix is nonsingular leti

    q   be the

    eigenvectors of A ,44332211

    qaq Aqaq Aqaq Aqaq A   ====  

    ( )

    t independenlinenrlyqqand qso

    d d d 

    d d c

    bbb

    aaa

    qqqq

    qd qcqbqa

    qd qcqbqa

    qd qcqbqa

    qqqq

    ii

    ni

    nii⇒=≠

    =

    =

     

     

     

     

    =+++

    =+++

    =+++

    =+++

    ×

    ×

    ×

    000

    0

    1

    1

    1

    1

    0

    0

    0

    0

    1

    1

    44

    32

    32

    32

    32

    44332211

    443

    333

    223

    113

    442

    332

    222

    112

    44332211

    44332211

    α α 

    α α α α 

    α α α α 

    α α α α 

    α α α α 

    α α α α 

    3.16 show that the companion-form matrix in problem 3.14 is nonsingular if and only if

    04  ≠α  , under this assumption , show that its inverse equals

    −−−−

    =−

    43

    42

    41

    4

    1

    1

    1000

    0100

    0010

    α α α α α α α 

     A   证明题 3.14 中的友矩阵非奇异当且仅当

    04  ≠α  , 且矩阵的逆为

    −−−−

    =−

    4

    3

    4

    2

    4

    1

    4

    1

    1

    1000

    0100

    0010

    α α 

    α α 

    α α 

    α 

     A  

     proof: as we know , the chacteristic polynomial is

    43

    2

    2

    3

    1

    4

    )det()(   α λ α λ α λ α λ λ λ    ++++=−=∆   A I  so let 0=λ  , we have

  • 8/20/2019 Linear System Theory and Design Answer

    28/106

     

    44 )det()det()1()det(   α ==−=   A A A  

    A is nonsingular if and only if

    04  ≠α 

    −−−−

    =∴

    =

    −−−−

      −−−−

    =

      −−−−

    −−−−

    4

    3

    4

    2

    4

    1

    4

    1

    4

    4

    3

    4

    2

    4

    1

    4

    4321

    4

    4321

    4

    3

    4

    2

    4

    1

    4

    1

    1000

    0100

    0010

    1000

    0100

    0010

    0001

    1

    1000

    0100

    0010

    0100

    0010

    0001

    1000

    0100

    0010

    0001

    0100

    0010

    0001

    1

    1000

    0100

    0010

    α α 

    α α 

    α α 

    α 

    α α α α α α α 

    α α α α 

    α α α α 

    α α 

    α α 

    α α 

    α 

     A

     I 

     I 

     

    3.17 consider

    =λ λ λ 

    λ λ λ 

    000

    2/2

    tT 

    tT T 

     A   with 0≠λ  and T>0 show that [ ]′

    100   is an

    generalized eigenvector of grade 3 and the three columns of

    =

    000

    00

    02/222

    tT 

    T T 

    Q   λ 

    λ λ 

     

    constitute a chain of generalized eigenvectors of length 3 , venty

    =−

    λ 

    λ 

    λ 

    00

    10

    011

    t  AQQ  

    矩阵 A 中 0≠λ  ,T>0 , 证明[ ]′100   是 3 级广义特征向量, 并且矩阵 Q 的 3 列组成长度

    是 3 的广义特征向量链,验证

    =−

    λ 

    λ 

    λ 

    00

    10

    011

    t  AQQ  

    Proof : clearly A has only one distinct eigenvalue λ   with multiplicity 3

  • 8/20/2019 Linear System Theory and Design Answer

    29/106

     

    0

    1

    00

    000

    000000

    1

    00

    000

    002/0

    000

    00000

    1

    00

    )(

    0

    0

    0

    1

    0

    0

    000

    000

    00

    1

    0

    0

    )(

    222

    3

    2222

    2

    =

    =

    =

    =−

    =

    =

    =−

    T T T T 

     I  A

    T T 

     I  A

    λ λ λ λ 

    λ 

    λ λ 

    λ 

     

    these two equation imply that [ ]′100   is a generalized eigenvctor of grade 3 ,

    and

    =

    =

    =−

    =

    =

    =−

    0

    0

    0000

    00

    2/0

    0

    )(

    01

    0

    0

    000

    00

    2/0

    1

    0

    0

    )(

    2222222

    222

    T T 

     I  A

    T T 

     I  A

    λ 

    λ 

    λ 

    λ 

    λ λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ λ 

    λ 

     

    that is the three columns of Q consititute a chain of generalized eigenvectors of length 3

    =

    =

    =

    =

    =

    λ 

    λ 

    λ 

    λ 

    λ λ λ λ λ 

    λ 

    λ λ 

    λ λ λ 

    λ 

    λ λ 

    λ 

    λ λ 

    λ λ λ 

    λ 

    λ λ 

    λ 

    λ λ 

    λ λ λ 

    00

    10

    01

    00

    02/2/3

    00

    1001

    100

    0002/

    00

    1001

    00

    0

    2/2/3

    100

    00

    02/

    00

    0

    2/

    1

    2

    22223222

    222232222

     AQQ

    T T T T T 

    T T T 

    Q

    T T 

    T T T 

    T T 

    T T 

     AQ

     

    3.18 Find the characteristic polynomials and the minimal polynomials of the following matrices求下列矩阵的特征多项式和最小多项式,

    )(

    000

    000

    000

    000

    )(

    000

    000

    000

    001

    )(

    000

    000

    010

    001

    )(

    000

    000

    010

    001

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    1

    d cba

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

     

  • 8/20/2019 Linear System Theory and Design Answer

    30/106

     

    )()()()()(

    )()()()()(

    )()()()()(

    )()()()()()()(

    14414

    213

    413

    312

    412

    23

    1123

    11

    λ λ λ λ λ λ 

    λ λ λ λ λ λ 

    λ λ λ λ λ λ 

    λ λ λ λ λ λ λ λ λ λ 

    −=Ψ−=∆

    −=Ψ−=∆

    −=Ψ−=∆

    −−=Ψ−−=∆

    c

    b

    a

     

    3.19 show that if λ is an eigenvalue of A with eigenvector  x   then )(λ  f    is an eigenvalue

    of )( A f    with the same eigenvector  x  

    证明如果λ 是 A 的关于λ 的特征向量,那么 )(λ  f    是 )( A f    的特征值,  x 是 )( A f    关于

    )(λ  f    的特征向量,

     proof let A be an nn× matrix , use theorem 3.5 for any function )( x f    we can define

    1

    110)(  −

    −+++=  n

    n   x x xh   β  β  β      which equals )( x f    on the spectrum of A

    if λ   is an eigenvalue of A , then we have )()(   λ λ    h f    =   and

    )()(   Ah A f    =

     x f  xh

     x x x

     x A A I  x Ah x A f 

     x x A x x A x x A x A x x A f 

    n

    n

    n

    n

    k k 

    )()(

    )()()(

    ,,)(

    1

    110

    1

    110

    3322

    λ λ 

    λ  β λ  β  β 

     β  β  β 

    λ λ λ λ λ λ 

    ==

    +++=+++==∴

    ====⇒

    −−

    −−

     

    which implies that )(λ  f    is an eigenvalue of )( A f    with the same eigenvector  x  

    3.20 show that an nn× matrix has the property 0=k  A   for mk  ≥   if and only if A has

    eigenvalues 0 with multiplicity n and index m of less , such a matrix is called a nilpotent matrix

    证明   nn×   的矩阵在 0=k  A   当且仅当 A 的 n 重 0 特征值指数不大于 m ,这样的矩阵被称为

    归零矩阵,

     proof : if A has eigenvalues 0 with multiplicity n and index M or less then the Jordan-form

    representation of A is

    =

    3

    2

    1

    ˆ

     J 

     J 

     J 

     A     wheremnma

    nn J 

    ii

    l

    i

    i

    nn

    i

    ii

    ≤×

    =

    =  ∑

    =

    ×

    1

    0

    10

    10

     

    from the nilpotent property , we have ik 

    i   nk  for  J    ≥= 0 so if

  • 8/20/2019 Linear System Theory and Design Answer

    31/106

     

    ,i

    inmamk    ×≥≥   liall J  k i   ,,2,10   == and    0

    ˆ

    3

    2

    1

    =

    =k 

     J 

     J 

     J 

     A    

    then )0)ˆ(0)((0   ===   A f if onlyand if  A f  Ak   

    If ,0   mk  for  Ak  ≥=   then ,0ˆ mk  for  Ak  ≥=   where

    =

    3

    2

    1

    ˆ

     J 

     J 

     J 

     A   ,  nn

     J 

    l

    i

    i

    nni

    i

    i

    i

    ii

    =

    =   ∑=

    ×

    11

    1

    λ 

    λ 

    λ 

     

    So we have

    li for mnand 

    li

    nnk 

     J 

    ii

    i

    i

    nk 

    iii

    i

    i

    ik 

    i

    ,2,1,0

    ,2,10

    )!1)(1(

    !   11

    =≤=∴

    ==

    −+−=

    +−−

    λ 

    λ 

    λ 

    λ λ λ 

     

    which implies that A has only one distinct eigenvalue o with multiplicity n and index m or less ,

    3.21 given

    =100100

    011

     A , find At 

    eand  A A10310

    ,   求 A 的函数  At 

    eand  A A  10310

    , ,

    the characteristic polynomial of A is2

    2   )1()det()(   −=−=∆   λ λ λ λ    A I   

    let2

    210)(   λ  β λ  β  β λ    ++=h   on the spectrum of A , we have

    21

    10

    210

    10

    0

    10

    2110)1()1(

    1)1()1(

    0)0()0(

     β  β 

     β  β  β 

     β 

    +=⋅′=′

    ++==

    ==

    h f 

    h f 

    h f 

     

    the we have 98,0 220   =−==   β  β  β   

    =

    +

    −=

    +−=

    100

    100

    911

    100

    100

    101

    9

    100

    100

    011

    8

    98   210  A A A

     

    the compute

  • 8/20/2019 Linear System Theory and Design Answer

    32/106

     

    102

    101

    0

    21103

    1

    0

    2

    1

    0

    21103

    210103

    0103103

    =

    −=

    =

    +=⋅

    ++=

    =

     β 

     β 

     β 

     β  β 

     β  β  β 

     β  A

    =

    +

    −=

    +−=

    100

    100

    10211

    100

    100

    011

    102

    100

    100

    011

    101

    102101  2103

     A A A

     

    to compute At e :

    1

    22

    1

    2 2

    1

    0

    21

    210

    00

    +−=

    −−=

    =

    +=

    ++=

    =

    t t 

    t t 

    ete

    tee

    te

    e

    e

     β 

     β 

     β 

     β  β 

     β  β  β 

     β 

     

    +−−

    =

    +−+

    −−+

    =

    ++=

    t t t t 

    t t t t 

     At 

    e

    e

    eteee

    eeee

     A A I  Ae

    00

    110

    11

    100

    100

    111

    )12(

    100

    100

    011

    )22(

    100

    010

    001

    2

    210   β  β  β 

     

    3.22 use two different methods to compute  At e   for A1 and A4 in problem 3.13

    用两种方法计算题 3.13 中A1和A4  的函数  t  A At  ee   2,

     

    method 1 : the Jordan-form representation of A1 with respect to the basis

    [ ] [ ] [ ]′′′ 105014001   is { }3,2,1ˆ1   diag A   =  

      −−

    =

    =

    =

    ==∴

    t t t t t 

    t t t 

    t  At  A

    e

    e

    eeeee

    e

    e

    eee

    Cd 

    Cc

    e

    e

    e

    Cb

    QwhereQQeeCa

    3

    2

    33

    3

    2

    32

    1

    3

    2

    00

    00

    )(5)(4

    100

    010

    541

    00

    00

    54

    100

    010

    541

    00

    00

    00

    100

    010

    541

    100

    010

    541

    ,11

     

  • 8/20/2019 Linear System Theory and Design Answer

    33/106

     

    +−−

    +

    ++

    =

    =

    =∴

    −==

    =

    120250

    161200

    232/541

    100

    10

    2/1

    450

    340

    001

    450

    340

    001

    000

    100

    010

    ˆ

    22

    2

    1

    4

    44

    4

    t t 

    t t 

    t t t t 

    t t 

    QQee

    QwhereQQe A

    t  At  A

    t  A

     

    method 2: the characteristic polynomial of1

     A   is ).3)(2)(1()(   −−−=∆   λ λ λ λ    let

    2

    210)(   λ  β λ  β  β λ    ++=h   on the spectrum of 1 A   , we have

    )2(2

    12

    34

    2

    533

    93)3()3(

    32)2()2(

    )1()1(

    323

    322

    330

    22103

    2102

    10

    t t t 

    t t t 

    t t t 

    eee

    eee

    eee

    eh f 

    eh f 

    eh f 

    +−=

    −++−=

    +−=

    ++==′

    ++==

    ++==

     β 

     β 

     β 

     β  β  β 

     β  β  β 

     β  β  β 

     

      −−

    =

    +−+

    −+−+

    +−

    +−+−

    =

    ++=

    t t t t t 

    t t t 

    t t t 

    t t t 

    t t t 

    t t t 

    t  A

    e

    e

    eeeee

    eee

    eee

    eee

    eee

    eee

     A A I e

    3

    2

    32

    32

    32

    32

    32

    32

    2

    12210

    00

    00

    )(5)(4

    900

    040

    40121

    )2(2

    1

    300

    020

    1041

    )2

    34

    2

    5(

    3300

    0330

    0033

    1  β  β  β 

    the characteristic polynomial of 4 A   is3)(   λ λ   =∆ , let 2210)(   λ  β λ  β  β λ    ++=h   on the

    spectrum of 4 A   ,we have

    2

    2

    1

    0

    2:)0()0(

    :)0()0(

    1:)0()0(

     β 

     β 

     β 

    =′′=′′

    =′=′

    ==

    t h f 

    t h f 

    h f 

     

  • 8/20/2019 Linear System Theory and Design Answer

    34/106

     

    thus

    +−−

    +

    ++

    =

    +

    −−

    +

    +=

    ++=

    120250

    161200

    232/541

    000

    000

    450

    2/

    20250

    16200

    2340

    22

    2

    2

    241410

    4

    t t 

    t t 

    t t t t 

    t t 

    t  I 

     A A I e  t  A  β  β  β 

     

  • 8/20/2019 Linear System Theory and Design Answer

    35/106

     

    3.23 Show that functions of the same matrix ; that is )()()()(   A f  Ag Ag A f    =   consequently

    we have  Ae Ae   At  At  =   证明同一矩阵的函数具有可交换性,即   )()()()(   A f  Ag Ag A f    =   因

    此有   Ae Ae   At  At  =   成立 

     proof: let1

    110

    1

    110

    )(

    )(

    −−

    −−

    +++=

    +++=n

    n

    n

    n

     A A I  A f 

     A A I  Ag

    α α α 

     β  β  β 

      ( n is the order of A)

    k ik 

    nk i

    i

    n

    nk 

    k ik 

    i

    i

    n

    n

    nn

    n

    in

    n

    i

    i

    n

    in

    n

    i

    i

     A A

     A A A A I  Ag A f 

    )()(

    )()()(

    1

    22

    0

    1

    0

    22

    11

    1

    1

    1

    1

    0

    011000

    −+−=

    =−

    =

    =

    −−−−

    =

    −−−

    =

    ∑∑∑∑

    ∑∑

    +=

    +++++++=

     β α  β α 

     β α  β α  β α  β α  β α  β α   

    )()()()()()(1

    22

    0

    1

    0

     Ag A f  A A Ag A f    k ik 

    nk i

    i

    n

    nk 

    ik 

    i

    i

    n

    =+=   −+−=

    =−

    =

    =∑∑∑∑   β α  β α   

    let  At e Ag A A f    == )(,)(   then we have  Ae Ae   At  At  =  

    3.24 let

    =3

    2

    1

    0000

    00

    λ λ 

    λ 

    C  , find a B such that C e B

    =   show that of 0=iλ    for some

    I ,then B does not exist

    let

    =

    3

    2

    1

    00

    00

    00

    λ 

    λ 

    λ 

    C  , find a B such that C e B =   Is it true that ,for any nonsingular c ,there

    exists a matrix B such that C e B = ?

    =

    3

    2

    1

    00

    00

    00

    λ 

    λ 

    λ 

    C    证明若   0111   =⋅⋅   λ λ λ  ,则不存在 B 使   C e B =  

    =

    3

    2

    1

    00

    00

    00

    λ 

    λ 

    λ 

    C    ,是否对任意非奇异 C 都存在 B 使, C e B = ?

    Let λ λ    λ  ==   e f  ln)( so  Be B f    B == ln)(  

  • 8/20/2019 Linear System Theory and Design Answer

    36/106

     

    ==

    3

    2

    1

    ln00

    0ln0

    00ln

    ln

    λ 

    λ 

    λ 

    C  B   where 3,2,1,01   =>   iλ  , if 0=λ    for some i ,

    1lnλ    does not exist

    for

    =

    λ 

    λ 

    λ 

    00

    00

    01

    C    we have

    =

      ′

    ==

    λ 

    λ λ 

    λ 

    λ 

    λ 

    λ λ 

    ln00

    0ln0

    01ln

    ln00

    0ln0

    0nlln

    lnC  B   ,

    where 0,0   ≤>   λ λ    if    then λ ln does mot exist , so B does mot exist , we can conclude

    that , it is mot true that , for any nonsingular C THERE EXISTS a B such that cek  =  

    3.25 let )()(

    1)(   AsI  Adj

    s AsI    −

    ∆=−   and let m(s) be the monic greatest common divisor of

    all entries of Adj(Si-A) , Verify for the matrix 2 A   in problem 3.13 that the minimal polynomial

    of A equals )()(   sms∆  

    令, )()(

    1)(   AsI  Adj

    s AsI    −

    ∆=− , 并且令 m(s)是 Adj(Si-A)的所有元素的第一最大公因子,

    利用题 3.13 中 2 A   验证 A 的最小多项式为   )()(   sms∆  

    verification :

    1)(

    )1(00

    0)2)(1(0

    )1(0)2)(1(

    )(,

    200

    010

    101

    )2(\)1()()2()1()(

    200

    010

    001ˆ

    200

    010

    101

    2

    2

    33

    −=

    −−

    −−−−

    =−

    =−

    −−=−−=∆

    =

      −

    =

    ssmso

    s

    ss

    sss

     AsI  Adj

    s

     AsI 

    ssssss

     A A

    we can easily obtain that )()()(   smss   ∆=j   

    3.26 Define [ ]1221101)(

    1)( −−

    −−− ++++∆

    =−   nnnn  Rs Rs Rs R

    s AsI      where

    in

    nn  Rand sss AsI s   α α α    ++++=−=∆   −− 221

    1

    2:)det()(   are constant matrices theis

  • 8/20/2019 Linear System Theory and Design Answer

    37/106

     

    definition is valid because the degree in s of the adjoint of (sI-A) is at most n-1 , verify

     I  ARn

     ARtr 

     I  A A A I  AR Rn

     ARtr 

     I  A A I  AR R ARtr 

     I  A I  AR R ARtr 

     I  R ARtr 

    nnn

    nn

    nn

    nnnn

    α α 

    α α α α α 

    α α α α 

    α α α 

    α 

    +=−=

    ++++=+=−

    −=

    ++=+=−=

    +=+=−=

    =−=

    −−−−

    −−−−

    11

    122

    11

    1211

    1

    212

    2121

    3

    11011

    2

    00

    1

    0)(

    1

    )(

    2

    )(2

    )(

    1

    )(

     

    where tr stands for the trase of a matrix and is defined as the sum of all its diagonal entries this

     process of computing ii   Rand α    is called the leverrier algorithm

    定义 ][)(

    1:)( 12

    21

    10

    1−−

    −−− ++++∆

    =−   nnnn

     RS  RS  RS  Rs

     ASI      其中   )(s∆   是 A 的特征多项

    式 innnn  Rand sss AsI s   α α α    ++++=−=∆   −− 22

    1

    1:)det()(   是常数矩阵,这样定义

    是有效的, 因为 SI-A 的伴随矩阵中 S 的阶次不超过 N-1 验证

     I  AR

    n

     ARtr 

     I  A A A I  AR Rn

     ARtr 

     I  A A I  AR R ARtr 

     I  A I  AR R ARtr 

     I  R ARtr 

    nnn

    nn

    nn

    nnnn

    α α 

    α α α α α 

    α α α α 

    α α α 

    α 

    +=−=

    ++++=+=−

    −=

    ++=+=−=

    +=+=−=

    =−=

    −−−−

    −−−−

    11

    122

    11

    1211

    1

    212

    2121

    3

    11011

    2

    00

    1

    0)(

    1

    )(

    2

    )(

    2

    )(1

    )(

     

    其中矩阵的迹 tr 定义为其对角元素之和, 这种计算 iα   和 i R  的程式被称为 leverrier 算法.

    verification:

    implieswhich

    S  I 

    S S S S  I 

     ARS  AR RS  AR RS  AR RS  R

     RS  RS  RS  R ASI 

    nn

    nnn

    nnn

    nnn

    nn

    nn

    )(

    )(

    )()()(

    ])[(

    1

    2

    2

    1

    1

    121

    2

    12

    1

    010

    12

    2

    1

    1

    0

    ∆=

    +++++=

    +−+−+−+=

    ++++−

    −−−

    −−−−−

    −−−−

    α α α α   

     

  • 8/20/2019 Linear System Theory and Design Answer

    38/106

     

    ][)(

    1:)( 12

    21

    10

    1−−

    −−− ++++∆

    =−   nnnn

     RS  RS  RS  Rs

     ASI    ’

    where nnnn ssss   α α α    ++++=∆   −− 22

    1

    1)(  

    3.27 use problem 3.26 to prove the cayley-hamilton theorem

    利用题 3.26 证明 cayley-hamilton 定理 

     proof:

     I  AR

     I  AR R

     I  AR R

     I  AR R

     I  R

    nn

    nnn

    α 

    α 

    α 

    α 

    =−

    =−

    =−

    =−

    =

    −−−

    1

    121

    212

    101

    0

     

    multiplying ith equation by1+−in

     A yields (   ni   2,1=   )

     I  AR

     A R A AR

     A R A R A

     A R A R A

     A R A

    nn

    nnn

    nnn

    nnn

    nn

    α 

    α 

    α 

    α 

    =−

    =−

    =−

    =−

    =

    −−−

    −−−

    −−

    1

    122

    1

    221

    12

    2

    1101

    1

    0

     

    then we can see012

    2

    101

    1

    0

    1

    2

    2

    1

    1

    =−−++−++=

    +++++

    −−−−

    −−−

    nnn

    nnn

    nn

    nnn

     AR R A AR R A R A R A

     I  A A A A

      α α α α that is

    0)(   =∆   A  

    3.28 use problem 3.26 to show

    [ ] I ss Ass As As

     AsI 

    n

    nnnnn )()()()(

    1

    )(

    12

    113

    2122

    11

    1

    −−−−−−

    ++++++++++∆

    =

    α α α α α     

    利用题 3.26 证明上式,

    Proof:

  • 8/20/2019 Linear System Theory and Design Answer

    39/106

     

    [ ] I ss Ass As As

     I  A A AS  A A A

    S  I  A AS  I  AS s

     RS  RS  RS  Rs

     ASI 

    n

    nnnnn

    nnnn

    nnnn

    nnn

    nn

    nn

    )()()()(

    1

    ])(

    )()([)(

    1

    ][)(

    1:)(

    1

    2

    1

    13

    21

    22

    1

    1

    122

    11

    433

    12

    3

    21

    22

    1

    1

    12

    2

    1

    1

    0

    1

    −−−−−−

    −−−−−−−−

    −−−

    −−−−−

    ++++++++++∆

    =

    +++++++++

    ++++++∆

    =

    ++++∆

    =−

    α α α α α 

    α α α α α α 

    α α α 

    another : let 10  =α   

    [ ] I ss Ass As As

     I  A A AS  A A A

    S  I  A AS  I  AS 

     AS  AS s

     AS 

    s

    S  R

    s

     RS  RS  RS  Rs

     ASI 

    n

    nnnnn

    nn

    nn

    nn

    nn

    nnn

    n

    i

     I n

    i

     N 

    i

     I n

    i

    n

    ii

    n

    i

     L

    li

    n

    i

    inin

    i

    nn

    nn

    )()()()(

    1

    ])(

    )()(

    )(

    1)(

    1

    )(

    1

    ][)(

    1:)(

    1

    2

    1

    13

    21

    22

    1

    1

    12

    2

    1

    1

    43

    3

    1

    2

    3

    21

    22

    1

    1

    1

    0

    11

    0

    01

    1 1

    0

    1

    0

    11

    12

    2

    1

    1

    0

    1

    −−−−−−

    −−−−

    −−−−

    −−−

    =

    −−−

    =

    −−

    =

    =

    =

    −−−−

    −−−−−

    ++++++++++∆

    =

    +++++++++

    ++++++

    +++∆

    =

    =

    =

    ++++∆

    =−

    ∑∑

    ∑ ∑∑

    α α α α α 

    α α α α α α 

    α α α 

    α α 

    α 

     

    3.29 let all eigenvalues of A be distinct and let iq   be a right eigenvector of A associated with

    iλ    that is i I i   qq A   λ =   define nqqqQ   21=   and define

    ==   −

    n p

     p

     p

    QP

    2

    1

    1 :; ,

    where i p is the ith row of P , show that i p   is a left eigenvector of A associated with iλ  , that

    is iii   p A p   λ =   如 果 A   的 所 有 特 征 值 互 不 相 同 , iq   是 关 于 iλ   的 一 个 右 特 征 向 量 , 即

    i I i  qq A   λ = ,定义

    nqqqQ   21=   并且

    ==   −

    n p

     p

     p

    QP

    2

    1

    1 :;  

    其中i p   是 P 的第 I 行, 证明 i p   是 A 的关于 iλ   的一个左特征向量,即 iii   p A p   λ =  

  • 8/20/2019 Linear System Theory and Design Answer

    40/106

     

    Proof: all eigenvalues of A are distinct , andi

    q is a right eigenvector of A associated withi

    λ  ,

    andn

    qqqQ   21=   so we know that11

    3

    2

    1

    ˆ   −− ==

    =   PAP AQQ A

    λ 

    λ 

    λ 

     

    P APA ˆ=∴  That is

    =

    =

    nnnnn

    n   p

     p

     p

     A p

     A p

     A p

     p

     p

     p

     A

     p

     p

     p

    λ 

    λ 

    λ 

    λ 

    λ 

    λ 

    22

    11

    2

    1

    2

    1

    2

    12

    1

    :   so iii   p A p   λ = , that is , i p is a

    left eigenvector of A associated withi

    λ   

    3.30 show that if all eigenvalues of A are distinct , then1)(   −− ASI    can be expressed as

    ∑−

    =−   − iii

     pqs

     ASI λ 

    1)(   1   where iq and i p are right and left eigenvectors of A associated

    with iλ    证 明 若 A   的 所 有 特 征 值 互 不 相 同 ,   则1)(   −− ASI    可 以 表 示 为

    ∑−

    =−   − iii

     pqs

     ASI λ 

    1)(   1 其中 iq   和 i p   是 A 的关于 iλ  的右特征值和左特征值,

    Proof: if all eigenvalues of A are distinct , leti

    q  be a right eigenvector of A associated withi

    λ  ,

    then nqqqQ   21= is nonsingular , and

    =−

    n p

     p

     p

    Q

    2

    1

    1:   where is a left eigenvector of

    A associated withi

    λ  ,

    ∑ ∑

    ∑∑

    =−−

    =

    −−

    =−−

    =

    −−

    iiiii

    i

    iiiii

    i

    iiii

    i

    ii

    i

     pq pqss

     pq pqss

     A pq pqss

     ASI  pqs

    ))((1

    )(1

    )(1

    )(1

    λ λ 

    λ λ λ 

    λ 

     

    That is ∑−

    =−   − iii

     pq

    s

     ASI 

    λ 

    1)(   1  

  • 8/20/2019 Linear System Theory and Design Answer

    41/106

     

    3.31 find the M to meet the lyapunov equation in (3.59) with

    ==

    −−=

    3

    33

    22

    10C  B A   what are the eigenvalues of the lyapunov equation ? is the

    lyapunov equation singular ? is the solution unique ?

    已知 A,B,C,求 M 使之满足(3.59) 的 lyapunov 方程的特征值, 该方程是否奇异>解是否唯一?

    =⇒=

    −∴

    =+

    3

    0

    12

    13 M C  M 

    C  MB AM 

     

    3)det()()1)(1()det()(   +=−=∆++−+=−=∆   λ λ λ λ λ λ λ    B I  j j A I   B A  

    The eigenvalues of the Lyapunov equation are

     j j j j   −=+−−=+=++−=   231)231 21   η η   

    The lyapunov equation is nonsingular M satisfying the equation

    3.32 repeat problem 3.31 for