Link Calc Example

  • Upload
    nt-binh

  • View
    222

  • Download
    0

Embed Size (px)

Citation preview

  • 8/3/2019 Link Calc Example

    1/27

    2/18/2008 Pietrosemoli 1

    Link Budget Calculation

    ICTP-ITU School on New Perspectives onWireless Networking 2008

    Abdus Salam ICTP

    Ermanno Pietrosemoli

    Latin American Networking School(Fundacin EsLaRed) ULA

    Mrida Venezuela www.eslared.org.ve

  • 8/3/2019 Link Calc Example

    2/27

    2/18/2008 Pietrosemoli 2

    Radio Links Design

    Choice of Frequency Path Profiles

    Power Budget

    Coverage area Site survey

  • 8/3/2019 Link Calc Example

    3/27

    2/18/2008 Pietrosemoli 3

  • 8/3/2019 Link Calc Example

    4/27

    2/18/2008 Pietrosemoli 4

    Path Profile

    LOS (Line of sight)

    K Factor (Earth Curvature)

    Fresnel Zone

  • 8/3/2019 Link Calc Example

    5/27

    2/18/2008 Pietrosemoli 5

    K factor

    K = (Apparent Earth Radius)/(Real Earth Radius)

    EarthEarth

    OpticOptical Horizon Radio Horizon, K= 4/3Radio Horizon, K= 4/3

  • 8/3/2019 Link Calc Example

    6/27

    2/18/2008 Pietrosemoli 6

    Radio trajectory

    K = 4/3, 90% of the time, dielectricconstant decreases with altitude

    Reach 1/3 beyond the horizon

    K = infinity, straight trajectory

    K = 2/3, upwards curvature, less reach ,0.6 F1 in critical paths

  • 8/3/2019 Link Calc Example

    7/27

    2/18/2008 Pietrosemoli 7

    Link Profile

    Objects on the path

    Foliage

    Plane surfaces and bodies of water

    Fresnel Zones

  • 8/3/2019 Link Calc Example

    8/27

    First Fresnel Zone

    Food Mart

    DirectPath=L

    FirstFresnelZone

    Reflectedpath=L+/2

  • 8/3/2019 Link Calc Example

    9/27

    Radio Link ClearanceDistancia en km 1ra Zona 0.7 *1ra Zona de Fresnel Curvatura TOTAL

    de Fresnel @ 2.4 GHz en metros Terrestre metros

    1 5.5 3.9 0.0 3.9

    2 7.8 5.5 0.2 5.6

    3 9.6 6.7 0.4 7.1

    4 11.1 7.7 0.7 8.4

    5 12.4 8.7 1.0 9.7

    6 13.6 9.5 1.5 11.0

    7 14.6 10.2 2.0 12.3

    8 15.6 11.0 2.7 13.6

    9 16.6 11.6 3.4 15.0

    10 17.5 12.2 4.2 16.4

    11 18.4 12.8 5.0 17.9

    12 19.2 13.4 6.0 19.4

    13 19.9 14.0 7.0 21.0

    14 20.7 14.5 8.2 22.7

    15 21.4 15.0 9.4 24.4

    16 22.1 15.5 10.7 26.217 22.8 16.0 12.0 28.0

    18 23.5 16.4 13.5 29.9

    19 24.1 16.9 15.0 31.9

    20 24.7 17.3 16.7 34.0

    25 27.7 19.4 26.0 45.4

    30 30.3 21.2 37.5 58.7

  • 8/3/2019 Link Calc Example

    10/27

    2/18/2008 Pietrosemoli 10

    Obstructed Line of Sight

  • 8/3/2019 Link Calc Example

    11/27

    2/18/2008 Pietrosemoli 11

    Optical Line of Sight

  • 8/3/2019 Link Calc Example

    12/27

    2/18/2008 Pietrosemoli 12

    Radio Line of Sight

  • 8/3/2019 Link Calc Example

    13/27

    2/18/2008 Pietrosemoli 13

    Fresnel Zone obstruction

    Attenuation

  • 8/3/2019 Link Calc Example

    14/27

    2/18/2008 Pietrosemoli 14

    Profiles

    How to get the data:

    Topographic Maps

    GPS

    Walking the path withan altimeter

    DEMs and appropiatesoftware

  • 8/3/2019 Link Calc Example

    15/27

    2/18/2008 Pietrosemoli 15

    Beyond Line of Sight

    Reception is feasible, but with an increased power

    budget by diffraction on obstacles

    OFDM (Orthogonal Frequency Diversity Modulation)and MIMO (Multiple Input- Multiple Output) based

    solutions can make a constructive use of multipath toovercome LOS

    Suitable obstacles are abundant in urbanenvironment, much less so in rural areas, trees DO

    NOT reflect radio waves, they rather absorb or scatterthem

  • 8/3/2019 Link Calc Example

    16/27

  • 8/3/2019 Link Calc Example

    17/27

    2/18/2008 Pietrosemoli 17

    Example 1

    Find the FSL between two sites 20 km apartin the 2, 4GHz frequency band

    Repeat for the 5,7 GHz frequency

  • 8/3/2019 Link Calc Example

    18/27

    2/18/2008 Pietrosemoli 18

    Exercise

    Find the received signal level at 10 degrees from the

    boresight of a 24 dBi Hyperlink HG2424 antenna fedfrom a Linksys WRT54G Router with 12 meters ofLMR400 cable. The receiving antenna is

    omnidirectional, located at 13 km and with a gain of 8dBi at 2, 4GHz operating frequency. The receivingantenna cable is LMR 200 and 7 meters long. Bothantennas are protected by cabling arrestors that

    introduce 0,5 dB of additional loss each.The link is meant to attain 11 Mbit/s nominal speed.

  • 8/3/2019 Link Calc Example

    19/27

  • 8/3/2019 Link Calc Example

    20/27

    2/18/2008 Pietrosemoli 20

    From www.hyperlinktech.com

    we find the radiation pattern ofThe antenna. But there are two.

    Which one do we choose?

    Since the receiving antenna is

    Omnidirectional, we will assumethat it is vertically polarised, and

    therefore we must use vertical

    polarisation at both ends.

    For vertical polarisation, we haveabout 8 dB signal drop at 10

    Offset, so the effective antenna

    gain in this direction is 24-8=16 dBi

    Antenna Gain

  • 8/3/2019 Link Calc Example

    21/27

  • 8/3/2019 Link Calc Example

    22/27

    2/18/2008 Pietrosemoli 22

    Relative and absolute height

    GalileoBuilding

    Street Level = 60 m

    Sea Level

    Building heigth = 10 m

    Antenna heigth: 3m above the roof

    13m above the street, 73 m above sea level

    Basement

    height: -3m

  • 8/3/2019 Link Calc Example

    23/27

    2/18/2008 Pietrosemoli 23

    FSL

    L= 100 +20Log(13km/km) = 122.28 dB

    The power reaching the receiving antenna willbe 30,3 dBm -122,3 dB = -92 dBm

    Adding the receiving antenna gain, the powerat the antenna terminal will be: -92 + 8 = -84dBm

  • 8/3/2019 Link Calc Example

    24/27

    2/18/2008 Pietrosemoli 24

    Receiver Cable loss

    From www.hyperlinktech.com we find the

    loss for the LMR 200 cable which is 0,55dB/m, so for 7 m we will have 3,85 dB loss.But we must have 2 connectors at each end,with an estimated loss of 0,2 dB each, plus

    one adapter from the RPTN connector of thelinksys to the N male connector of the cable,which has a loss of 0,15 dB, so adding theo,5 dB loss of the lightning arrestor, the total

    loss of the cabling will be:3,85+2*0,2+0,15+0,5=4,9 dB, so the inputpower at the receiver will be: -84 dBm 4,9dB = -88,9 dBm

  • 8/3/2019 Link Calc Example

    25/27

    2/18/2008 Pietrosemoli 25

    We can now build a graph of power over distance:

    Rx

    Gr

    Tx

    Gt

    At Ar

    18

    dBm

    km

    Threshold

    Margin

    14,3

    EIRP: 30,3 dBm

    -92

    FSL= 122.28 dB

    -84

    -88,9

  • 8/3/2019 Link Calc Example

    26/27

    2/18/2008 Pietrosemoli 26

    Homework

    Design a point to multipoint system. Remote units are scattered

    in every direction from the base station. The farthest CPEis 8 km away. Base station and remote (CPE) radios are equal,with 15 dBm power output and 85 dBm minimum receiverpower at 2.4 GHz. Base station requires 20 m of coaxial cablebetween the radio and the antenna with 10 dB of attenuation,

    wereas the CPEs all use 10m long cables with 5 dB attenuation.

    Choose the best suited antenna for the base station and for theCPE, among the one described in the following page.

  • 8/3/2019 Link Calc Example

    27/27

    2/18/2008 Pietrosemoli 27