195
KU EECS 780 – Communication Networks – Link Layer and LANs –1– Communication Networks The University of Kansas EECS 780 Link Layer and LANs © 2004–2007 James P.G. Sterbenz 31 March 2010 rev. 10.1 James P.G. Sterbenz Department of Electrical Engineering & Computer Science Information Technology & Telecommunications Research Center The University of Kansas [email protected] http://www.ittc.ku.edu/~jpgs/courses/nets © 2004–2010 James P.G. Sterbenz 31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-2 © James P.G. Sterbenz ITTC Link Layer and LANs Outline LL.1 Link layer functions and services LL.2 Framing and delineation LL.3 LAN types and topologies LL.4 Multiplexing and switching LL.5 Per-hop error and flow control LL.6 Link layer components LL.8 IP address resolution LL.7 Residential broadband

Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 1 –

© James P.G. SterbenzITTCCommunication Networks

The University of Kansas EECS 780Link Layer and LANs

© 2004–2007 James P.G. Sterbenz31 March 2010 rev. 10.1

James P.G. Sterbenz

Department of Electrical Engineering & Computer ScienceInformation Technology & Telecommunications Research Center

The University of Kansas

[email protected]

http://www.ittc.ku.edu/~jpgs/courses/nets

© 2004–2010 James P.G. Sterbenz

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-2

© James P.G. SterbenzITTC

Link Layer and LANsOutline

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.8 IP address resolutionLL.7 Residential broadband

Page 2: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 2 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-3

© James P.G. SterbenzITTC

Link Layer and LANsLL.1 Link Layer Functions and Services

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-4

© James P.G. SterbenzITTC

Link LayerHybrid Layer/Plane Cube

physicalMAC

link

networktransport

sessionapplication

data plane control plane

plane

management

social

virtual link

L1

L7L5L4L3

L2L1.5

L8

L2.5

Layer 2:hop-by-hopdata transferin data and control planes

Page 3: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 3 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-5

© James P.G. SterbenzITTC

Link LayerLink Definition

• Link is the interconnection between nodes– intermediate systems (switches or routers)– end systems (or hosts)

networkCPU

M app

end system

CPU

M app

end system

intermediatesystem

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-6

© James P.G. SterbenzITTC

Link LayerLink Protocol

• Link protocol– is responsible for per hop transfer of data frame– assume dedicated links for now: no MAC lecture MW

network

application

session

transport

network

link

end system

network

link

intermediatesystem

network

link

intermediatesystemnetwork

link

intermediatesystem

application

session

transport

network

link

end system

Page 4: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 4 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-7

© James P.G. SterbenzITTC

Link LayerService and Interfaces

• Link layer is HBH analog of E2E transport layer– transport layer (L4) transfers packets E2E

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-8

© James P.G. SterbenzITTC

Link LayerService and Interfaces

• Link layer is HBH analog of E2E transport layer– transport layer (L4) transfers packets E2E

• Link layer (L2) service to network layer (L3)– transfer frame HBH (hop-by-hop)

• sender: encapsulate packet into frame and transmit• receiver: receive frame and decapsulate into packet

Page 5: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 5 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-9

© James P.G. SterbenzITTC

Link LayerService and Interfaces

• Link layer is HBH analog of E2E transport layer– transport layer (L4) transfers packets E2E

• Link layer (L2) service to network layer (L3)– transfer frame HBH (hop-by-hop)

• sender: encapsulate packet into frame and transmit• receiver: receive frame and decapsulate into packet

– error checking / optional correction or retransmission• recall end-to-end arguments:

E2E reliability with HBH error control only for performance

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-10

© James P.G. SterbenzITTC

Link LayerService and Interfaces

• Link layer is HBH analog of E2E transport layer– transport layer (L4) transfers packets E2E

• Link layer (L2) service to network layer (L3)– transfer frame HBH (hop-by-hop)

• sender: encapsulate packet into frame and transmit• receiver: receive frame and decapsulate into packet

– error checking / optional correction or retransmission• recall end-to-end arguments:

E2E reliability with HBH error control only for performance – flow control possible but not generally needed at link layer

• parameter negotiation typical (e.g. data rate)

Page 6: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 6 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-11

© James P.G. SterbenzITTC

Link LayerService and Interfaces

• Link layer is HBH analog of E2E transport layer– transport layer (L4) transfers packets E2E

• Link layer (L2) service to network layer (L3)– transfer frame HBH (hop-by-hop)

• sender: encapsulate packet into frame and transmit• receiver: receive frame and decapsulate into packet

– error checking / optional correction or retransmission• recall end-to-end arguments:

E2E reliability with HBH error control only for performance – flow control possible but not generally needed at link layer

• parameter negotiation typical (e.g. data rate)

• Link layer multiplexing and switching

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-12

© James P.G. SterbenzITTC

Link LayerService and Interfaces

• Link layer frame encapsulates network layer packet– packet (NPDU – network layer protocol data unit)– frame (LPDU link layer protocol data unit)

• frame = header + packet + (trailer)

network layer

MAC/phy layer

link layer

network layer

MAC/phy layer

link layer

NPDU

NPDU TH

NPDU

NPDU TH

…10111001010…

frame

packet

Page 7: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 7 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-13

© James P.G. SterbenzITTC

Link LayerFunctional Placement

• Link layer functionality per line interface– end system: network interface (NIC)– switch/router: line card

switch

forwarding

line card

framespackets

line card

line card

line card

end system

network interface

mem CPU

routing

frames

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-14

© James P.G. SterbenzITTC

Link Layer and LANsLL.2 Framing and Delineation

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 8: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 8 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-15

© James P.G. SterbenzITTC

Link FramingStructure and Fields

• Link protocols need to delimit link layer framewhy?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-16

© James P.G. SterbenzITTC

Link FramingStructure and Fields

• Link protocols need to delimit link layer frame– physical layer is coded bit stream– receiver needs to delimit frames

Page 9: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 9 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-17

© James P.G. SterbenzITTC

Link FramingStructure and Fields

• Delimits link layer frame– physical layer is coded bit stream– receiver needs to delimit frames

• Header: where the frame goes– beginning of frame– multiplexing information for multiplexed links– addressing information for multiple access links

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-18

© James P.G. SterbenzITTC

Link FramingStructure and Fields

• Delimits link layer frame– physical layer is coded bit stream– receiver needs to delimit frames

• Header: where the frame goes– beginning of frame– multiplexing information for multiplexed links– addressing information for multiple access links

• Trailer: what to do with the frame once arrived– integrity check (typically strong CRC)

Page 10: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 10 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-19

© James P.G. SterbenzITTC

Link FramingReceiver Delineation

• Key problem: how to detect start of frameideas?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-20

© James P.G. SterbenzITTC

Link FramingReceiver Delineation

• Key problem: how to detect start of frame– in the presence of errors

ideas?

Page 11: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 11 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-21

© James P.G. SterbenzITTC

Link FramingReceiver Delineation Techniques

• Synchronous clocks • Counting• Flags with

– byte stuffing– bit stuffing

• Preamble pattern• Special physical layer code

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-22

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Synchronous Clocks

• Synchronous links• Sender and receiver maintain tight synchronisation

– receive clock carefully matched to sender– clock recovery

• Example– SONET/SDH

Page 12: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 12 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-23

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Counting

• Counting (bit, byte, or word)– count bytes to determine frame length– use length field in header for variable length frames

54 3 2 1

76 5 4 3 2 1

43 2 1

95 4 3 2 18 7 6

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-24

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Counting

• Counting (bit, byte, or word)– count bytes to determine frame length– use length field in header for variable length frames

Effect of errors?

54 3 2 1

76 5 4 3 2 1

43 2 1

95 4 3 2 18 7 6

Page 13: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 13 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-25

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Counting

• Counting (bit, byte, or word)– count bytes to determine frame length– use length field in header for variable length frames

• Effect of errors– difficult to maintain frame synchronisation– serious problem if length field is corrupted

– checksums don’t helpwhy?

54 3 2 1

76 5 4 3 2 1

43 2 1

95 4 3 2 18 7 6

54 3 2 1

32 1 8 7 6

44 3 2

96 5 4 32 1

95 1

3 7

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-26

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Counting

• Counting (bit, byte, or word)– count bytes to determine frame length– use header length field for variable length frames

• Effect of errors– difficult to maintain frame synchronisation– serious problem if length field is corrupted

– checksums don’t help• indicate error, but not the beginning of the next frame

54 3 2 1

76 5 4 3 2 1

43 2 1

95 4 3 2 18 7 6

54 3 2 1

32 1 8 7 6

44 3 2

96 5 4 32 1

95 1

3 7

Page 14: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 14 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-27

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags

• Flags– special sequence of bits at beginning and end of frame

problem?

NPDU THF F

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-28

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags

• Flags– special sequence of bits at beginning and end of frame

what if data stream contains flag bitstring?

NPDU THF F

NPDU THF FF

Page 15: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 15 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-29

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Byte Stuffing

• Flags– special byte at beginning and end of frame– data transparency: flag byte must be allowed in data

• Byte stuffing– escape byte stuffed when flag (or escape) is in data

NPDU THF F

THF FEF NPDU

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-30

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Byte Stuffing

• Flags– special byte at beginning and end of frame– data transparency: flag byte must be allowed in data

• Byte stuffing– escape byte stuffed when flag (or escape) is in data

• Example: PPP 01111110 flag 01111101 escape

NPDU THF F

THF FEF NPDU

Page 16: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 16 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-31

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Byte Stuffing

• Flags– special byte at beginning and end of frame– data transparency: flag byte must be allowed in data

• Byte stuffing– escape byte stuffed when flag (or escape) is in data

• Example: PPP 01111110 flag 01111101 escape– data B B B F B B E B B F F B B

NPDU THF F

THF FEF NPDU

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-32

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Byte Stuffing

• Flags– special byte at beginning and end of frame– data transparency: flag byte must be allowed in data

• Byte stuffing– escape byte stuffed when flag (or escape) is in data

• Example: PPP 01111110 flag 01111101 escape– data B B B F B B E B B F F B B– sender insertion F B B B F E B B E E B B F E F E B B F

NPDU THF F

THF FEF NPDU

Page 17: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 17 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-33

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Byte Stuffing

• Flags– special byte at beginning and end of frame– data transparency: flag byte must be allowed in data

• Byte stuffing– escape byte stuffed when flag (or escape) is in data

• Example: PPP 01111110 flag 01111101 escape– data B B B F B B E B B F F B B – sender insertion F B B B F E B B E E B B F E F E B B F– receiver strips B B B F B B E B B F F B B

• escaped escape: remove escape E E → E• escaped flag: remove flag F E → F• flag: frame boundary F

NPDU THF F

THF FEF NPDU

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-34

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Bit Stuffing

• Flags– special byte at beginning and end of frame

what if data stream isn’t byte stream?

NPDU THF F

NPDU THF FF

Page 18: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 18 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-35

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Bit Stuffing

• Flags– special sequence of bits : n 1s delineated by 0 bits– stuffing can be applied at bit level as well as byte level

• Bit stuffing– 0-bit is stuffed in data stream after n–1 bit sequence occurs

NPDU THF F

NPDU THF FF0

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-36

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Bit Stuffing

• Flags– special sequence of bits : n 1s delineated by 0 bits– stuffing can be applied at bit level as well as byte level

• Bit stuffing– 0-bit is stuffed in data stream after n–1 bit sequence occurs

• Example: 01111110 flag (run of six 1 bits)

NPDU THF F

NPDU THF FF0

Page 19: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 19 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-37

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Bit Stuffing

• Flags– special sequence of bits : n 1s delineated by 0 bits– stuffing can be applied at bit level as well as byte level

• Bit stuffing– 0-bit is stuffed in data stream after n–1 bit sequence occurs

• Example: 01111110 flag (run of six 1 bits)– data 00111001111111111111101011

NPDU THF F

NPDU THF FF0

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-38

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Bit Stuffing

• Flags– special sequence of bits : n 1s delineated by 0 bits– stuffing can be applied at bit level as well as byte level

• Bit stuffing– 0-bit is stuffed in data stream after n–1 bit sequence occurs

• Example: 01111110 flag (run of six 1 bits)– data 00111001111111111111101011 groups of 5

NPDU THF F

NPDU THF FF0

Page 20: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 20 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-39

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Bit Stuffing

• Flags– special sequence of bits : n 1s delineated by 0 bits– stuffing can be applied at bit level as well as byte level

• Bit stuffing– 0-bit is stuffed in data stream after n–1 bit sequence occurs

• Example: 01111110 flag (run of six 1 bits)– data 00111001111111111111101011 groups of 5– insertion 01111110001110011111011111011110101101111110

NPDU THF F

NPDU THF FF0

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-40

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Bit Stuffing

• Flags– special sequence of bits : n 1s delineated by 0 bits– stuffing can be applied at bit level as well as byte level

• Bit stuffing– 0-bit is stuffed in data stream after n–1 bit sequence occurs

• Example: 01111110 flag (run of six 1 bits)– data 00111001111111111111101011 groups of 5– insertion 01111110001110011111011111011110101101111110

– receiver 00111001111111111111101011• escaped flag n–1 1-bits: remove 0-flag 011111 → 11111• flag n 1-bits: frame boundary 01111110

NPDU THF F

NPDU THF FF0

Page 21: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 21 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-41

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Stuffing

• Flags– special sequence of bits

• Stuffing– add escape (byte or 0-bit) for data transparency

Problem?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-42

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Stuffing

• Flags– special sequence of bits

• Stuffing– add escape (byte or 0-bit) for data transparency

• Data stream transformation– bits or bytes inserted

problem?

Page 22: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 22 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-43

© James P.G. SterbenzITTC

Link FramingReceiver Delineation: Flags with Stuffing

• Flags– special sequence of bits

• Stuffing– add escape (byte or 0-bit) for data transparency

• Data stream transformation– bits or bytes inserted– data rate non-deterministically altered– sufficient link-capacity headroom must be provided

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-44

© James P.G. SterbenzITTC

Link FramingPreamble Pattern

• Preamble pattern– special pattern in header (like a flag)

How to handle data transparency?

Page 23: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 23 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-45

© James P.G. SterbenzITTC

Link FramingPreamble Pattern

• Preamble pattern– special pattern in header (like a flag)

How to handle data transparency?without flags

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-46

© James P.G. SterbenzITTC

Link FramingPreamble Pattern

• Preamble pattern– special pattern in header (like a flag)

• Significantly longer than flag– lowers probability of bit error impacting

payload

header

preamble

trailer

Page 24: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 24 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-47

© James P.G. SterbenzITTC

Link FramingPreamble Pattern

• Preamble pattern– special pattern in header (like a flag)

• Significantly longer than flag– lowers probability of bit error impacting

• Length field in header– allows preamble in payload

length

payload

header

preamble

trailer

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-48

© James P.G. SterbenzITTC

Link FramingPreamble Pattern

• Preamble pattern– special pattern in header (like a flag)

• Significantly longer than flag– lowers probability of bit error impacting

• Length field in header– allows preamble bits in payload

• Error check in trailer– protects against errors– e.g. FCS (frame check sequence)

length

payload

header

preamble

FCS

Page 25: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 25 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-49

© James P.G. SterbenzITTC

Link FramingPreamble Pattern

MAC header

30B 14B

trailer4B

LLC/SNAP subheader

8B

payload

length/type

payload

destination address

source address

LLC

SNAP

10101010   10101010

FCS

• Preamble pattern– special pattern in header (like a flag)

• Significantly longer than flag– lowers probability of bit error impacting

• Length field in header– allows preamble bits in payload

• Error check in trailer– protects against errors– e.g. FCS (frame check sequence)

• Example: Ethernet 10101010…

10101010   10101010

10101010   1010101110101010   10101010preamble + SFD

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-50

© James P.G. SterbenzITTC

Link FramingSpecial Physical Layer Code

• Physical layer codes bits on within channel Lecture PL

• Special physical code may be reserved for framinghow to handle data transparency?

Page 26: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 26 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-51

© James P.G. SterbenzITTC

Link FramingSpecial Physical Layer Code

• Physical layer codes bits on within channel Lecture PL

• Special physical code may be reserved for framing– choose code symbol that doesn’t represent valid data

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-52

© James P.G. SterbenzITTC

Link Layer and LANsLL.3: LAN Types and Topologies

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologies

LL.3.1 LAN topologiesLL.3.2 Point-to-point protocolLL.3.3 802 and EthernetLL.3.4 Ring LANs

LL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 27: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 27 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-53

© James P.G. SterbenzITTC

Link Types and TopologiesPoint-to-Point vs. Shared Medium

• Point-to-point links– one transmitter per medium

• dedicated

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-54

© James P.G. SterbenzITTC

Link Types and TopologiesPoint-to-Point vs. Shared Medium

• Point-to-point links– one transmitter per medium

• dedicated• multiplexed (layer 2) more later

Page 28: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 28 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-55

© James P.G. SterbenzITTC

Link Types and TopologiesPoint-to-Point vs. Shared Medium

• Point-to-point links– one transmitter per medium

• dedicated• multiplexed (layer 2) more later

• Shared medium (multiple access)– multiple transmitters per medium

implication?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-56

© James P.G. SterbenzITTC

Link Types and TopologiesPoint-to-Point vs. Shared Medium

• Point-to-point links– one transmitter per medium

• dedicated• multiplexed (layer 2) more later

• Shared medium (multiple access)– multiple transmitters per medium– results in contention for medium

problem?

Page 29: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 29 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-57

© James P.G. SterbenzITTC

Link Types and TopologiesPoint-to-Point vs. Shared Medium

• Point-to-point links– one transmitter per medium

• dedicated• multiplexed (layer 2) more later

• Shared medium (multiple access)– multiple transmitters per medium– results in contention for medium

• medium access control (MAC) neededlecture MW

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-58

© James P.G. SterbenzITTC

Link Types and TopologiesPoint-to-Point vs. Shared Medium

• Point-to-point links– one transmitter per medium

• dedicated• multiplexed (layer 2) more later

• Shared medium (multiple access)– multiple transmitters per medium– results in contention for medium

• medium access control (MAC) neededlecture MW

– examples• wireless networks• original Ethernet

Page 30: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 30 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-59

© James P.G. SterbenzITTC

Link Layer and LANsLL.3.1: LAN Topologies

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologies

LL.3.1 LAN topologiesLL.3.2 Point-to-point protocolLL.3.3 802 and EthernetLL.3.4 Ring LANs

LL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-60

© James P.G. SterbenzITTC

Link TopologiesPoint-to-Point Links

• Point-to-point links between switches– space division mesh

Page 31: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 31 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-61

© James P.G. SterbenzITTC

Link TopologiesPoint-to-Point Links

• Point-to-point links between switches– space division mesh

Network scalability?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-62

© James P.G. SterbenzITTC

Link TopologiesPoint-to-Point Links

• Point-to-point links between switches– space division mesh

• Scalable:– add links and expand switches

Page 32: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 32 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-63

© James P.G. SterbenzITTC

Link TopologiesPoint-to-Point Links

• Point-to-point links between switches– space division mesh

• Scalable:– add links and expand switches– add switches

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-64

© James P.G. SterbenzITTC

Link TechnologiesPoint-to-Point Dedicated Links

• Point-to-point dedicated links– sequence of framed packets along a link

H Tpayload H Tpayload H Tpayload

Page 33: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 33 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-65

© James P.G. SterbenzITTC

Link TechnologiesPoint-to-Point Dedicated Links

• Point-to-point dedicated links– sequence of framed packets along a link

• No layer 2 multiplexing– higher layers are multiplexed onto a single link– packets belonging to different E2E flows

H Tpayload H Tpayload H Tpayload

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-66

© James P.G. SterbenzITTC

Link TechnologiesPoint-to-Point Dedicated Links

• Point-to-point dedicated links– sequence of framed packets along a link

• No layer 2 multiplexing– higher layers are multiplexed onto a single link– packets belonging to different E2E flows

• Point-to-point multiplexed links later in lecture

H Tpayload H Tpayload H Tpayload

Page 34: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 34 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-67

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus

• Bus topologyproblems?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-68

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus

• Bus topology– topology constrained by medium

• longest path• limited to LAN lengths due to delay

Page 35: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 35 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-69

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus

• Bus topology– topology constrained by medium

• longest path• limited to LAN lengths due to delay

Network scalability?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-70

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus

• Bus topology– topology constrained by medium

• longest path• limited to LAN lengths due to delay

• Limited scalability– all hosts share capacity of bus

Page 36: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 36 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-71

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus

• Bus topology– topology constrained by medium

• longest path• limited to LAN lengths due to delay

• Limited scalability– all hosts share capacity of bus – contention for shared medium

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-72

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus

• Bus topology– topology constrained by medium

• longest path• limited to LAN lengths due to delay

• Limited scalability– all hosts share capacity of bus – contention for shared medium

• collisions in shared medium• need MAC lecture MW

Page 37: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 37 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-73

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus

• Bus topology– topology constrained by medium

• longest path• limited to LAN lengths due to delay

• Limited scalability– all hosts share capacity of bus – contention for shared medium

• collisions in shared medium• need MAC lecture MW

• Example– original DIX Ethernet

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-74

© James P.G. SterbenzITTC

Link TopologiesShared Medium LAN/MAN: Ring

• Ring topologyadvantages and problems?

Page 38: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 38 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-75

© James P.G. SterbenzITTC

Link TopologiesShared Medium LAN/MAN: Ring

• Ring topology– topology constraints– interstation distance an issue

• host is frequently called a station

station

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-76

© James P.G. SterbenzITTC

Link TopologiesShared Medium LAN/MAN: Ring

• Ring topology– topology constraints– interstation distance an issue

Network scalability?

Page 39: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 39 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-77

© James P.G. SterbenzITTC

Link TopologiesShared Medium LAN/MAN: Ring

• Ring topology– topology constraints– interstation distance an issue

• Limited scalability– all stations share capacity of ring

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-78

© James P.G. SterbenzITTC

Link TopologiesShared Medium LAN/MAN: Ring

• Ring topology– topology constraints– interstation distance an issue

• Limited scalability– all stations share capacity of ring– contention for shared medium

Page 40: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 40 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-79

© James P.G. SterbenzITTC

Link TopologiesShared Medium LAN/MAN: Ring

• Ring topology– topology constraints– interstation distance an issue

• Limited scalability– all stations share capacity of ring– contention for shared medium

• possible to prevent collisions• need MAC lecture MW

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-80

© James P.G. SterbenzITTC

Link TopologiesShared Medium LAN/MAN: Ring

• Ring topology– topology constraints– interstation distance an issue

• Limited scalability– all stations share capacity of ring– contention for shared medium

• possible to prevent collisions• need MAC lecture MW

• Resiliencehow?

Page 41: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 41 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-81

© James P.G. SterbenzITTC

Link TopologiesShared Medium LAN/MAN: Ring

• Ring topology– topology constraints– interstation distance an issue

• Limited scalability– all stations share capacity of ring– contention for shared medium

• possible to prevent collisions• need MAC lecture MW

• Resilience– dual ring can survive cut

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-82

© James P.G. SterbenzITTC

Link TopologiesShared Medium LAN/MAN: Ring

• Ring topology– topology constraints– interstation distance an issue

• Limited scalability– all stations share capacity of ring– contention for shared medium

• possible to prevent collisions• need MAC lecture MW

• Resilience– dual ring can survive cut

• Example: token ring

Page 42: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 42 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-83

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus and Ring Comparison

• Ring vs. bus

Topology

Resilience

Contention

??Scalability

RingBusCharacteristic

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-84

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus and Ring Comparison

• Ring vs. bus

Topology

Resilience

??Contention

moderatepoorScalability

RingBusCharacteristic

Page 43: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 43 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-85

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus and Ring Comparison

• Ring vs. bus

Topology

??Resilience

contentioncollisionsContention

moderatepoorScalability

RingBusCharacteristic

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-86

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus and Ring Comparison

• Ring vs. bus

??Topology

single faultpoorResilience

contentioncollisionsContention

moderatepoorScalability

RingBusCharacteristic

Page 44: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 44 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-87

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus and Ring Comparison

• Ring vs. bus

ringlinearTopology

single faultpoorResilience

contentioncollisionsContention

moderatepoorScalability

RingBusCharacteristic

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-88

© James P.G. SterbenzITTC

Link TopologiesShared Medium Bus and Ring Comparison

• Ring vs. bus LAN debate– Ethernet vs. token ring: famous networking holy wars– token ring advocates touted superior capacity– Ethernet advocates claimed that differences not significant

ringlinearTopology

single faultpoorResilience

contentioncollisionsContention

moderatepoorScalability

RingBusCharacteristic

Page 45: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 45 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-89

© James P.G. SterbenzITTC

Link Layer and LANsLL.3.2: Point-to-Point Protocol

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologies

LL.3.1 LAN topologiesLL.3.2 Point-to-point protocolLL.3.3 802 and EthernetLL.3.4 Ring LANs

LL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-90

© James P.G. SterbenzITTC

Point-to-Point LinksPPP Overview

• PPP: point-to-point protocol [RFC 1557]– link protocol for modem access

• Widely used for dialup Internet access– far more common than SLIP (serial line IP) [RFC 1055]

• Diminishing importance with broadband alternatives– HFC (CATV)– DSL (PSTN)– 802.11 lecture MW– 802.16 and WiMAX lecture MW

Page 46: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 46 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-91

© James P.G. SterbenzITTC

Point-to-Point LinksPPP Design Requirements

• Requirements– packet framing: L3 packet encapsulation– simultaneously carry any network layer

• not just IP

– ability to demultiplex upwards to multiple L3 protocols– bit transparency: any bit pattern in the packet– error detection– connection liveness

• detect• signal failure to L3

– network layer address negotiation for end systems

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-92

© James P.G. SterbenzITTC

Point-to-Point LinksPPP Design Decisions

• Non-requirements– no error correction/recovery– no flow control– no requirements on delivery order – no need to support multipoint links

Why?

Page 47: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 47 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-93

© James P.G. SterbenzITTC

Point-to-Point LinksPPP Design Decisions

• Non-requirements– no error correction/recovery– no flow control– no requirements on delivery order – no need to support multipoint links

• These functions performed by higher layers– typically transport layer– recall end-to-end arguments!– PPP designed for relatively reliable wired links

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-94

© James P.G. SterbenzITTC

Point-to-Point LinksPPP Data Frame

• Header– flag: 01111110 delimiter for framing– address, control: not used– protocol: upper layer protocol to deliver frame

• PPP-LCP, IP, IPCP, etc.

• Payload– L3 packet with byte stuffing

• Trailer– check: cyclic redundancy check for error detection– flag: 01111110 delimiter for framing

Page 48: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 48 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-95

© James P.G. SterbenzITTC

Point-to-Point LinksPPP Data Control Protocol

• PPP link establishment– configure PPP link: max. frame length, authentication– learn/configure network layer

• IP over PPP– carry IP Control Protocol (IPCP) messages

• configure/learn IP address• protocol field: 8021

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-96

© James P.G. SterbenzITTC

Link Layer and LANsLL.3.3: 802 and Ethernet

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologies

LL.3.1 LAN topologiesLL.3.2 Point-to-point protocolLL.3.3 802 and EthernetLL.3.4 Ring LANs

LL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 49: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 49 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-97

© James P.G. SterbenzITTC

LAN ProtocolsIEEE 802

• IEEE 802 LAN/MAN standards [IEEE 802.1] www.ieee802.org

• Definition of LAN/MAN protocols for L1–L2– does not align perfectly with conventional layers

• L2 defined by LLC (logical link control) and MAC header

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-98

© James P.G. SterbenzITTC

LAN ProtocolsIEEE 802

• IEEE 802 LAN/MAN standards [IEEE 802.1] www.ieee802.org

• Definition of LAN/MAN protocols for L1–L2– 802.2 : logical link control (part of L2)– 802.n : MAC and physical media dependent (L1–2)

LLC sublayerlogical link control

MAC sublayermedium access control

MI sublayermedia independent

PMD sublayerphysical media dependent

physicallayer

linklayerMAClayer

802.2

802.n

PMD1 PMD2 PMDk

Page 50: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 50 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-99

© James P.G. SterbenzITTC

Internet ProtocolsImportant IEEE 802 Protocols

media independentLAN.MANIEEE 802.1architecture

media independentLAN/MANIEEE 802.2LLC

WMAN

WPAN

WLAN

Token ring

Ethernet

Common name TechnologyScopeStandard

MAN

PAN

LAN

LAN

LAN/MAN

RFIEEE 802.16

RFIEEE 802.15

RF, (IR)IEEE 802.11

wireIEEE 802.5

wire, fiberIEEE 802.3

• Many other 802.n protocols– some important, but obsolete, e.g. 802.5– some never important, e.g. 802.6 DQDB– some becoming important, e.g. 802.15, 802.16– the jury is still out on others, e.g. 802.17, 802.20, 802.22

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-100

© James P.G. SterbenzITTC

Shared Medium LinksEthernet

• Early LAN technology (1973)– DIX: Digital, Intel, Xerox

• IPv4 over DIX [RFC 0894]

– IEEE 802.3 using 802.2 LLC• IPv4 over 802.3 [RFC 1042]

– note: DIX and 802.3 similar• but not identical

MAC header

30B 14B

trailer4B

LLC/SNAP subheader

8B

payload

length/type

payload

destination address

source address

LLC

SNAP

10101010   10101010

FCS

10101010   10101010

10101010   1010101110101010   10101010preamble + SFD

Page 51: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 51 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-101

© James P.G. SterbenzITTC

Shared Medium LinksEthernet

• Early LAN technology (1973)– DIX: Digital, Intel, Xerox– IEEE 802.3 using 802.2 LLC

• Initially shared coaxial medium– CSMA/CD MAC lecture MW– performs well in light load < 50%– performs poorly in heavy load > 80%

MAC header

30B 14B

trailer4B

LLC/SNAP subheader

8B

payload

length/type

payload

destination address

source address

LLC

SNAP

10101010   10101010

FCS

10101010   10101010

10101010   1010101110101010   10101010preamble + SFD

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-102

© James P.G. SterbenzITTC

Shared Medium LinksEthernet

• Early LAN technology (1973)– DIX: Digital, Intel, Xerox– IEEE 802.3 using 802.2 LLC

• Initially shared coaxial medium– CSMA/CD MAC lecture MW– performs well in light load < 50%– performs poorly in heavy load > 80%

• Dominant 1980s LAN– token ring only significant competitor– evolved 10 to 100 Mb/s to …

MAC header

30B 14B

trailer4B

LLC/SNAP subheader

8B

payload

length/type

payload

destination address

source address

LLC

SNAP

10101010   10101010

FCS

10101010   10101010

10101010   1010101110101010   10101010preamble + SFD

Page 52: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 52 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-103

© James P.G. SterbenzITTC

Point-to-Point LinksEthernet

• …Evolved to 1Gb/s

length / type

payload = 38 – 1492 B

payload

MAC header

14B

destination address

source address

padding

extension = 0 – 448 B

(1000BASE only)

10101010 10101010 10101010 10101010

10101010

10101010 10101010 preamble+SFD

10101011

SNAP

LLC

FCS

LLC/SNAPsubheader

8B

trailer 4B

frame1

extension

frame2

extension

frame3

extension

frame1

extension

frame2

frame3

frame4

frame5

frame5

frame6

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-104

© James P.G. SterbenzITTC

Point-to-Point LinksEthernet

• …Evolved to 1Gb/s• Modification

– support higher data rates• slot time increased × 8

– 512b → 512B

• extension trailer– inefficient small frames

• frame bursting– increased efficiency

EECS 881

length / type

payload = 38 – 1492 B

payload

MAC header

14B

destination address

source address

padding

extension = 0 – 448 B

(1000BASE only)

10101010 10101010 10101010 10101010

10101010

10101010 10101010 preamble+SFD

10101011

SNAP

LLC

FCS

LLC/SNAPsubheader

8B

trailer 4B

frame1

extension

frame2

extension

frame3

extension

frame1

extension

frame2

frame3

frame4

frame5

frame5

frame6

Page 53: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 53 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-105

© James P.G. SterbenzITTC

Point-to-Point LinksEthernet

• …Evolved to 1Gb/s• Modification

– support higher data rates• slot time increased × 8

– 512b → 512B

• extension trailer– inefficient small frames

• frame bursting– increased efficiency

– point-to-point only• fiber dominant• short reach copper

length / type

payload = 38 – 1492 B

payload

MAC header

14B

destination address

source address

padding

extension = 0 – 448 B

(1000BASE only)

10101010 10101010 10101010 10101010

10101010

10101010 10101010 preamble+SFD

10101011

SNAP

LLC

FCS

LLC/SNAPsubheader

8B

trailer 4B

frame1

extension

frame2

extension

frame3

extension

frame1

extension

frame2

frame3

frame4

frame5

frame5

frame6

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-106

© James P.G. SterbenzITTC

Point-to-Point LinksEthernet

• …Evolved to 10Gb/s

Page 54: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 54 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-107

© James P.G. SterbenzITTC

Point-to-Point LinksEthernet

• …Evolved to 10Gb/s• Modification

– initially fiber only• recent short reach copper

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-108

© James P.G. SterbenzITTC

Point-to-Point LinksEthernet

• …Evolved to 10Gb/s• Modification

– initially fiber only• recent short reach copper• current

– full duplex only (separate xmit and recv fibers required )• no CSMA/CD or related slot and distance constraints• no extension trailer needed• frame bursting not needed nor supported

Page 55: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 55 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-109

© James P.G. SterbenzITTC

Point-to-Point LinksEthernet

• …Evolved to 10Gb/s• Modification

– initially fiber only• recent short reach copper

– full duplex only (separate xmit and recv fibers required )• no CSMA/CD or related slot and distance constraints• no extension trailer needed• frame bursting not needed nor supported

– compatible with SONET coding and physical transmission• pacing for 10Gb/s (LAN) → 9.95 Gb/s (WAN)• § in table

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-110

© James P.G. SterbenzITTC

Point-to-Point LinksEthernet

• …Evolving to 40Gb/s and 100Gb/s– 802.3ba: June 2010 target for standard– based on IEEE 802 HSSG (high speed study group)

• Objectives– 40 Gb/s for SONET OC-192 and OTN ODU3 compatibility– 100 Gb/s for Ethernet order-of-magnitude trajectory– single- and multimode fiber and short-reach copper

• 10-km multimode distance for MANs

– full duplex only– 802.3 backward compatible framing

Page 56: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 56 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-111

© James P.G. SterbenzITTC

Point-to-Point LinksEthernet

F

FFFF

H | FH | FH | FH | F

H | FH | FHH | F

HHH | F

H

Full

38 B

38 B

38 B+

≤448 /burst

38 B

38 B

10 B

OH

4K BsharedManchestercoax2.94 Mb/s1972-1976

PARC

38–1492 Bswitchpt-2-pt– 40 kmunder

development40/100Gb/s

802.3ba40GBase100GBase

10 Gb/s802.3ae

2002802.3an

1 Gb/s802.3z

1998

100 Mb/s802.3u

1995

10 Mb/sDIX 1980

802.3 1985

Rate|Year

8B10B FCS64B/66B

64B/66B §

4B/5B|PAM58B/10B FCS8B/10B FCS8B/10B FCS

4B/5BPAM5x58B/6T4B/5B

Manchester

Coding

65 m –40 km

100 m

100 m25 m

316 – 5000 m275 – 550 m

100 m100 m

†full duplex 100 m412 – 2000† m

500 –2500* m185 – 925* m

*w/repeaters 100 m

RangeLink Type

38–1492 Bswitchpt-2-pt

parallel fiberfiberfiber

4 pair UTP-7

10GBaseX10GBaseR10GBaseW10GBaseT

38–1492 Bswitchpt-2-pt

4 pair UTP-6twinax STP↑λ sm fiber↓λ mm fiber

1000BaseT 1000BaseCX1000BaseLX1000BaseSX

38–1492 Bstar:hub/

switch

2 pair UTP-52 pair UTP-34 pair UTP-3

mm fiber

100BaseTX100BaseT2100BaseT4100BaseFX

38–1492 Bsharedshared

hub

thick coaxthin coax

2 pair UTP-3

10Base510Base210BaseT

PayloadTopoMedia

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-112

© James P.G. SterbenzITTC

Link Layer and LANsLL.3.4: Ring LANs

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologies

LL.3.1 LAN topologiesLL.3.2 Point-to-point protocolLL.3.3 802 and EthernetLL.3.4 Ring LANs

LL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 57: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 57 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-113

© James P.G. SterbenzITTC

Ring LinksToken Ring

• Early LAN technology (1972)– DCS and Cambridge rings provided foundation

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-114

© James P.G. SterbenzITTC

Ring LinksToken Ring

• Early LAN technology (1972)– DCS and Cambridge rings provided foundation– IBM LAN technology; standardised as IEEE 802.5

Page 58: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 58 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-115

© James P.G. SterbenzITTC

Ring LinksToken Ring

• Early LAN technology (1972)– DCS and Cambridge rings provided foundation– IBM LAN technology; standardised as IEEE 802.5

• Shared wire medium– token passing ring– performs well to heavy load > 80%

• 16 Mb/s TR significantly outperformed 10Base5

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-116

© James P.G. SterbenzITTC

Ring LinksToken Ring

• Early LAN technology (1972)– DCS and Cambridge rings provided foundation– IBM LAN technology; standardised as IEEE 802.5

• Shared wire medium– token passing ring– performs well to heavy load > 80%

• 16 Mb/s TR significantly outperformed 10Base5

• Significant 1980s LAN– but Ethernet had greater market share– evolved to 16 Mb/s (1988)– evolution to hubs required double STP to end systems

Page 59: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 59 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-117

© James P.G. SterbenzITTC

Ring LinksToken Ring

• Logical successor: FDDI– fiber distributed digital interface– only 100 Mb/s LAN technology of time

• ANSI X3.139-1987 (MAC), X3.148.1988 (PHY)• 100BaseT vs. 100BaseVG wars hadn’t even begun• OC-3 ATM LANs were just appearing (and expensive)

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-118

© James P.G. SterbenzITTC

Ring LinksToken Ring

• Logical successor: FDDI– fiber distributed digital interface– only 100 Mb/s LAN technology of time

• ANSI X3.139-1987 (MAC), X3.148.1988 (PHY)• 100BaseT vs. 100BaseVG wars hadn’t even begun• OC-3 ATM LANs were just appearing (and expensive)

• Dual fiber token-passing ring– contra-rotating rings with automatic protection from cuts

• single ring option with no protection

– later adapted for STP and UTP-5: CDDI (copper DDI)

Page 60: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 60 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-119

© James P.G. SterbenzITTC

Ring LinksToken Ring

• FDDI-II proposal for integrated services– slotted ring adds circuit service to basic FDDI packet service

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-120

© James P.G. SterbenzITTC

Ring LinksToken Ring

• FDDI-II proposal for integrated services– slotted ring adds circuit service to basic FDDI packet service

• But 100BaseT killed FDDI (and ATM to the desktop)

Page 61: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 61 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-121

© James P.G. SterbenzITTC

Ring LinksToken Ring

• FDDI-II proposal for integrated services– slotted ring adds circuit service to basic FDDI packet service

• But 100BaseT killed FDDI (and ATM to the desktop)• High-speed token ring (HSTR) proposals DOA*

– 100 Mb/s 803.5t 1998 draft (a few products)– 1Gb/s 803.5v working group

*dead on arrival

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-122

© James P.G. SterbenzITTC

Ring LinksRing LANS

token

token

DTR

token*

slot

token

Access

100 m

2 km

250 m†

Link Len

0 – 4522 B28 B2×ring200 km4B/5Bfiber100 Mb/sFDDI 1988

28 B

21 B

21 B

22 b

Ovhd

ring2.5 Mb/sDCS 1972

100 Mb/s

100 Mb/s100 Mb/s

1 Gb/s

4 Mb/s16 Mb/s

10 Mb/s

Rate

MLT-3

MLT-34B/5B

8B/10B FCS

Δ Manch.

Coding

10 km

CircumLink Type

0 – 4522 B2×ringSTPUTP-5CDDI

0 – 18279 Bstar

{US}TPfiberfiber

HSTR 802.5t1998 802.5t

802.5v

0 – 4529 B0 – 18279

BringSTP

Token Ring1981 IBM1985 802.5

16 bring2 x TPCambridge 1979

PayloadTopologyMedia

*DTR (dedicated token ring) for switched mode added in 1998 to 4 Mb/s and 16 Mb/s 802.5some switch/NICs supported full duplex at 32 Mb/s

†72 m for UTP

Page 62: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 62 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-123

© James P.G. SterbenzITTC

Ring LinksSONET Rings

• SONET links in ring configuration– dual rings provide fault tolerance– APS: automatic protection switching

• restoration after fiber cut (aka backhoe fade)more on SONET later

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-124

© James P.G. SterbenzITTC

Link Layer and LANsLL.4 Multiplexing and Switching

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switching

LL.4.1 Link layer multiplexingLL.4.2 Link layer switchingLL.4.3 TDM transport networks: PDH, SDH/SONET, OTN

LL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 63: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 63 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-125

© James P.G. SterbenzITTC

Link-Layer Multiplexing & SwitchingOverview

• Link-layer multiplexing– multiplexing multiple lower rate links ⇒ higher rate link– demultiplexing to lower rate links ⇐ higher rate link

• Link-layer switching (L2 switching)– switching in space or time at the link layer– transparent to layer 3

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-126

© James P.G. SterbenzITTC

Multiplexing and SwitchingLL.4.1 Link-Layer Multiplexing

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switching

LL.4.1 Link-layer multiplexingLL.4.2 Link-layer switchingLL.4.3 TDM transport networks: PDH, SDH/SONET, OTN

LL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 64: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 64 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-127

© James P.G. SterbenzITTC

Link-Layer MultiplexingOverview

• Link layer multiplexing• PSTN evolution

– synchronous multiplexing for traffic aggregation

• Broadband Internet access– PONs (passive optical networks)

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-128

© James P.G. SterbenzITTC

Link-Layer MultiplexingPSTN

• PSTN and PON multiplexing– multiplexing for traffic aggregation

Page 65: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 65 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-129

© James P.G. SterbenzITTC

Link-Layer MultiplexingPSTN

• PSTN and PON multiplexing– multiplexing for traffic aggregation

• PSTN access to SONET rings– ADM: add-drop multiplexor– insert into ring– extract from ring

ADM

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-130

© James P.G. SterbenzITTC

Link-Layer MultiplexingMultiplexing Schemes

• TDM: time division multiplexing– synchronous (e.g. PDH, SDH/SONET)– asynchronous or statistical (e.g. ATM)

• FDM: frequency division multiplexing (typically RF)– WDM: wavelength division multiplexing (light)

Page 66: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 66 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-131

© James P.G. SterbenzITTC

Link-Layer MultiplexingSynchronous TDM Links

• Synchronous time-division multiplexing (STDM)– n × R/n rate signals combined– fixed-size slots round-robin: 0, 1,… n–1, 0, 1,… n–1, 0, …

Advantages?Disadvantages?

H1 2H2 H3 T2

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-132

© James P.G. SterbenzITTC

Link-Layer MultiplexingSynchronous TDM Links

• Synchronous time-division multiplexing (STDM)– n × R/n rate signals combined– fixed-size slots round-robin: 0, 1,… n–1, 0, 1,… n–1, 0, …

+ Simple multiplexing scheme– Difficult to efficiently use link

– time slot allocation problem– wasted/oversubscribed slots

H1 2H2 H3 T2

Page 67: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 67 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-133

© James P.G. SterbenzITTC

Link-Layer MultiplexingSynchronous TDM Links

• Synchronous time-division multiplexing (STDM)– n × R/n rate signals combined– fixed-size slots round-robin: 0, 1,… n–1, 0, 1,… n–1, 0, …

+ Simple multiplexing scheme– Difficult to efficiently use link

– time slot allocation problem– wasted/oversubscribed slots

• Common in PSTN-derived systems (e.g. SONET)

H1 2H2 H3 T2

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-134

© James P.G. SterbenzITTC

Link-Layer MultiplexingAsynchronous TDM Links

• Asynchronous time division multiplexing (ATDM)– aka statistical multiplexing– variable size time slots

Advantages?Disadvantages?

Page 68: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 68 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-135

© James P.G. SterbenzITTC

Link-Layer MultiplexingAsynchronous TDM Links

• Asynchronous time division multiplexing (ATDM)– aka statistical multiplexing– variable size time slots

– May be more complex– unless FIFO service discipline which is unfair

+ Better link efficiency+ each sender uses proportion of link needed

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-136

© James P.G. SterbenzITTC

Link-Layer MultiplexingMultiplexing vs. Multiple Access

• Multiplexing vs. multiple access• Link multiplexing

– single transmitter– dedicated point-to-point link

Page 69: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 69 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-137

© James P.G. SterbenzITTC

Link-Layer MultiplexingMultiplexing vs. Multiple Access

• Multiplexing vs. multiple access• Link multiplexing

– single transmitter– dedicated point-to-point link

• Multiple access– multiple transmitters– shared medium– essentially physical layer multiplexing– MAC algorithm needed to arbitrate

lecture MW

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-138

© James P.G. SterbenzITTC

Link-Layer MultiplexingHigher Layer Multiplexing

• Higher layers multiplex into lower layersL7⇇⇒L4 multiple applications use end-to-end transport flowL4⇇⇒L3 multiple transport flows use network pathsL3⇇⇒L2 multiple network path use links

Page 70: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 70 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-139

© James P.G. SterbenzITTC

Link-Layer MultiplexingLink Layer Multiplexing

• Higher layers multiplex into lower layersL7⇇⇒L4 multiple applications use end-to-end transport flowL4⇇⇒L3 multiple transport flows use network pathsL3⇇⇒L2 multiple network path use links

• Link layer multiplexing: L2⇇⇒L2– some link layers also provide native multiplexing

• mux/demux without network layer switching

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-140

© James P.G. SterbenzITTC

Link-Layer MultiplexingLink Layer Multiplexing

• Higher layers multiplex into lower layersL7⇇⇒L4 multiple applications use end-to-end transport flowL4⇇⇒L3 multiple transport flows use network pathsL3⇇⇒L2 multiple network path use links

• Link layer multiplexing: L2⇇⇒L2– some link layers also provide native multiplexing

• mux/demux without network layer switching

• Recall historical precedence– PSTN has minimal layer 3 switching– time division multiplexing from premises–CO–long-distance– digital hierarchy: T-carrier and SONET/SDH

Page 71: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 71 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-141

© James P.G. SterbenzITTC

Link-Layer MultiplexingLink Layer Simple Multiplexing

• Link layer multiplexing• Layer 2 combine/split

– of lower rate signals

• Examples– SONET/T-carrier

• OC-m ⇇⇒ OC-n , m < n• T3 ⇇⇒ OC-3

– PONs (passive optical nets)• residential broadband

more later

STS-n

STS-n

OC-n

OC-n

OC-m•••

•••

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-142

© James P.G. SterbenzITTC

Multiplexing and SwitchingLL.4.2 Link-Layer Switching

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switching

LL.4.1 Link-layer multiplexingLL.4.2 Link-layer switchingLL.4.3 TDM transport networks: PDH, SDH/SONET, OTN

LL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 72: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 72 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-143

© James P.G. SterbenzITTC

Link-Layer SwitchingOverview

• Traditionally switching is a network layer 3 function– but…

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-144

© James P.G. SterbenzITTC

Link-Layer SwitchingOverview

• Traditionally switching is a network layer 3 function– but link layer switching and multiplexing is done by layer 2

Why do layer 2 switching?

Page 73: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 73 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-145

© James P.G. SterbenzITTC

Link-Layer SwitchingOverview

• Link layer switching– switching done by L2 components– supported by link protocol

• e.g. SONET• e.g. 802.1D bridging for Ethernet

• Evolved with PSTN and Internet

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-146

© James P.G. SterbenzITTC

Link-Layer SwitchingPSTN SONET Rings

• PSTN synchronous multiplexing– multiplexing for traffic aggregation

• PSTN SONET inter-ring switching– XC: cross-connect– ADM: add-drop multiplexor

XCADM

ADM

Page 74: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 74 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-147

© James P.G. SterbenzITTC

Link-Layer SwitchingInternet LANs

• Internet LAN switching– shared-medium segments

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-148

© James P.G. SterbenzITTC

Link-Layer SwitchingInternet LANs

• Internet LAN switching– shared-medium segments replaced by Ethernet switches

• more on this evolution later

– no awareness, involvement, or management of IP

L2

Page 75: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 75 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-149

© James P.G. SterbenzITTC

Link-Layer SwitchingEvolution

• Link layer switching– native layer 2 protocol and device switching

• Evolved with PSTN and Internet– migration from shared medium to switched LAN

• e.g. Ethernet

– add switching functionality to multiplexing structure • e.g. SONET cross-connects

Advantages?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-150

© James P.G. SterbenzITTC

Link-Layer SwitchingAdvantages

• Potential advantages– simpler, cheaper switches than L3 (IP switch/router)

• less important with fast IP lookup hardware

– no need to manage IP in small networks• less important with DHCP and router auto-configuration

– faster restoration on link failure • IP routing convergence much slower than ring restoration

Disadvantages?

Page 76: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 76 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-151

© James P.G. SterbenzITTC

Link-Layer SwitchingDisadvantages

• Potential advantages– simpler, cheaper switches than L3 (IP switch/router)– no need to manage IP in small networks– faster restoration on link failure

• Disadvantages– duplication of L3 functions in L2– where should functionality really go?

• if IP converged rapidly, SONET APS might not be necessary

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-152

© James P.G. SterbenzITTC

Link-Layer SwitchingSpace-Division Switching

• Space division switches the links that frames traverse– multiple inputs links interconnected to multiple output links– switch fabric responsible for input → output interconnection

• Variety of switching technologies– crossbar, shared memory, MIN, etc. Lecture NL

i0i1i2i3

in–1

o0o1o2o3

on-1

example: switchinputs → outputs

i0 → o2

i1 → o0

i2 → o1

i3 → o3

Page 77: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 77 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-153

© James P.G. SterbenzITTC

Link-Layer SwitchingSpace-Division Switching

• Space-division switchingsufficient for TDM-based link layers such as SONET?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-154

© James P.G. SterbenzITTC

Link-Layer SwitchingTime-Division Switching

• Space-division switching– solves only part of the problems in TDM-based link layers

• Time-division switching:– TDM networks also need to be switched in time– switching time slots for synchronous TDM

Page 78: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 78 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-155

© James P.G. SterbenzITTC

Link-Layer SwitchingTime-Division Switching: TSI

• TSI: time slot interchange– switching time slots for synchronous TDM

i0i1i2i3

cn–1

i2o3

example:swap slots 2 ↔ 3

i2 → o3

i3 → o2

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-156

© James P.G. SterbenzITTC

Link-Layer SwitchingTime-Division Switching: TSI

• TSI: time slot interchange– switching time slots for synchronous TDM

• Reordered in switch memory– received frames written into memory sequentially i0, i1,… in–1

– frames read in different order for transmission oj…

i0i1i2i3

cn–1

i2o3

example:swap slots 2 ↔ 3

i2 → o3

i3 → o2

Page 79: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 79 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-157

© James P.G. SterbenzITTC

Link-Layer SwitchingSpace- and Time-Division Switching

How to switch in both space and time?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-158

© James P.G. SterbenzITTC

Link-Layer SwitchingSpace- and Time-Division Switching

• Combination space/time switching– needed for interconnection of multiple TDM links

• e.g. SONET cross-connect at intersection of two rings

i0i1i2i3in–1

o0o1o2o3on-1

Page 80: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 80 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-159

© James P.G. SterbenzITTC

Link-Layer SwitchingSpace- and Time-Division Switching

• Combination space/time switching– needed for interconnection of multiple TDM links

• e.g. SONET cross-connect at intersection of two rings

• Multiple combinations possible, e.g.– T-S-T: time-space-time (shown): TSIs – space switch – TSIs– S-T-S: space-time-space : space – TSIs – space

i0i1i2i3in–1

o0o1o2o3on-1

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-160

© James P.G. SterbenzITTC

Multiplexing and SwitchingLL.4.3 TDM Transport Networks

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switching

LL.4.1 Link-layer multiplexingLL.4.2 Link-layer switchingLL.4.3 TDM transport networks: PDH, SDH/SONET, OTN

LL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 81: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 81 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-161

© James P.G. SterbenzITTC

TDM Transport NetworksOverview

• Transport networks– link layer (L2) infrastructure in the PSTN context– not to be confused with end-to-end (L4) transport

• used in Internet protocol terminology

• Transport network evolution– PDH: digital hierarchy, generally over wires (e.g. T-carriers)– SDH/SONET: digital hierarchy over optical fiber– OTN: optical transport network with WDM switches

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-162

© James P.G. SterbenzITTC

TDM Transport NetworksITU Hierarchy

PDH: pleisiochronous digital hierarchySDH: synchronous digital hierarchy

ATM/B-ISDN EthernetOTN: optical transport network

PNNI GMPLSASON

GFP CBRkSDH/SONET

ATM ETH

GFPCBRk AAL

proprietary DWDM

OTN

CBR

IP

ASON

PNNI

GMPLS

control planes

PDH

Page 82: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 82 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-163

© James P.G. SterbenzITTC

TDM Transport NetworksITU Hierarchy

• Data and management planes– OTN: optical transport network WDM links– SDH: synchronous digital hierarchy (SONET) links– Ethernet: long-haul point-to-point Ethernet links– ATM/B-ISDN: asynchronous transfer mode / broadband ISDN

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-164

© James P.G. SterbenzITTC

TDM Transport NetworksITU Hierarchy

• Data and management planes– OTN: optical transport network WDM links– SDH: synchronous digital hierarchy (SONET) links– Ethernet: long-haul point-to-point Ethernet links– ATM/B-ISDN: asynchronous transfer mode / broadband ISDN

• Control plane (layer 2 switching)– ASON: automatically switched optical network

• GMPLS: generalised multiprotocol label switching– RSVP-TE, CR-LDP (IETF deprecated)

• PNNI: (ATM) private NNI signalling (layer 3 switching)

Page 83: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 83 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-165

© James P.G. SterbenzITTC

Multiplexing and SwitchingLL.4.3.1 PSTN Digital Hierarchy

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switching

LL.4.1 Link-layer multiplexingLL.4.2 Link-layer switchingLL.4.3 TDM transport networks: PDH, SDH/SONET, OTN

LL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-166

© James P.G. SterbenzITTC

TDM Transport NetworksPSTN Digital Hierarchy

• PSTN digital hierarchy– digital multiplexing structure to replace analog circuits– hierarchy of increasing rates for aggregation in network core– multiplexors and demultiplexors independent of switching

• Plesiochronous– from the greek: πλησίος = nearly + χρόνος = time– digital signals are nearly synchronous

– bit slips tolerated with bit-stuffing in frame structure

– signals are bit streams– framing not visible to next-higher level– no relative synchronisation among signals below given level

Page 84: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 84 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-167

© James P.G. SterbenzITTC

PSTN Digital HierarchyRelationship to Protocol Stack

PDH: pleisiochronous digital hierarchySDH: synchronous digital hierarchyATM/B-ISDN EthernetOTN: optical transport network

PNNI GMPLSASON

GFP CBRkSDH/SONET

ATM ETH

GFPCBRk AAL

proprietary DWDM

OTN

CBR

IP

ASON

PNNI

GMPLS

control planes

PDH

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-168

© James P.G. SterbenzITTC

PSTN Digital HierarchyStandards

• PSTN WAN/MAN near-synchronous electrical links– PDH: plesiochronous digital hierarchy (ITU-T)

• E-carriers

– DH: digital hierarchy (Bellcore, ANSI)• T-carriers (US)• J-carriers (Japan)

• Standards suite:– format specification G.702, G.704, G.706, T1.107– equipment G.705– physical interfaces G.703, T1.102, T1.403, T1.404

Page 85: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 85 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-169

© James P.G. SterbenzITTC

PSTN Digital HierarchyUS Multiplexing Structure

• Digital signals (DS) on T-carriers (others for DS-4)– DS0: digital voice channel or 56 kb/s leased data line– DS1: 24 × DS0 or 1.5 Mb/s T-1 data service– DS2: 4 × DS1– DS3: 7 × DS2 or 45 Mb/s T-3 data service– DS4: 3 × DS3 (historical – now replaced by SONET)

••• DS4

DS3 DS3DS2 DS2

DS1

DS0

•••

DS0

T1T3

T1T3

24:1

4:1

3:1 1:3

1:4

1:24

7:1 1:7

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-170

© James P.G. SterbenzITTC

US Multiplexing StructureFrame Structure

• Framing– bit patterns distributed throughout frames

• Alarms– indicate loss of signal or framing to other end of link– used by networking monitoring and management

• Error detection– parity or CRC

• Signalling and data channels– robbed from DS0 or distributed throughout frame

Page 86: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 86 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-171

© James P.G. SterbenzITTC

US Multiplexing StructureAlarms

• Alarms– indicate and signal integrity and framing problems– historically designated with colors (now deprecated)

• Red alarm– local alarm when unable to recover framing

• Yellow alarm: RAI (remote alarm indication)– report of red alarm received from other end of link– encoding dependent on multiplexing level

• Blue alarm: AIS (alarm indication signal)– unframed sequence of all 1s to maintain signal

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-172

© James P.G. SterbenzITTC

US Multiplexing StructureDS1 Frame Basis

• DS0 channel [8b]– information payload: PCM-coded voice or 56 kb/s data

or– overhead payload: signalling or stuffing channel

[ANSI T1.107]

ch DS0 channel

Page 87: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 87 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-173

© James P.G. SterbenzITTC

US Multiplexing StructureDS1 Frame Construction

• DS0 channel [8b]: information or overhead payload• DS1 frame [193b]

– frame overhead [1b]: “header” bit – part of superframe– 24 DS0 channels [192b]: 12:1 multiplexing into DS1

note: numbering starts at 1 rather than 0

ch DS0 channel

F ch 24ch 23ch 02ch 01 • • • DS1 frame

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-174

© James P.G. SterbenzITTC

US Multiplexing StructureDS1 Superframe Construction

• DS0 channel [8b]: information or overhead payload

• DS1 frame [193b/125μs]: frame overhead + 24 DS0 chan.

• DS1 superframe [2316b]– 12 DS1 frames: cyclic sequence of 24 DS0 channels– overhead [12b]: embedded in & distributed through frames

• frame alignment, frame transfer, data transfer, alarm transfer

F ch 24ch 23ch 02ch 01 • • • DS1 frameDS1 superframe

• • • frame 12frame 11frame 01 frame 02

ch DS0 channel

Page 88: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 88 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-175

© James P.G. SterbenzITTC

US Multiplexing StructureDS1 Superframe Format and Overhead

• Frame alignment– odd overhead bits

F1F3F5F7F9F11 =101010

• Superframealignment– even frame overhead bits F2F4F6F8F10F12 = 001110

1 ch01 ch02 ch03 ch04 ch219 ch22 ch23 ch24ch02 ch03 ch04 ch21 ch22 ch23 ch240

00

11

10

11

00

• • •

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-176

© James P.G. SterbenzITTC

US Multiplexing StructureDS1 Superframe Alarms

• Frame alignment– odd overhead bits

F1F3F5F7F9F11 =101010

• Superframealignment– even frame overhead bits F2F4F6F8F10F12 = 001110

• Alarms– AIS (alarm indication signal): all bits =1 (unframed)– RAI (remote alarm indication): 2nd bit of every channel = 0

• signals inability to frame or loss of signal

1 ch01 ch02 ch03 ch04 ch219 ch22 ch23 ch24ch02 ch03 ch04 ch21 ch22 ch23 ch240

00

11

10

11

00

• • •

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Page 89: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 89 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-177

© James P.G. SterbenzITTC

US Multiplexing StructureDS1 Superframe Signalling Channel

• Frame alignment– odd overhead bits

F1F3F5F7F9F11 =101010

• Superframealignment– even frame overhead bits F2F4F6F8F10F12 = 001110

• Signalling channel (optional)– 8th information bit robbed from frames 6 and 12

• one 1.333 kb/s channel or two 667 b/s channels• PCM voice relatively insensitive to low-order bit errors

1 ch01 ch02 ch03 ch04 ch219 ch22 ch23 ch24ch02 ch03 ch04 ch21 ch22 ch23 ch240

00

11

10

11

00

• • •

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-178

© James P.G. SterbenzITTC

US Multiplexing StructureDS1 Extended Frame Construction

• DS0 channel [8b]: information or overhead payload

• DS1 frame [193b]: frame overhead + 24 DS0 chan.

• DS1 extended superframe [4632b]– 24 DS1 frames: cyclic sequence of 24 DS0 channels– overhead [24b]: embedded in & distributed through frames

• frame alignment, frame transfer, data transfer, alarm transfer• doubling superframe adds CRC and 4 kb/s data channel

F ch 24ch 23ch 02ch 01 • • • DS1 frameDS1 extended superframe

• • • frame 24frame 23frame 01 frame 02

ch DS0 channel

Page 90: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 90 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-179

© James P.G. SterbenzITTC

US Multiplexing StructureDS1 Extended Superframe Format & Overhead

• Alignment– F4F8F12F16F20F24 =

001011

• Error detection– CRC-6:

F2F6F10F14F18F22 =C1C2C3C4C5C6

• Data link:4 kb/s– F1F3F5F7F9F11

F13F15F17F19F21F23= M1–12

M ch01 ch02 ch03 ch04 ch219 ch22 ch23 ch24ch02 ch03 ch04 ch219 ch22 ch23 ch24C

0M

CM

0M

CM

1M

CM

0M

1M

CM

1M

CM

• • •

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-180

© James P.G. SterbenzITTC

US Multiplexing StructureDS1 Extended Superframe Signalling Channel

• Alignment– F4F8F12F16F20F24 =

001011

• Error detection– CRC-6

• Data link– 4 kb/s

• Signalling channel– 8th bit robbed

frames 6,12,18,24• one 1.333 kb/s, two 667, or four 333 b/s channels

M ch01 ch02 ch03 ch04 ch219 ch22 ch23 ch24ch02 ch03 ch04 ch219 ch22 ch23 ch24C

0M

CM

0M

CM

1M

CM

0M

1M

CM

1M

CM

• • •

Page 91: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 91 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-181

© James P.G. SterbenzITTC

US Multiplexing StructureDS1 Extended Superframe Alarm

• Alignment– F4F8F12F16F20F24 =

001011

• Error detection– CRC-6

• Data link– 4 kb/s– RAI alarm

repeating pattern0000000011111111

M ch01 ch02 ch03 ch04 ch219 ch22 ch23 ch24ch02 ch03 ch04 ch219 ch22 ch23 ch24C

0M

CM

0M

CM

1M

CM

0M

1M

CM

1M

• • •

CM

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-182

© James P.G. SterbenzITTC

US Multiplexing StructureM12 Multiplexing

• M12: DS1 to DS2 multiplexing– 4 DS1 bitstreams: DS1 framing not visible to DS2

• plesiochronous: not synchronised with respect to one-another

– bit-by-bit multiplexing into DS2 multiframe (M-frame)– 1 overhead bit preceding 48-bit groups

DS2 M-frame fragment

DS1 bitstreams

DS1

DS1

DS1

DS1

F 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

M12

Page 92: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 92 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-183

© James P.G. SterbenzITTC

US Multiplexing StructureDS2 Subframe Construction

• DS1 channels: 4 channels multiplexed bit-by-bit• DS2 M-subframe [294b]

– six groups of 1 overhead-bit followed by 48 information bits– overhead bit sequence [6b]: M|X C1 F1 C2 C3 F2

• M|X: frame alignment or alarm – used in M-frame• F: subframe alignment F1F2 = 01• C: inter-DS2 equipment signalling: stuffing

M DS2 M-subframe

4 DS1 bitstreams

C info F info C info C info F info

DS1DS1DS1DS1

info

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-184

© James P.G. SterbenzITTC

US Multiplexing StructureDS2 Multiframe Construction

• DS1 channels: 4 channels multiplexed bit-by-bit• DS2 M-subframe [294b]: six groups of 49 bits • DS2 M-frame (multiframe) [1176b]

– 4 DS2 M-subframes including [24b] overhead– sequence of first subframe bits: M1 M2 M3 X

• M: frame alignment M1M2M3 = 011• X: alarm channel

M DS2 M-subframe

DS2 M-frameM‐subframe 1

4 DS1 bitstreams

C info F info C info C info F info

DS1DS1DS1DS1

M1

info

M‐subframe 1 M‐subframe 3 M‐subframe 4M2 M3 X

Page 93: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 93 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-185

© James P.G. SterbenzITTC

US Multiplexing StructureDS2 Multframe Format and Overhead

• Subframe align– F1F2 = 01

• Multiframe align– M1M2M3 = 011

• Alarm channel– X = 0 (alarm) or 1 (no alarm)

• Inter-DS2 equipment signalling channel– C1C2C3 × 4 to indicate bit stuffing or parity

1 C1 0 C2 C3 11 C1 0 C2 C3 10 C1 0 C2 C3 1

X C1 0 C2 C3 1

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-186

© James P.G. SterbenzITTC

US Multiplexing StructureM23 Multiplexing

• M23: DS2 to DS3 multiplexing– 7 DS2 bitstreams: DS2 framing not visible to DS3

• plesiochronous: not synchronised with respect to one-another

– bit-by-bit multiplexing into DS3 multiframe (M-frame)– 1 overhead bit preceding 84-bit groups

DS3 M-frame fragment

DS2 bitstreams

DS2

DS2

DS2

DS2

F 1 2 3 4 5 6 7 1 2 3 • • •

M23

Page 94: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 94 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-187

© James P.G. SterbenzITTC

US Multiplexing StructureDS3 Subframe Construction

• DS2 channels: 7 channels multiplexed bit-by-bit• DS3 M-subframe [680b]

– 8 groups of 1 overhead-bit followed by 84 information bits– overhead bit seq. [8b]: {M|P|X} F1 C1 F2 C2 F3 C3 F4

• M|X|P: frame alignment, alarm, parity – used in M-frame• F: subframe alignment F1F2F3F4 = 1001• C: inter-DS3 equipment signalling: stuffing and parity

DS3 M-subframe

7 DS1 bitstreams

F info C info F info C info F info

DS1DS1DS1DS1

info C info F info

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-188

© James P.G. SterbenzITTC

US Multiplexing StructureDS3 Multiframe Construction

• DS2 channels: 7 channels multiplexed bit-by-bit• DS3 M-subframe [680b]: 8 groups of 85 bits• DS3 multiframe (M-frame) [4760b]

– 7 DS3 M-subframes including [56b] overhead– sequence of first subframe bits: X1 X2 P1 P2 M1 M2 M3

• M: frame alignment M1M2M3 = 010• X: alarm channel• P: parity preceding M-frame P1P2 = 00 (even) or 00 (odd)

DS3 M-subframe7 DS1 bitstreams

F info C info F info C info F info

DS1DS1DS1DS1

info C info F info

DS2 M-framesubfr 1X1 subfr 1X2 subfr 1P1 subfr 1P2 subfr 1M1 subfr 1M2 subfr 1M3

Page 95: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 95 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-189

© James P.G. SterbenzITTC

US Multiplexing StructureDS3 Multframe Format and Overhead

• Subframe align– F1F2F3F4 = 1001

• Multiframe align– M1M2M3 = 010

• Alarm channel– X1X2 = 00 (alarm) or 11 (no alarm)

• Performance monitoring: parity of preceding frame– P1P2 = 00 (even) or 11 (odd)

• Inter-DS3 equipment signalling channel– C1C2C3 × 7 to indicate bit stuffing or parity

0 1 C1 0 C2 0 C3 11 1 C1 0 C2 0 C3 10 1 C1 0 C2 0 C3 1P2 1 C1 0 C2 0 C3 1P1 1 C1 0 C2 0 C3 1X2 1 C1 0 C2 0 C3 1X1 1 C1 0 C2 0 C3 1

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-190

© James P.G. SterbenzITTC

PSTN Digital HierarchySummary and Comparison

plesiochronousSynchronisation

1.5 – 45 Mb/sRates‡

opaqueTransparency

4Levels*

TDMMultiplex domain

electronicMux & switching

electronicTransmission

OTN OTMOTN DWSDH/SONETPDH

* as currently defined in standards, not including sub- and intermediate levels‡ approximate as currently defined in standards, not including STS-1 and sub-rates (DS0 and VTs)

Page 96: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 96 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-191

© James P.G. SterbenzITTC

PSTN Digital HierarchyPDH Carrier Characteristics

4760 b

1176 b

2316|4362 b

8 b

Frame Size(super/multi)

B3ZS

B6ZS

bipolar

Coding

waveguidecoax

RF

twisted pairfiber

twisted pairtwisted pair

twisted pair

twisted pair

Media

4032

672672480512

96

242432

1

ChannelsLink type

274.176 Mb/sDS-4WT4T4MDR 18

44.210 Mb/s56 b44.736 Mb/s44.736 Mb/s32.064 Mb/s34.368 Mb/s

DS-3T3FT3J3E3

6.183 Mb/s24 b6.312 Mb/s8.448 Mb/s

DS-2T2E2

1.536 Mb/s12|24 b1.544 Mb/s1.544 Mb/s2.048 Mb/s

DS-1T1J1E1

56 kb/s64 kb/sDS-0

Payload RateFrameOverhdRate

ChannelCarrier

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-192

© James P.G. SterbenzITTC

Multiplexing and SwitchingLL.4.3.2 SDH and SONET

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switching

LL.4.1 Link-layer multiplexingLL.4.2 Link-layer switchingLL.4.3 TDM transport networks: PDH, SDH/SONET, OTN

LL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 97: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 97 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-193

© James P.G. SterbenzITTC

TDM Transport NetworksGeneric Framing Procedure (GFP)

• Framing for synchronous transport networksproblem?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-194

© James P.G. SterbenzITTC

TDM Transport NetworksGeneric Framing Procedure (GFP)

• Framing for synchronous transport networks– problem: synchronous networks designed for voice– CBR (constant bit rate) stream in TDM– IP packets need additional framing

Page 98: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 98 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-195

© James P.G. SterbenzITTC

TDM Transport NetworksGeneric Framing Procedure (GFP)

• Framing for synchronous transport networks– problem: synchronous networks designed for voice– CBR (constant bit rate) stream in TDM– IP packets need additional framing

• POS: packet over SONET– initial deployments:

PPP framing of IP over SONET [RFC 2615]

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-196

© James P.G. SterbenzITTC

TDM Transport NetworksGeneric Framing Procedure (GFP)

• Framing for synchronous transport networks– problem: synchronous networks designed for voice– CBR (constant bit rate) stream in TDM– IP packets need additional framing

• POS: packet over SONET– initial deployments:

PPP framing of IP over SONET [RFC 2615]

• Motivation for new solution– PPP not designed for this application– goal: new generic framing protocol

• IP and CBR over synchronous links

Page 99: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 99 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-197

© James P.G. SterbenzITTC

TDM Transport NetworksGeneric Framing Procedure (GFP)

client payload information field

FCS

type

tHEC

eHEC

ext header

PLI

cHEC• Framing for transport networks– ITU-T G.7041 over OTN, SDH/SONET– 4B common header (length, check HEC)– client specific headers– FCS frame check

• Transfer of: – variable size frames (GFP-F)

• IP, PPP• Ethernet MAC

– block code (transparent – GFP-T)• FCS• ESCON/FICON (IBM I/O channels)

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-198

© James P.G. SterbenzITTC

TDM Transport NetworksSONET/SDH Overview

• SONET: synchronous optical network– evolution of T-carrier digital hierarchy in the Bell System– extension of TDM multiplexing structure– higher data rates over fiber optic cable

• OC: optical carrier

– electronic multiplexing and cross-connects• O/E: optical to electrical conversion at inputs• E/O: electrical to optical conversion at outputs

• SDH: synchronous digital hierarchy– ITU standard similar to SONET

Page 100: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 100 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-199

© James P.G. SterbenzITTC

TDM Transport NetworksSONET/SDH Standards

• WAN/MAN synchronous optical links– SDH: synchronous digital hierarchy (ITU-T)– SONET: synchronous optical network (Bellcore*, ANSI)

• Standards suite:– architecture G.803, T1.105, Bellcore GR-253– framing and multiplexing G.707, T1.105.02– equipment G.671, G.783– physical interfaces G.691, G.692, T1.105.06, T1.106– OAM&P G.784, G.831– protection G.841, T1.105.01

* now Telcordia

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-200

© James P.G. SterbenzITTC

TDM Transport NetworksSONET/SDH Sublayers

• Path (F3)– linkL2 between switchL3-to-switchL3– STS-n generation, HEC, and framing

• Tandem connection (optional)• Line / Digital Section (F2)

– de/multiplexing STS-n ↔↕ STS-N– concatenation 4×STS-n ↔ STS-4n

• Section / regenerator section (F1)– STS-n transport, framing, scrambling

• Physical / photonic section– between EO STS-n→OC-n – OC-n→STS-n OE– between EOE regeneration

section

line

VT

STS

physical

tandem connection

DS0

path

Page 101: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 101 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-201

© James P.G. SterbenzITTC

TDM Transport NetworksSONET Topology: Mesh

• SONET mesh– mesh of SONET links– switched at L3

• between ATM switches• between IP routers

IP

IP IP

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-202

© James P.G. SterbenzITTC

TDM Transport NetworksSONET Topology: Rings

• SONET rings– multiplexed at L2

• 4:1 multiplexing for aggregation• ADMs for ring insertion/extraction

– switched at L2• cross-connects for

ring interconnection– fault tolerant

• dual ring APS– automatic protection

switching

XC

ADM

Page 102: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 102 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-203

© James P.G. SterbenzITTC

TDM Transport NetworksSONET Add/Drop Multiplexing

• ADM: add/drop multiplexor– electronic device– optical transceivers

• Layer 2 insertion/extraction– of lower rate signals

• optical OC-m , m < n• electrical T-k , typically T3

– to/from OC-n SONET

• Typically on SONET ring– but may be point-to-point link

STS-n

STS-n

OC-n

OC-n

OC-m•••

•••

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-204

© James P.G. SterbenzITTC

TDM Transport NetworksSONET Cross Connect

• XC: Cross-connect– electronic switch

• 2×2 switch shown• larger cross-connects possible

– optical transceivers

• Space division between:– point-to-point links– rings

• Time division– multiplexing hierarchy

STS-n

STS-n

OC-n

OC-n

STS-n

STS-n

OC-n

OC-n

Page 103: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 103 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-205

© James P.G. SterbenzITTC

SONET HierarchyUS Multiplexing Structure

• Synchronous transport signals (STS)on optical carriers (OC)– used for higher-level aggregation of voice circuits– OC-n data services

•••

OC-3

DS-3STS-1

DS-2

DS-0

T1T3

OC-12OC-48

OC-192

• • •

OC-3OC-12OC-48OC-192

OC-768

24:1

4:1

4:1

4:1

3:1

7:1

4:1

4:1

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-206

© James P.G. SterbenzITTC

SONET/SDH LinksStructure and Terminology

• SONET/SDH path– SONET/SDH link (edge-to-edge of SONET subnet)– appears as L2 link to L3 routers/switches

• SONET/SDH tandem connection– bundle of STS-n /STM-n transported as group (no add/drop)

• SONET line / SDH multiplex section– transmission line across regenerators (may be multiple)

• SONET section / SDH regenerator section

(regen) section

PTE

STELTE

STE

TE: terminatingequipment

TCTE

PTE

LTE

TCTE

sectionsectionsection section section section

line / multiplex section line linelinelinetandem connection

path

Page 104: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 104 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-207

© James P.G. SterbenzITTC

SONET Transport NetworksSTS-1 Frame Format

• STS-1 frame [810B] arranged 9 rows × 90B [ANSI T.105.1]– transport overhead: 9 × 3B

• section overhead 3×3B and line overhead 6×3B– envelope capacity: 9 × 87B– SPE (synchronous payload envelope): floats in envelope capacity

• path overhead: 9 × 1B at 1st byte in each SPE row• stuff bits: 9 × 2B at 30th and 59th byte in each SPE row• information payload: 9 × 84B

SPE

secovhd

lineovhd

envelopecapacity

path

ovhdtransport

overhead

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-208

© James P.G. SterbenzITTC

SONET Transport NetworksSTS-1 Floating Payload

• STS-1 SPE floats in STS-1 payload envelope– SPE may begin anywhere within envelope– H1H2 pointer in LOH indicates offset to beginning of SPE

lineovhd

secovhd

secovhd

lineovhd

path

ovhd

SPE j

STS-1 frame i

STS-1 frame i +1

Page 105: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 105 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-209

© James P.G. SterbenzITTC

SONET Transport NetworksSTS-1 Path Overhead

• Path overhead (POH)– SONET edge-to-edge– signalling between path terminating equipment (PTE)

• POH content– payload-independent functions– mapping-dependent overhead: dependent on payload type– application-specific functions– undefined overhead for future use

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-210

© James P.G. SterbenzITTC

SONET Transport NetworksSTS-1 Path Overhead

• J1 STS Path tracepath access pointID to verifyconnectivity

• B3 BIP-8 bit-interleaved parity for path error monitoring

• C2 STS path signal label identifies payload content / defect

• G1 path status returned from receiving PTE

• F2 path user channel for arbitrary PTE–PTE signalling

• H4 multiframe indicator for VTs and virtual concatenation

• Z3Z3 growth 2B reserved for future use

• N1 tandem connection maintenance and data link

J1B3C2G1F2H4Z3Z4N1

Page 106: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 106 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-211

© James P.G. SterbenzITTC

SONET Transport NetworksSTS-1 Section Overhead

• A1A2 Framing= F6 28

• C1 ID(depricated)

• J0 section trace verify connectivity between STEs• Z0 section growth 1B reserved for future use• B1 BIP-8 bit-interleaved parity for section error monitoring• S media-dependent bytes• E1 orderwire voice channel between STEs• F1 section user channel for arbitrary STE–STE signalling• D1D2D3 section data comm. channel 192kb/s alarms, OAM

secovhd

lineovhd

envelopecapacity

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-212

© James P.G. SterbenzITTC

SONET Transport NetworksSTS-1 Line Overhead

• H1H2 pointeroffset to 1stbyte of SPE

• H3 pointer action adjust input buffer fill for freq justification• B2 BIP-8 bit-interleaved parity for line error monitoring• K1K2 APS channel APS signalling between LTEs• D4–D12 line data comm. channel 576kb/s for alarms, OAM• S1 synchronisation messaging for clock sync• M0M1 line REI remote error indication; returns # BIP-8 errors• Z1Z1 line growth 2B reserved for future use• E2 orderwire voice channel between LTEs• D13–D156 extended data comm. chan 9216kb/s (OC-768)

secovhd

lineovhd

envelopecapacity

Page 107: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 107 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-213

© James P.G. SterbenzITTC

SONET Transport NetworksHigher-Level Rates

• SONET and SDH designed to be scalable– in rate– in multiplexing structure

• STS-n– synchronous transport signal multiplexed from n × STS-1– useful for aggregated services

• STS-n c– synchronous transport signal at rate n × STS-1– provides single data stream

• no need to stripe across n streams and maintain skew

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-214

© James P.G. SterbenzITTC

secovhd

lineovhd

envelopecapacity

SONET Transport NetworksSTS-3 Frame Format

• STS-3c frame [810B] arranged 9 rows × 90B [ANSI T.105.1]– transport overhead: 9 × 3B

• section overhead 3×3B and line overhead 6×3B– envelope capacity: 9 × 87B– SPE (synchronous payload envelope): floats in envelope capacity

• path overhead: 9 × 3B at 1st byte in each SPE row• stuff bits: 9 × 2B at 30th and 59th byte in each SPE row• information payload: 9 × 84B

SPE

transportoverhead

path

ovhd

path

ovhd

path

ovhd

Page 108: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 108 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-215

© James P.G. SterbenzITTC

SONET Transport NetworksSubrate Overview

• FractionalSTS-1– VT: SONET

virtualtributary

– TU: SDHtributary unit

– 6 increments ofsub-rate STS-1

– needed for efficient transport of non-TDM (e.g Ethernet)

• LCAS: link capacity adjustment scheme [ITU G.7042]– allows dynamic adjustment of VT size used by flow

51.840 Mb/s

6.912 Mb/s

3.456 Mb/s

2.304 Mb/s

1.728 Mb/s

Rate

1/1

1/7

1/14

1/21

1/28

DS1C60.066–VT3

DS3841.000–STS-1

DS2120.133TU-2 VT6

E140.044TU-12VT2

DS133.033TU-11VT1.5

PDHCol.FractionTUVT

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-216

© James P.G. SterbenzITTC

TDM Transport NetworksSONET/SDH Summary and Comparison

synchronousplesiochronousSynchronisation

.155 – 40 Gb/s1.5 – 45 Mb/sRates‡

transparentopaqueTransparency

54Levels*

TDMTDMMultiplex domain

electronicelectronicMux & switching

opticalelectronicTransmission

OTN OTMOTN DWSDH/SONETPDH

* as currently defined in standards, not including sub- and intermediate levels‡ approximate as currently defined in standards, not including STS-1 and sub-rates (DS0 and VTs)

Page 109: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 109 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-217

© James P.G. SterbenzITTC

TDM Transport NetworksSONET/SDH Hierarchy

139.42 Gb/s153.94 Gb/s2 405 367 B82 944 B159.25 Gb/sSTM-1024cOC-3072c

Payload rateLink Type

48/53 SONET1.0 SONETN ×87×9 – 9 BN ×3×9 BN × 51.84 Mb/sSTM-(N/3)cOC-N c

34.85 Gb/s38.48 Gb/s601 335 B20 736 B39.81 Gb/sSTM-256cOC-768c

8.71 Gb/s9.62 Gb/s150 327 B5 184 B9.95 Gb/sSTM-64cOC-192c

2.16 Gb/s2.40 Gb/s37 575 B1 296 B2.49 Gb/sSTM-16cOC-48c

544.09 Gb/s600.77 Mb/s9 387 B324 B622.08 Mb/sSTM-4cOC-12c

135.63 Mb/s149.75 Mb/s2 340 B81 B155.52 Mb/sSTM-1cOC-3c

44.87 Mb/s49.54 Mb/s774 B27 B51.84 Mb/sSTM-0STS-1

ATMmaxSONETPayloadTransport

OverheadRateSDHSONET

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-218

© James P.G. SterbenzITTC

Multiplexing and SwitchingLL.4.3.3 Optical Transport Networks

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switching

LL.4.1 Link-layer multiplexingLL.4.2 Link-layer switchingLL.4.3 TDM transport networks: PDH, SDH/SONET, OTN

LL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 110: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 110 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-219

© James P.G. SterbenzITTC

WDM Transport NetworksWavelength Division Multiplexed Links

• Optical WDM: wavelength division multiplexing– FDM where frequencies are wavelengths (shades of IR)– number of wavelengths inversely proportional to distance

• stimulated Raman scattering due to molecular vibrations• stimulated Brillouin scattering interacting with acoustic waves• carrier-induced cross-phase modulation causes phase shifts• four-wave mixing induces sum and difference frequencies

much more about this in EECS 881

H3 T3payload

H2 T2payload

H1 T1payload

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-220

© James P.G. SterbenzITTC

WDM Transport NetworksOTN Overview

• All optical network motivation– increase capacity on fiber with multiple wavelengths– WDM: wavelength division multiplexing

• OTN: optical transport network– evolution of transport network to WDM optical switches

• no need for O/E/O conversion

– matches SDH/SONET hierarchy• eases replacement of optical for electronic switches• SDH over OTN hierarchy

– adds interfaces between service providers• SONET/SDH were designed before deregulation

More in EECS 881

Page 111: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 111 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-221

© James P.G. SterbenzITTC

WDM Transport NetworksOTN Standards

• OTN: Optical transport network• ITU-T standards suite:

– architecture G.871/Y.1301, G.872– OTH framing/multiplexing G.709/Y.1331– equipment G.798– physical interfaces G.694, G.959.1, G.8251– OAM&P G.874, G.875– protection G.873– ASON G.8080/Y.1304

automatically switched optical network

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-222

© James P.G. SterbenzITTC

WDM Transport NetworksOTN Link Hierarchy

• Trails– undirectional and bidirectional– point-to-point and point-to-multipoint

• Interfaces– OUNI (OIF implementation agreement)– IrDI / E-NNI interdomain (OIF implementation agreement)– IaDI / I-NNI intradomain

• Framing and multiplexing hierarchy– digital wrapper

•digital encapsulation with associated overhead– optical transport module (OTM)

•optical/photonic with non-associated overhead

Page 112: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 112 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-223

© James P.G. SterbenzITTC

WDM Transport NetworksOTN Service Provider Interfaces

• ONNI: optical network node interface– Interdomain: IrDI (data) / E-NNI (signaling exterior NNI)

• may or may not terminate OCh– Intradomain: IaDI (data) / I-NNI (signaling interior NNI)

• IrVI/IaVI: inter-/intra vendor interface

• OUNI: optical user–network interface

OTNa OTNb

ONNIIrDI

E-NNI

OUNI

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-224

© James P.G. SterbenzITTC

WDM Transport NetworksOTN Multiplexing and Framing

• Digital over optical multiplexing hierarchy– client trail (SONET, ATM, GFP)– digital wrapper (in band)

• OPUk – OCh payload unit• OPU1 ≈ 2.4Gb/s, OPU2 ≈ 10Gb/s, OPU3 ≈ 40Gb/s

– OTM n.m – optical transport module• OCh optical channel

– edge-to-edge lightpath between 3R• out of band signalling overhead• n = max number of wavelengths• m = rate identifier =

– {1,2,3,…} OPUk TDM– {…12,23,123} combinations

Page 113: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 113 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-225

© James P.G. SterbenzITTC

WDM Transport NetworksOTN Framing and Multiplexing

client

OPUk

ODUk

OTUk

OCh

OCGn.m

OMSn.m

OTSn.m

OCC PL

OMS OH

OTS OH

OCC OH

OSC

hues of IR

DW

OTM

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-226

© James P.G. SterbenzITTC

WDM Transport NetworksOTN Digital Wrapper

• OTN digital multiplexing hierarchy– OPUk – OCh payload unit: carries client signals

• OPU1 ≈> 2.4Gb/s, OPU2 ≈> 10Gb/s, OPU3 ≈> 40Gb/s– ODUk – OCh data unit (digital path)– OTUk – OCh transport unit (digital section)

• Intended for nearer-term deployment

ODUk OH OP

Uk

OH OPUk payload

(client signal)FEC (optional)RS(255,239)

OTUkOHfr align

Page 114: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 114 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-227

© James P.G. SterbenzITTC

WDM Transport NetworksOTN Optical Transport Module

• OTM optical multiplexing hierarchy– OCh optical channel (between 3R, 3ROADM, 3ROXC)– OMS optical multiplex section (between PADM, PXC)– OTS optical transport section (between 2R, OMS, OAmg)

PADM: photonic ADMROADM: reconfigurable optical ADM

• Intended for longer-term photonic control

OTS…OTS

OMS

PADMτ

OCh

OTS... PADM

OMS

OTS

OMS

OCh

OTS

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-228

© James P.G. SterbenzITTC

WDM Transport NetworksOTN Optical Multiplexing Hierarchy

• Optical channel OCh– edge-to-edge optical linkL2

– connection rearrangement for flexible routing (ASON)– information integrity– OAM&P

• Optical multiplex section OMS– wavelength de/multiplexing ↔↕– integrity, OAM&P

• Optical transmission section OTS– medium specific transmission– OAM&P, integrity, survivability

Page 115: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 115 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-229

© James P.G. SterbenzITTC

WDM Transport HierarchySummary and Comparison

asynchronoussynchronoussynchronousplesiochronousSynchronisation

–2.5 – 160 Gb/s.155 – 40 Gb/s1.5 – 45 Mb/sRates‡

opaquetransparenttransparentopaqueTransparency

354Levels*

WDMTDMTDMTDMMultiplex domain

opticalelectronicelectronicelectronicMux & switching

opticalopticalopticalelectronicTransmission

OTN OTMOTN DWSDH/SONETPDH

* as currently defined in standards, not including sub- and intermediate levels‡ approximate as currently defined in standards, not including STS-1 and sub-rates (DS0 and VTs)

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-230

© James P.G. SterbenzITTC

WDM Transport NetworksOTN OTH Rates

100G159.15 Gb/sSTS-3072c159.25 Gb/s15 232 B1024 B64 B172.80 Gb/sOPU4

6549565535

9.96 Gb/s

2.49 Gb/s

GFP+CRCmax

16×4 B

64 B

64 B

64 B

DWOvhd

= SONETline rate

39.81 Gb/s

9.95 Gb/s

2.49 Gb/s

622.08 Mb/s

155.52 Mb/s

51.84 Mb/s

OPU ratePayloadsLink type

3808×4 B256×4 B255/(239–k) × SONETOPUk

STS-768c15 232 B1024 B43.02 Gb/sOPU3

=10GBaseSTS-192c15 232 B1024 B10.71 Gb/sOPU2

1000BaseSTS-48c15 232 B1024 B2.67 Gb/sOPU1

STS-12c–

STS-3c–

STS-1–

EthernetSONETOPU

PayloadFECOTU/Och rateOTH

Page 116: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 116 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-231

© James P.G. SterbenzITTC

Link Layer and LANsLL.5 Per Hop Error and Flow Control

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow control

LL.5.1 Error detection and correctionLL.5.2 Error controlLL.5.3 Flow control

LL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-232

© James P.G. SterbenzITTC

Link Layer Error ControlIntroduction

• Per-hop error control for frame transfersWhy?

Page 117: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 117 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-233

© James P.G. SterbenzITTC

Link Layer Error ControlIntroduction

• Per-hop error control for frame transfers• Recall end-to-end arguments:

– if error checking and correction needed E2E …… it must be done end-to-end by transport (or application)

• Link error control to improve overall performance– e.g. ARQ for wireless and satellite links– e.g. FEC for fiber optic links

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-234

© James P.G. SterbenzITTC

Per Hop Error and Flow ControlLL.5.1 Error Detection and Correction

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow control

LL.5.1 Error detection and correctionLL.5.2 Error controlLL.5.3 Flow control

LL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 118: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 118 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-235

© James P.G. SterbenzITTC

Link Layer Error ControlDetection vs. Correction

• Error detection– generally useful at link layer to detect errors– corrupted frames typically dropped

why?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-236

© James P.G. SterbenzITTC

Link Layer Error ControlDetection vs. Correction

• Error detection– generally useful at link layer to detect errors– corrupted frames typically dropped

• useless data not sent through network consuming resources• transport layer detects (or signalled) and corrects as necessary

– it needs to do this anyway

– link layer checks frequently stronger than E2E• link frame CRC much stronger than TCP checksum

Page 119: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 119 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-237

© James P.G. SterbenzITTC

Link Layer Error ControlDetection vs. Correction

• Error detection– generally useful at link layer to detect errors– corrupted frames typically dropped

• useless data not sent through network consuming resources• transport layer detects (or signalled) and corrects as necessary

– it needs to do this anyway

– link layer checks frequently stronger than E2E• link frame CRC much stronger than TCP checksum

• Error correction– used when hop-by-hop correction needed

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-238

© James P.G. SterbenzITTC

Link Layer Error ControlDetection Techniques

• Byte, word, or block– parity– 2-dimensional parity– Hamming codes

• Frame– checksum– CRC

Page 120: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 120 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-239

© James P.G. SterbenzITTC

Block Error DetectionParity

What is simplest error detection method?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-240

© James P.G. SterbenzITTC

Block Error DetectionParity

• Parity : detect single errors– no ability to correct errors– only an odd number of bit errors detected

• only useful if bit error probability very low

Page 121: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 121 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-241

© James P.G. SterbenzITTC

Block Error DetectionParity

• Parity: detect single errors– no ability to correct errors– only an odd number of bit errors detected

• only useful if bit error probability very low

• Parity bit covers n bit block• Even parity: even number of 1s (including parity)

– example: 0111 0001 1010 1011 ?

• Odd parity odd number of 1s (including parity)– example: 0111 0001 1010 1011 ?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-242

© James P.G. SterbenzITTC

Block Error DetectionParity

• Parity: detect single errors– no ability to correct errors– only an odd number of bit errors detected

• only useful if bit error probability very low

• Parity bit covers n bit block• Even parity: even number of 1s (including parity)

– example: 0111 0001 1010 1011 1

• Odd parity odd number of 1s (including parity)– example: 0111 0001 1010 1011 0

Page 122: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 122 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-243

© James P.G. SterbenzITTC

Block Error DetectionParity

• Parity: detect single errors– no ability to correct errors– only an odd number of bit errors detected

• only useful if bit error probability very low

• Parity bit covers n bit block• Even parity: even number of 1s (including parity)

– example: 0111 0001 1010 1011 1

• Odd parity odd number of 1s (including parity)– example: 0111 0001 1010 1011 0

Extension to detect which bit in error?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-244

© James P.G. SterbenzITTC

Block Error Detection & Correction2-Dimensional Parity

• 2-dimensional parity: correct single bit errors– detects which bit flipped and can therefore correct

Page 123: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 123 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-245

© James P.G. SterbenzITTC

Block Error Detection & Correction2-Dimensional Parity

• 2-dimensional parity: correct single bit errors– detects which bit flipped and can therefore correct

• n + m parity bits covers n × m bit block– n row parity bits cover m data bits each– m column parity bits cover n data bits each

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-246

© James P.G. SterbenzITTC

Block Error Detection & Correction2-Dimensional Parity

• 2-dimensional parity: correct single bit errors– detects which bit flipped and can therefore correct

• n + m parity bits covers n × m bit block– n row parity bits cover m data bits each– m column parity bits cover n data bits each

• Example (odd parity)0111 00001 01010 11011 01000

Page 124: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 124 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-247

© James P.G. SterbenzITTC

Block Error Detection & Correction2-Dimensional Parity

• 2-dimensional parity: correct single bit errors– detects which bit flipped and can therefore correct

• n + m parity bits covers n × m bit block– n row parity bits cover m data bits each– m column parity bits cover n data bits each

• Example (odd parity)0111 0 0111 00001 0 0001 01010 1 1110 1  ← detects and can correct flip1011 0 1011 01000           1000

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-248

© James P.G. SterbenzITTC

Block Error Detection & CorrectionHamming Codes

• Hamming codes: correct single bit errors– detects which bit flipped and can therefore correct– k parity bits per block cover different sets of n data bits

Page 125: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 125 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-249

© James P.G. SterbenzITTC

Block Error Detection & CorrectionHamming Codes

• Hamming codes: correct single bit errors– detects which bit flipped and can therefore correct– k parity bits per block cover different sets of n data bits

• SECDED: single error correct double error detect

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-250

© James P.G. SterbenzITTC

Block Error Detection & CorrectionHamming Codes

• Hamming codes: correct single bit errors– detects which bit flipped and can therefore correct– k parity bits per block cover different sets of n data bits

• SECDED: single error correct double error detect• Example 4 data bits covered by 3 parity bits

– parity bits p2 p1 p0 interleaved with data bits d3 d2 d1 d0

1011010 d3 d2 d1 p2 d0 p1 p0

1‐1‐0‐1 d3 d1 d0 covered by p0

10‐‐00‐ d3 d2 d0 covered by p1

1011‐‐‐ d3 d2 d1 covered by p2

Page 126: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 126 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-251

© James P.G. SterbenzITTC

Block Error Detection & CorrectionHamming Codes

• Hamming codes: correct single bit errors– detects which bit flipped and can therefore correct– k parity bits per block cover different sets of n data bits

• SECDED: single error correct double error detect• Example 4 data bits covered by 3 parity bits

– parity bits p2 p1 p0 interleaved with data bits d3 d2 d1 d0

1011010 d3 d2 d1 p2 d0 p1 p0 11110101‐1‐0‐1 d3 d1 d0 covered by p0 1‐1‐0‐110‐‐00‐ d3 d2 d0 covered by p1 11‐‐00‐ p1 detects error1011‐‐‐ d3 d2 d1 covered by p2 1111‐‐‐ p2 detects error

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-252

© James P.G. SterbenzITTC

Frame Error DetectionChecksum

• Detect errors in PDU• Binary addition of bytes/words

– sender: compute checksum and insert in header/trailer– receiver: compute checksum and compare to header/trailer

Advantages?Disadvantages?

Page 127: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 127 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-253

© James P.G. SterbenzITTC

Frame Error DetectionChecksum

• Detect errors in PDU• Binary addition of bytes/words

– sender: compute checksum and insert in header/trailer– receiver: compute checksum and compare to header/trailer

• Advantage:– simple to compute

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-254

© James P.G. SterbenzITTC

Frame Error DetectionChecksum

• Detect errors in PDU• Binary addition of bytes/words

– sender: compute checksum and insert in header/trailer– receiver: compute checksum and compare to header/trailer

• Advantage:– simple to compute

• Disadvantage:– weak detection of errors– some bit-flip combinations may remain undetected

Page 128: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 128 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-255

© James P.G. SterbenzITTC

Frame Error DetectionCRC

• Cyclic redundancy check– stronger error detection for PDU

CRC

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-256

© James P.G. SterbenzITTC

Frame Error DetectionCRC

• Cyclic redundancy check– stronger error detection for PDU

• View data bits, D, as a binary number– choose r + 1 bit pattern (generator), G

• Goal: choose r CRC bits R such that– <D,R> exactly divisible by G (modulo 2) – receiver knows G, divides <D,R> by G

if non-zero remainder: error detected– can detect all burst errors less than r + 1 bits

D R

d r

Page 129: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 129 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-257

© James P.G. SterbenzITTC

Frame Error Detection & CorrectionFEC

• Forward error correction– each PDU has error correcting header– combination of header/payload allows significant correction

DFEC

dh

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-258

© James P.G. SterbenzITTC

Frame Error Detection & CorrectionFEC

• Forward error correction– each PDU has error correcting header– combination of header/payload allows significant correction

• Open-loop error control– errors corrected at the receiver without retransmissions

how does this help?

DFEC

dh

Page 130: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 130 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-259

© James P.G. SterbenzITTC

Frame Error Detection & CorrectionFEC

• Forward error correction– each PDU has error correcting header– combination of header/payload allows significant correction

• Open-loop error control– errors corrected at the receiver without retransmissions– reduces need for over long delay links for:

• retransmissions• sender buffers

– statistical reliability good enough for some applications– e.g. G.975 (255,239) Reed Solomon code in SDH/SONET

DFEC

dh

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-260

© James P.G. SterbenzITTC

Frame Error Detection & CorrectionFEC

• Forward error correction– each PDU has error correcting header– combination of header/payload allows significant correction

• Open-loop error control– errors corrected at the receiver without retransmissions– reduces need for retransmissions over long delay links– statistical reliability good enough for some applications– e.g. G.975 (255,239) Reed Solomon code in SDH/SONET

• Note: FEC can also be done end-to-end– but TCP doesn’t support it

DFEC

dh

Page 131: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 131 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-261

© James P.G. SterbenzITTC

Per Hop Error and Flow ControlLL.5.2 Error Control

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow control

LL.5.1 Error detection and correctionLL.5.2 Error controlLL.5.3 Flow control

LL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-262

© James P.G. SterbenzITTC

Error ControlOverview

• Error control mechanisms– detect lost or corrupted frames– retransmit as needed– generally only for very lossy links

• satellite, wireless, optical with long inter-regen spanswhy?

Page 132: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 132 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-263

© James P.G. SterbenzITTC

Error ControlOverview

• Error control mechanisms– detect lost or corrupted frames– retransmit as needed– generally only for very lossy links

• satellite, wireless, optical with long inter-regen spans• recall end-to-end arguments

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-264

© James P.G. SterbenzITTC

Error ControlOverview

• Error control mechanisms– detect lost or corrupted frames– retransmit as needed– generally only for very lossy links

• satellite, wireless, optical with long inter-regen spans• recall end-to-end arguments

• Same as E2E mechanisms Lecture TL– unrestricted simplex (baseline no error control)– stop-and-wait– go-back-n– selective repeat

Page 133: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 133 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-265

© James P.G. SterbenzITTC

Per Hop Error and Flow ControlLL.5.3 Flow Control

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow control

LL.5.1 Error detection and correctionLL.5.2 Error controlLL.5.3 Flow control

LL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-266

© James P.G. SterbenzITTC

Link Flow ControlNegotiation

• Flow controlwhy?

Page 134: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 134 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-267

© James P.G. SterbenzITTC

Link Flow ControlNegotiation

• Flow control– sender transmits at a rate that will not overwhelm receiver

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-268

© James P.G. SterbenzITTC

Link Flow ControlNegotiation

• Flow control– sender transmits at a rate that will not overwhelm receiver

• Initial rate negotiation– automatic negotiation of parameters

• e.g. modem rate• e.g. Ethernet rate (10M/100M/1G) b/s

Page 135: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 135 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-269

© James P.G. SterbenzITTC

Link Flow ControlNegotiation

• Flow control– sender transmits at a rate that will not overwhelm receiver

• Initial rate negotiation– automatic negotiation of parameters

• e.g. modem rate• e.g. Ethernet rate (10M/100M/1G) b/s

• Dynamic flow control– may be needed end-to-end– most modern links do not need HBH flow control

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-270

© James P.G. SterbenzITTC

Link Layer and LANsLL.6 Link Layer Components

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

Page 136: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 136 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-271

© James P.G. SterbenzITTC

Link Layer ComponentsTypes

• Amplifiers and regenerators• Multiplexors and cross-connects• Optical wavelength converters• Hubs and bridges• Time slot interchangers (TSI)

– time division switches

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-272

© James P.G. SterbenzITTC

Link Layer ComponentsAmplifiers and Regenerators

• Amplifiers: analog– example: optical EDFA (erbium doped fiber amplifier)

every few hundred km

Page 137: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 137 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-273

© James P.G. SterbenzITTC

Link Layer ComponentsAmplifiers and Regenerators

• Amplifiers: analog– example: optical EDFA (erbium doped fiber amplifier)

every few hundred km

• Regenerators: A/D/A– 2R: regeneration and reshaping preserves timing– 3R: regeneration, reshaping, and retiming– examples:

• optical 2R and 3R• microwave relays• bent-path satellite links

EECS 881

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-274

© James P.G. SterbenzITTC

Link Layer ComponentsMultiplexors and Cross-Connects

• Multiplexors / demultiplexors– aggregate multiple virtual links onto a physical link

• example: T-carrier, point-to-point SONET, WDM multiplexors• example: SONET ring add-drop multiplexors

Page 138: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 138 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-275

© James P.G. SterbenzITTC

Link Layer ComponentsMultiplexors and Cross-Connects

• Multiplexors / demultiplexors– aggregate multiple virtual links onto a physical link

• example: T-carrier, point-to-point SONET, WDM multiplexors• example: SONET ring add-drop multiplexors

• Cross-connects– layer 2 switch with relatively static configuration

• example: SONET cross-connect between rings

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-276

© James P.G. SterbenzITTC

Link Layer ComponentsOptical Wavelength Converters

• O/E/O: convert through electronic domain– expensive– lose advantages of all-optical lightpaths

Page 139: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 139 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-277

© James P.G. SterbenzITTC

Link Layer ComponentsOptical Wavelength Converters

• O/E/O: convert through electronic domain– expensive– lose advantages of all-optical lightpaths

• Optical domain: future technology– cross-modulation: input modulates laser output at new λ– coherent effects: similar to four wave mixing

• Small cheap DWDM multiwavelength converters will– reduce some lightpath assignment constraints– will require modification of lightpath routing algorithms

EECS 881

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-278

© James P.G. SterbenzITTC

Link Layer ComponentsLAN Components

How to extend the reach of LAN segment?original shared medium bus or ring

Page 140: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 140 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-279

© James P.G. SterbenzITTC

Link Layer ComponentsBridges

• Bridges connect LAN segments– extend reach beyond limits– important for early LANS

• e.g. Ethernet extension

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-280

© James P.G. SterbenzITTC

Link Layer ComponentsBridges

• Bridges connect LAN segments– extend reach beyond limits– important for early LANS

• e.g. Ethernet extension

• Promiscuous– repeat (pass) all frames

network scalability?

Page 141: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 141 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-281

© James P.G. SterbenzITTC

Link Layer ComponentsBridges

• Bridges connect LAN segments– extend reach beyond limits– important for early LANS

• e.g. Ethernet extension

• Promiscuous– repeat (pass) all frames– all interconnected segments share intra-segment frames

alternative?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-282

© James P.G. SterbenzITTC

Link Layer ComponentsBridges

• Bridges connect LAN segments– extend reach beyond limits– important for early LANS

• e.g. Ethernet extension

• Learning bridge– learns local segment addresses

• snooped on source MAC address in frame header

– only repeat frames destined for other segments

Page 142: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 142 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-283

© James P.G. SterbenzITTC

Link Layer ComponentsHubs

• Early LANs dictated wiring topology – linear segments for Ethernet– loops for token ring

Problems?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-284

© James P.G. SterbenzITTC

Link Layer ComponentsHubs

• Early LANs dictated wiring topology – linear segments for Ethernet– rings for token ring

• Office topology frequently didn’t match LAN topology– Ethernet bridges frequently needed to bridge hallways

Page 143: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 143 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-285

© James P.G. SterbenzITTC

Link Layer ComponentsHubs

• Early LANs dictated wiring topology – linear segments for Ethernet– rings for token ring

• Office topology frequently didn’t match LAN topology– Ethernet bridges frequently needed to bridge hallways

• End user could take down network– by disconnecting network interface

• token ring• some Ethernet links (e.g. 10Base2)

– sys/netadmins would have to run from office to office

Response?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-286

© James P.G. SterbenzITTC

Link Layer ComponentsHubs

• Alternative– use a star wiring plan– host/station links all go to a hub in a wiring closet

Page 144: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 144 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-287

© James P.G. SterbenzITTC

Link Layer ComponentsHubs

• Alternative– use a star wiring plan– host/station links all go to a hub in a wiring closet

• More flexible wiring plan• Central location for debugging

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-288

© James P.G. SterbenzITTC

Link Layer ComponentsHubs

• Alternative– use a star wiring plan– host/station links all go to a hub in a wiring closet

• More flexible wiring plan• Central location for debugging

Network scalability?

Page 145: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 145 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-289

© James P.G. SterbenzITTC

Link Layer ComponentsHubs

• Alternative– use a star wiring plan– host/station links all go to a hub in a wiring closet

• More flexible wiring plan• Central location for debugging• Hub is still shared medium bottleneck

alternative?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-290

© James P.G. SterbenzITTC

Link Layer ComponentsLAN Switches

• Alternative– replace hub with a space division switch

L2

Page 146: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 146 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-291

© James P.G. SterbenzITTC

Link Layer ComponentsLAN Switches

• Alternative– replace hub with a space division switch

• LAN switch– switches on layer 2 (MAC address) header– full bandwidth of each link available

• assuming non-blocking switch fabric

L2

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-292

© James P.G. SterbenzITTC

Link Layer ComponentsLAN Switches

• Alternative– replace hub with a space division switch

• LAN switch– switches on layer 2 (MAC address) header– full bandwidth of each link available

• assuming non-blocking switch fabric

– not a substitute for L3 (IP) switch (router)why?

L2

Page 147: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 147 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-293

© James P.G. SterbenzITTC

Link Layer ComponentsLAN Switches

• Alternative– replace hub with a space division switch

• LAN switch– switches on layer 2 (MAC address) header– full bandwidth of each link available

• assuming non-blocking switch fabric

– not a substitute for L3 (IP) switch (router)– no IP routing and forwarding capability

L2

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-294

© James P.G. SterbenzITTC

Link Layer and LANsLL.7 VLANs, L2 Tunnels, and ARP

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 VLANs, L2 tunnels, and ARP

LL.7.1 Virtual LANsLL.7.2 Layer 2 tunnelsLL.7.3 IP address resolution

LL.8 Residential broadband

Page 148: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 148 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-295

© James P.G. SterbenzITTC

VLANs, L2 Tunnels, and ARPMotivation

• LANs operate as part of Global Internet– using IP

• Several technologies needed for this– VLANs: Virtual LANs– L2 tunnels: link emulation over IP– ARP: IP address resolution protocol

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-296

© James P.G. SterbenzITTC

VLANs, L2 Tunnels, and ARPLL.7.1 Virtual LANs

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 VLANs, L2 tunnels, and ARP

LL.7.1 Virtual LANsLL.7.2 Layer 2 tunnelsLL.7.3 IP address resolution

LL.8 Residential broadband

Page 149: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 149 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-297

© James P.G. SterbenzITTC

Virtual LANsMotivation

• LANs provide useful infrastructure at network edge– cheap and simple interconnection for workgroup– “plug-and-play” interfaces– no need to understand or configure IP routing

What if workgroup doesn’t match physical topology?reasons?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-298

© James P.G. SterbenzITTC

Virtual LANsMotivation

• LANs provide useful infrastructure at network edge– cheap and simple interconnection for workgroup– “plug-and-play” interfaces– no need to understand or configure IP routing

• Workgroup may not match physical topology– multiple workgroups share LAN infrastructure– workgroups scattered across wide area Internet

Page 150: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 150 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-299

© James P.G. SterbenzITTC

Virtual LANsVLAN Topology Alternatives

• Workgroup may not match physical topology– virtual LANs (VLANs)

• Multiple workgroups share LAN infrastructure– VLANs segregate physical LANs– traffic isolation

• separate L2 broadcast domain• security: prevent L2 frames to be visible across VLANs

• Workgroup scattered across wide-area Internet– layer 2 tunnels extend LAN with L2 tunnel in IP datagram

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-300

© James P.G. SterbenzITTC

Virtual LANsL2 Switch Configuration

How to configure VLANs in a L2 switch?

0 L2

1

2

3

4

5

Page 151: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 151 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-301

© James P.G. SterbenzITTC

Virtual LANsL2 Switch Configuration

• VLANs defined by assigning VLAN id to switch port– end systems must plug into correct physical port subset– logical division into multiple switches

How to interconnectVLANs?

0 L2

1

2

3

4

5

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-302

© James P.G. SterbenzITTC

Virtual LANsL2 Switch Configuration

• VLANs defined by assigning VLAN id to switch port– end systems must plug into correct physical port subset– logical division into multiple switches

• VLAN interconnection– must be done with IP router

0 L2

1

2

3

4

5

6

7

IP

Page 152: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 152 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-303

© James P.G. SterbenzITTC

Virtual LANsL2 Switch Configuration

• VLANs defined by assigning VLAN id to switch port– end systems must plug into correct physical port subset– logical division into multiple switches

• VLAN interconnection– must be done with IP router– some VLAN switches

have built-in router for this

0 L2

1

2

3

4

5

IP

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-304

© James P.G. SterbenzITTC

Virtual LANsScaling to Multiple Switches

• VLANs defined by assigning VLAN id to switch port– end systems must plug into correct physical port subset– logical division into multiple switches

How to extend tomultiple switches?

0 L2

1

2

3

4

5

Page 153: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 153 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-305

© James P.G. SterbenzITTC

Virtual LANsScaling to Multiple Switches

• VLANs defined by assigning VLAN id to switch port– end systems must plug into correct physical port subset– logical division into multiple switches

• VLAN extension– link/VLAN between switches

problem?

0 L2

1

2

3

4

5

6

7

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-306

© James P.G. SterbenzITTC

Virtual LANsScaling to Multiple Switches

• VLANs defined by assigning VLAN id to switch port– end systems must plug into correct physical port subset– logical division into multiple switches

• VLAN extension– link/VLAN between switches

• not scalable

0 L2

1

2

3

4

5

6

7

Page 154: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 154 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-307

© James P.G. SterbenzITTC

Virtual LANsScaling to Multiple Switches

• VLANs defined by assigning VLAN id to switch port– end systems must plug into correct physical port subset– logical division into multiple switches

• VLAN extension– link/VLAN between switches– VLAN trunking

how to segregate frames?

0 L2

1

2

3

4

5

7

6

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-308

© James P.G. SterbenzITTC

Virtual LANsScaling to Multiple Switches

• VLANs defined by assigning VLAN id to switch port– end systems must plug into correct physical port subset– logical division into multiple switches

• VLAN extension– link/VLAN between switches– VLAN trunking

• tagging to segregate frames

0 L2

1

2

3

4

5

7

6

Page 155: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 155 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-309

© James P.G. SterbenzITTC

Virtual LANs802.1Q Tagging

• VLAN tagging– additional field with VLAN id

where must it go?

MAC header

30B

trailer4B

LLC/SNAP subheader

8B

payload

length/type

payload

destination address

source address

LLC

SNAP

10101010   10101010

FCS

10101010   10101010

10101010   1010101110101010   10101010preamble + SFD

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-310

© James P.G. SterbenzITTC

Virtual LANs802.1Q Tagging

• VLAN tagging: IEEE 802.1Q– additional field with VLAN id– VLAN tag must go after preamble

• inserted into header after addresses

MAC header

30B

trailer4B

LLC/SNAP subheader

8B

payload

length/type

payload

destination address

source address

LLC

SNAP

10101010   10101010

FCS

10101010   10101010

10101010   1010101110101010   10101010preamble + SFD

Page 156: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 156 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-311

© James P.G. SterbenzITTC

VLAN tag

length/type

Virtual LANs802.1Q Tagging

• VLAN tag [4B]– TPID (tag prot. id) [2B] = 0800

• located at type/len position• defines tagged/non-tagged

– PCP: prty. ctl. point [3b]• 802.1p frame priority [0..7]

– CFI: cannonical fmt. id [1b]• compatibility with non-Enet

– 0 = Ethernet– 1 = do not bridge to untagged port

– VID: VLAN id [12b]• 212 = 4096 possible VLANs/trunk

MAC header

34B

trailer4B

LLC/SNAP subheader

8B

payload payload

LLC

SNAP

FCS

destination address

source address

10101010   1010101010101010   10101010

10101010   1010101110101010   10101010preamble + SFD

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-312

© James P.G. SterbenzITTC

VLANs, L2 Tunnels, and ARPLL.7.2 Layer 2 Tunnels

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 VLANs, L2 tunnels, and ARP

LL.7.1 Virtual LANsLL.7.2 Layer 2 tunnelsLL.7.3 IP address resolution

LL.8 Residential broadband

Page 157: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 157 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-313

© James P.G. SterbenzITTC

IP

Layer 2 TunnelsMotivation

• Layer 2 tunnels– permit LAN extension across longer-than-LAN networks– permits VLAN interconnection across IP Internet

0 L2

1

2

3

4

5

7

IP

0L2

1

2

3

4

5

6

IP

IP

6

7

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-314

© James P.G. SterbenzITTC

Layer 2 TunnelsL2TP Encapsulation

• L2TP: layer 2 tunneling protocol– L2TPv3: current version [RFC 3931]

• L2 frame encapsulated in– L2TP data message in– UDP datagram flow in– IP datagram through Internet in– L2 frames on each link

L2TP header

UDP header

IP header

L2 frame header

L2 frame header

L2 frame payload

L2 frame trailer

L2 frame trailer

Page 158: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 158 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-315

© James P.G. SterbenzITTC

Layer 2 TunnelsL2TP Operation

• L2TP operation– L2TP establishes reliable control channel– transfers data in unrelaible data channel

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-316

© James P.G. SterbenzITTC

Layer 2 TunnelsL2TP Data Format

• Data message format– flags [1b each] and version info

T: type 0=data, 1=controlL: length presentS: sequence presentO: offset presentP: priority for data msg.version [4b]

– …

tunnel id

offset pad

data

Nssession id

lengthflags & version

Nroffset size

TL00S0OP 0000 vers

Page 159: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 159 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-317

© James P.G. SterbenzITTC

Layer 2 TunnelsL2TP Data Format

• Data message format– flags and version info [16b]– length: total in B [16b]– tunnel id [16b]– session id in tunnel [16b]– Ns: seq. # (opt) [16b]– Nr: seq. # exp. (opt) [16b]– offset id: # bytes until

payload [16b]– offset pad [variable]– payload: encapsulated

L2 frame

tunnel id

offset pad

data

Nssession id

lengthflags & version

Nroffset size

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-318

© James P.G. SterbenzITTC

VLANs, L2 Tunnels, and ARPLL.7.3 IP Address Resolution

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 VLANs, L2 tunnels, and ARP

LL.7.1 Virtual LANsLL.7.2 Layer 2 tunnelsLL.7.3 IP address resolution

LL.8 Residential broadband

Page 160: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 160 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-319

© James P.G. SterbenzITTC

IP Address ResolutionARP Motivation

• Addresses used for forwarding– IP addresses for Internet layer 3 IP switching (routing)

• What about layer 2 addressing?motivation?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-320

© James P.G. SterbenzITTC

IP Address ResolutionARP Motivation

• Addresses used for forwarding– IP addresses for Internet layer 3 IP switching (routing)

• What about layer 2 addressing?motivation in shared medium?

Page 161: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 161 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-321

© James P.G. SterbenzITTC

IP Address ResolutionARP Motivation

• Addresses used for forwarding– IP addresses for Internet layer 3 IP switching (routing)

• What about layer 2 addressing?– in shared medium MAC address specifies destination station

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-322

© James P.G. SterbenzITTC

IP Address ResolutionARP Motivation

• Addresses used for forwarding– IP addresses for Internet layer 3 IP switching (routing)

• What about layer 2 addressing?– in shared medium MAC address specifies destination station– legacy Ethernet and thus switched Ethernet – 802.11 lecture MW

Page 162: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 162 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-323

© James P.G. SterbenzITTC

IP Address ResolutionARP Motivation

• Addresses used for forwarding– IP addresses for Internet layer 3 IP switching (routing)

• What about layer 2 addressing?– in shared medium MAC address specifies destination station– legacy Ethernet and thus switched Ethernet – 802.11 lecture MW

• Problem: incoming IP packet has only addresshow to determine station address to put in MAC header?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-324

© James P.G. SterbenzITTC

IP Address ResolutionARP Motivation

• Addresses used for forwarding– IP addresses for Internet layer 3 IP switching (routing)

• What about layer 2 addressing?– in shared medium MAC address specifies destination station– legacy Ethernet and thus switched Ethernet – 802.11 lecture MW

• Problem: incoming IP packet has only address– need an address resolution protocol (ARP) – translates IP address → L2 LAN (MAC) address

Page 163: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 163 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-325

© James P.G. SterbenzITTC

IP Address ResolutionARP Overview

• ARP (address resolution protocol) [RFC 0826]– translates IP address → L2 LAN (MAC) address– router broadcasts REQUEST; node responds with REPLY

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-326

© James P.G. SterbenzITTC

IP Address ResolutionARP Overview

• ARP (address resolution protocol) [RFC 0826]– translates IP address → L2 LAN (MAC) address– router broadcasts REQUEST; node responds with REPLY

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes

Page 164: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 164 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-327

© James P.G. SterbenzITTC

IP Address ResolutionARP Overview

• ARP (address resolution protocol) [RFC 0826]– translates IP address → L2 LAN (MAC) address– router broadcasts REQUEST; node responds with REPLY

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes

• ARP designed as multiprotocol– any network protocol over any LAN/MAC protocol– type and address length fields define L2 and L3 protocol

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-328

© James P.G. SterbenzITTC

IP Address ResolutionARP Overview

• ARP (address resolution protocol) [RFC 0826]– translates IP address → L2 LAN (MAC) address– router broadcasts REQUEST; node responds with REPLY

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes

• ARP designed as multiprotocol– any network protocol over any LAN/MAC protocol– type and address length fields define L2 and L3 protocol

• Reverse ARP (RARP) [RFC 0903]– L2 LAN → L3 IP address translation

Page 165: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 165 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-329

© James P.G. SterbenzITTC

IP Address ResolutionARP Packets: Layer 2 Fields

• L2 MAC fields (hardware)– hardware type: 1 = Ethernet (non LLC/SNAP)

6 = IEEE802 (with LLC/SNAP)– address length: 6 for a 48b MAC address– source hardware address (SHA)– target hardware address (THA)

HLn = 6 PLn = 4

THA47–32

THA31–0

TPA31–0

SHA15–0

SHA31–16

operation code

protocol type=0800hardware type

SPA31–16

SPA15–0

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-330

© James P.G. SterbenzITTC

IP Address ResolutionARP Packets: Layer 3 Fields

• L3 network fields (protocol)– protocol type: IP = 0800  Ethertype

[http://www.iana.org/assignments/ethernet‐numbers]– address length: 4 for a 32b IP address– source protocol address (SPA)– target protocol address (TPA)

HLn = 6 PLn = 4

THA47–32

THA31–0

TPA31–0

SHA15–0

SHA31–16

operation code

prot type=0800hardware type

SPA31–16

SPA15–0

Page 166: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 166 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-331

© James P.G. SterbenzITTC

IP Address ResolutionARP Packets: Operation Codes

• Operation code[http://www.iana.org/assignments/arp‐parameters]

01 = ARP REQUEST 03 = reverse REQUEST02 = ARP REPLY 04 = reverse REPLY

HLn = 6 PLn = 4

THA47–32

THA31–0

TPA31–0

SHA15–0

SHA31–16

operation code

protocol type=0800hardware type

SPA31–16

SPA15–0

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-332

© James P.G. SterbenzITTC

IP Address ResolutionARP Operation: ARP Table

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes– ⟨IP-addr, MAC-addr, TTL⟩

• soft state: TTL time to live before entry flushed (typ. 20 min.)

Page 167: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 167 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-333

© James P.G. SterbenzITTC

IP Address ResolutionARP Operation: Request

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes

• When source node on LAN needs to send datagram– check ARP table for entry– if present use MAC address

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-334

© James P.G. SterbenzITTC

IP Address ResolutionARP Operation: Request

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes

• When source node on LAN needs to send datagram– check ARP table for entry– if present use MAC address– if not present, broadcast ARP REQUEST to LAN segment

• THA = FF‐FF‐FF‐FF‐FF‐FF• SPA,SHA = IP,MAC address of sender

Page 168: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 168 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-335

© James P.G. SterbenzITTC

IP Address ResolutionARP Operation: Request

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes

• When source node on LAN needs to send datagram– check ARP table for entry– if present use MAC address– if not present, broadcast ARP REQUEST to LAN segment

• THA = FF‐FF‐FF‐FF‐FF‐FF for broadcast• TPA = IP address of target• SPA,SHA = IP,MAC address of sender (why? )

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-336

© James P.G. SterbenzITTC

IP Address ResolutionARP Operation: Request

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes

• When source node on LAN needs to send datagram– check ARP table for entry– if present use MAC address– if not present, broadcast ARP REQUEST to LAN segment

• THA = FF‐FF‐FF‐FF‐FF‐FF for broadcast• TPA = IP address of target• SPA,SHA = IP,MAC address of sender (needed for REPLY )

Page 169: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 169 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-337

© James P.G. SterbenzITTC

IP Address ResolutionARP Operation: Request

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes

• When source node on LAN needs to send datagram– check ARP table for entry– if present use MAC address– if not present, broadcast ARP REQUEST to LAN segment

• THA = FF‐FF‐FF‐FF‐FF‐FF for broadcast• TPA = IP address of target• SPA,SHA = IP,MAC address of sender (needed for REPLY )• all other nodes see and cache SHA→SPA into their ARP tables

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-338

© James P.G. SterbenzITTC

IP Address ResolutionARP Operation: Reply

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes

• When source node on LAN needs to send datagram– check ARP table for entry– if present use MAC address– if not present, broadcast ARP REQUEST to LAN segment– target unicasts REPLY to source

• THA = MAC address of source• SHA = IP address of source• SPA,SHA = IP,MAC address of target (now source in REPLY)

Page 170: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 170 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-339

© James P.G. SterbenzITTC

IP Address ResolutionARP Operation: Reply

• IP router at LAN edge has ARP table– IP → MAC mappings for some nodes

• When source node on LAN needs to send datagram– check ARP table for entry– if present use MAC address– if not present, broadcast ARP REQUEST to LAN segment– target unicasts REPLY to source

• THA = MAC address of source• SHA = IP address of source• SPA,SHA = IP,MAC address of target (now source in REPLY)• other nodes do not cache THA→TPA since unicast

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-340

© James P.G. SterbenzITTC

Link Layer and LANsLL.8 Residential Broadband

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

LL.8.1 DSLLL.8.2 HFCLL.8.3 FTTx and PONsLL.8.4 BPL

Page 171: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 171 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-341

© James P.G. SterbenzITTC

Link TechnologiesResidential Broadband Overview

• RBB (residential broadband)– umbrella term for residential Internet access technologies

• significantly higher data rates than 56kb/s dialup modem

– typically a combination of link and physical layers– frequently called last mile or first mile

• Standards– proprietary technologies– ad hoc standards from industry fora– standards (ITU, ANSI, IEEE)

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-342

© James P.G. SterbenzITTC

Link TechnologiesResidential Broadband Motivation

• Better Internet access– higher data rates– always connected without interfering with telepone

• Supports triple play service– data to/from Internet– voice to/from PSTN– video from head-end

Page 172: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 172 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-343

© James P.G. SterbenzITTC

Link TechnologiesResidential Broadband Deployment Strategies

• Reusing existing infrastructure– PSTN: DSL – digital subscriber line– CATV: HFC – hybrid fiber coax– power grid: broadband over power line

• Deployment of new infrastructure– fiber

• to the neighbourhood: FTTN• to the home: FTTH

– wireless• 802.16 lecture MW

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-344

© James P.G. SterbenzITTC

Residential BroadbandLL.8.1 Digital Subscriber Line

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

LL.8.1 DSLLL.8.2 HFCLL.8.3 FTTx and PONsLL.8.4 BPL

Page 173: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 173 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-345

© James P.G. SterbenzITTC

Residential BroadbandDigital Subscriber Line Overview

• DSL (digital subscriber line) also xDSL– based on PSTN local loop infrastructure

• Local loop reuse– entire local loop: central office to home

reuse

new

reuse

reuse

Infrastructure

widespreadtwisted pairDSL

copper

fiber

shared coax

Medium

futureBPL

emergingFTTX PON

widespreadHFC

DeploymentTechnology

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-346

© James P.G. SterbenzITTC

Residential BroadbandDigital Subscriber Line Overview

• DSL (digital subscriber line) also xDSL– based on PSTN local loop infrastructure

• Local loop reuse– entire local loop: central office to home– may be hybrid

• fiber to neighbourhood node (e.g. FTTN, VDSL)• twisted pair to and in home

• POTS sharing alternatives– transparent multiplexing with POTS for residential use– dedicated pair originally for business use

• DSL forum dslforum.org

Page 174: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 174 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-347

© James P.G. SterbenzITTC

ADSLOriginal Motivation

• ADSL (asymmetric DSL) [ANSI T1.413] / [ITU G.992.1 ]– developed by Bellcore to deliver video to home

• video market didn’t develop and not enough streams supported• but demand for always-on higher-rate Internet access did

– assumed asymmetric data access• Web access and video download• not peer-to-peer file sharing• exploits asymmetry to reduce interference in DSLAM

– frequency multiplexed with POTS• uses DMT coding to provide • requires splitter in home to segregate data from POTS

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-348

© James P.G. SterbenzITTC

Digital Subscriber LinesStandards Development

• Original development: Bellcore• Early deployments in the 1990s

– CAP (carrierless amplitude phase modulation) line coding• First standard: [ANSI T1.413] 1995 updated 1998

– DMT (discrete multitone) line coding• Subsequent standards: ITU Q.99X

– handshake procedures [Q.994.1] 2003 between transceivers– progressive increases in line rate with DMT enhancements

• Industry forum: DSL Forum technical reports– www.dslforum.org/techwork/treports.shtml– DSL forum rounds up; rates more optimistic than standards

Page 175: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 175 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-349

© James P.G. SterbenzITTC

Digital Subscriber LinesHDSL Motivation

• HDSL [G991.1] 1999– replacement for T1 (1.544 Mb/s) and E1 (2.048 Mb/s) loops– repeaters not needed– 2 dedicated pairs cannot be shared with POTS– generally only used by businesses– realatively expensive due to market and tariffs

• SHDSL [G991.2]– higher rate evolution of HDSL– 2.312 Mb/s over 2 pairs in 2001

5.696 Mb/s over 4 pairs in 2003

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-350

© James P.G. SterbenzITTC

ADSLModulation and Spectrum

• POTS telephony – UTP (unshielded twisted pair) local loop– analog baseband signal to 12 kHz– significantly more bandwidth available with clever coding

• ADSL uses frequencies above 12 kHz– upstream: 25.875 – 138 kHz– downstream: 138 – 1104 kHz

12kHz 26kHz 138kHz

voice downstream data upstream data

Page 176: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 176 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-351

© James P.G. SterbenzITTC

ADSLCentral Office and Residence Architecture

• DSL multiplexed with POTS between home and CO– splitters on each side

PC

DSL

NID5

central office

Internet

PSTN

DSLAM

DSLAM: DSL access multiplexerNID: network interface deviceDSL×: hub or switch with DSL modem

split

split

split

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-352

© James P.G. SterbenzITTC

ADSLADSL Lite Motivation

• ADSL Lite [ANSI T1.413] / [ITU G.992.2 ]– eliminates need for splitters– DSL modems can be plugged into any jack

Page 177: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 177 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-353

© James P.G. SterbenzITTC

ADSL LiteCentral Office and Residence Architecture

• DSL multiplexed with POTS between home and CO– subscriber side does not need splitter– DSL modems can be plugged into any RJ-11 phone jack

PC

DSL

NID5

central office

Internet

PSTN

DSLAM

DSLAM: DSL access muxNID: network interface deviceDSL×: hub or switch with DSL modem

split

split

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-354

© James P.G. SterbenzITTC

ADSLTransfer Modes and Framing

• ATM

• STM

Page 178: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 178 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-355

© James P.G. SterbenzITTC

Digital Subscriber LinesADSL2 Motivation

• ADSL2– splitter [ITU G.992.3 ] 2002 updated 2005

– splitterless [ITU G.992.3 ] 2002

– evolution of ADSL and ADSL lite to higher rates– choice of longer reach or higher rates than ADSL

• ADSL2+ (extended bandwidth ADSL2) [ITU G.992.5 ]– doubles ADSL2 carrier frequency and rates

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-356

© James P.G. SterbenzITTC

Digital Subscriber LinesVDSL Motivation

• VDSL (very-high-speed DSL) [ITU G.993.1 ] 2004– field trials began in the mid 1990s

• Higher rates than available with ADSL– by using FTTN (fiber to the node)– but reusing twisted pair into home– symmetric VDSL: 26 Mb/s full duplex up to ~300 m– asymmetric VDSL: 52 Mb/s downstream, 12 Mb/s upstream

• VDSL2 [ITU G.993.2 ] 2006– higher rate version of VDSL– symmetric VDSL2: 100 Mb/s full duplex– degraded to ADSL-like performance for long reach

Page 179: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 179 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-357

© James P.G. SterbenzITTC

Digital Subscriber LineRate vs. Reach

• DSL data rates fall significantly with loop length

length [m]

rate[b/s]

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-358

© James P.G. SterbenzITTC

Digital Subscriber LinesAdvantages and Disadvantages

Advantages of ADSL?

Page 180: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 180 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-359

© James P.G. SterbenzITTC

Digital Subscriber LinesAdvantages and Disadvantages

• Advantages of ADSL– reuse of existing local loops in their entirety

• shared with POTS without need for additional pair

– dedicated point-to-point links• bandwidth not shared with other users• better latency characteristics

Disadvantages of ADSL?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-360

© James P.G. SterbenzITTC

Digital Subscriber LinesAdvantages and Disadvantages

• Advantages of ADSL– reuse of existing local loops in their entirety

• shared with POTS without need for additional pair

– dedicated point-to-point links• bandwidth not shared with other users• better latency characteristics

• Disadvantages of ADSL– lower rates than FTTN architectures (VDSL and HFC)– rate dependent length, gauge, wire and termination quality– blocked by load coils (POTS line extenders)– ADSL lite limited by number and spacing of bridge taps

Page 181: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 181 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-361

© James P.G. SterbenzITTC

Digital Subscriber LinesAdvantages and Disadvantages

• Advantages of VDSL– reuse of existing twisted pair from street to premise

• Disadvantages of VDSL– significant incremental cost of deployment over ADSL– rate drops rapidly with distance– rate highly dependent on wire gauge and quality

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-362

© James P.G. SterbenzITTC

Digital Subscriber LinesAdvantages and Disadvantages

• Advantages of VDSL– reuse of existing twisted pair from street to premise

• Disadvantages of VDSL– significant incremental cost of deployment over ADSL– rate drops rapidly with distance– rate highly dependent on wire gauge and quality

• Advantage of HDSL/SDSL– T1/E1 repeaterless circuit extension over existing local loop

• Disadvantage of HDSL/SDSL– traditionally limited to businesses due to rate structure

Page 182: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 182 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-363

© James P.G. SterbenzITTC

Digital Subscriber LinesVarieties and Characteristics

2006

2004

2005

2002

2002

1999

19951999

20012003

1998

Year

splitterDMT1–3.5 Mb/s8–12 Mb/sPOTS sharedG.992.3ADSL2

DMT

QAMDMT

DMT

DMT

DMT

DMT

TCPAM

2B1QCAP

Coding

hybrid

hybrid

POTS shared

POTS shared

POTS shared

POTS shared

ded. 2-pairded. 4-pair

dedicatedtwo pairs

Type

splitterless1–3.5 Mb/s8–12 Mb/sG.992.4ADSL2 Lite

split1–3.5 Mb/s24 Mb/sG.992.5ADSL2+

100 MB/s

26 Mb/s52 MB/s

1.535 Mb/s

6.144 Mb/s

2.312 Mb/s5.696 Mb/s

1.544 Mb/s2.048 Mb/s

Down R

FTTN

FTTN

splitterless

requires splitter

HDSL successor

T 1 c i r c u i tE1 extension

NotesLink Type

300 m100 Mb/sG.993.2VDSL2

300 m26 Mb/s12 MB/s

G.993.1VDSL

3 km512 kb/sG.992.2ADSL Lite

3 km640 kb/sT1.413G.992.1ADSL

2.312 Mb/s5.696 Mb/sG991.2SHDSL

1.544 Mb/s2.048 Mb/sG991.1HDSL

RangeUp RateStandard

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-364

© James P.G. SterbenzITTC

Residential BroadbandLL.8.2 Hybrid Fiber Coax

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

LL.8.1 DSLLL.8.2 HFCLL.8.3 FTTx and PONsLL.8.4 BPL

Page 183: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 183 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-365

© James P.G. SterbenzITTC

Residential BroadbandHybrid Fiber Coax Overview

• HFC (hybrid fiber coax)– based on CATV distribution infrastructure– fiber to neighbourhood node– coax to and within home

reuse

new

reuse

reuse

Infrastructure

widespreadtwisted pairDSL

copper

fiber

coax

Medium

futureBPL

emergingFTTX PON

widespreadHFC

DeploymentTechnology

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-366

© James P.G. SterbenzITTC

HFCNetwork Architecture

• Head end is CATV equivalent to PTSN central office– fiber links from head end to fiber node in neighbourhoods

• optical ↔ electrical conversion

– coax distribution lines serve multiple houses (10 – 2000)• amplifiers may be used to extend coax runs• subscriber drops tap into distribution cable

OE

head endOE

Page 184: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 184 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-367

© James P.G. SterbenzITTC

HFCHead End and Residence Architecture

• Data multiplexed with analog and digital TV channels– IP telephony delivered over data stream

PC

TV

TVIP

DOCIS

OE

head end

Internet

PSTN TRAC

CMTS

local

localstudio

LISVOD

CMTS: cable modem termination systemDOCSIS×: hub or switch with DOCSIS modemLIS: local insertion video server (weather, ads)TRAC: telco return access concentrator

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-368

© James P.G. SterbenzITTC

HFCModulation and Spectrum

• Data spectrum: FDM – frequency division multiplexed• Upstream: 5 – 42 MHz

– below broadcast channel 2– QPSK typical, QAM-16 optional

• Downstream: 91 – 857 MHz– spectrum divided with analog and digital television– QAM-64 or -256 downlink shared among users

• per user bandwidth depends on network engineering and load

5 42

up

54 88 108 857 MHz

FM

digital CATV channels

216 MHz

downstream DOCSIS data

VHF analog analog CATV channels

Page 185: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 185 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-369

© James P.G. SterbenzITTC

HFCDOCSIS Overview

• Data over cable interface specification (DOCSIS)– Originally begun as IEEE 802.14– CableLabs standard specification

• DOCSIS 2.0 and 3.0 www.cablemodem.com/specifications/

– DOCSIS 2.0 standardised as ITU J.122

• DOCSIS versions– 1.0: downstream over HFC, upstream using POTS– 1.1: downstream and upstream using HFC– 2.0: higher upstream rate of 30.72 Mb/s – 3.0: higher upstream and downstream rates > 100 Mb/s

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-370

© James P.G. SterbenzITTC

HFCDOCSIS Protocol Stack

• DOCSIS standards– operations interfaces– security– physical layer– MAC

PHY

convergence

MAC

security

DIX/802.3 MAC

802.2 LLC

IP + ARP

UDP

DHCP TFTP SNM

Psecurit

ymgt

EthernetLLC+MAC

MACfilter

PHY

cable modem mgt.

RF on coax.

cat-n to CPE

Page 186: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 186 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-371

© James P.G. SterbenzITTC

HFCDOCSIS Frame Formats

• Convergence sublayer header– downstream: MPEG header type=data– upstream: PMD preamble

• MAC header– FC: frame control – type of header [1B]

– MAC_PARM: MAC parameters [1B]

– LEN: length of EDR+payload [2B]

– EHDR: extended header [0–240B]

– HCS: header check sequence [2B]

• Payload– Ethernet frame encapsulating user data Ethernet CRC

FC

LEN

HCS

EHDR

MPEG (downstream)PMD (upstream)

MAC_PARM

Ethernet header

IP packet

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-372

© James P.G. SterbenzITTC

HFCAdvantages and Disadvantages

Advantages of HFC?

Page 187: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 187 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-373

© James P.G. SterbenzITTC

HFCAdvantages and Disadvantages

• Advantages of HFC– reuse of existing CATV plant

• but required upgrades for upstream channels

Advantages of HFC?

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-374

© James P.G. SterbenzITTC

HFCAdvantages and Disadvantages

• Advantages of HFC– reuse of existing CATV plant

• but required upgrades for upstream channels

• Disadvantages of HFC– shared medium infrastructure– usable data rate and latency per user highly dependent on…

• number of homes in fiber node area• take rate (number of subscribers in fiber node area)• traffic demand

Page 188: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 188 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-375

© James P.G. SterbenzITTC

HFCDOCSIS Varieties and Characteristics

120 Mb/s

320 kb/s –30.72 Mb/s

320 kB/s –10.24 Mb/s

320 kB/s –5.12 Mb/s

Rate MACCodingCodingRate

QoSX.509 sec

TDMAS-CDMA

QPSK8-QAM

16-QAM32-QAM64-QAM

128-QAM

64-QAM256-QAM

30.342 Mb/s42.884 Mb/s2001J.122DOCSIS 2.0

2006

1999

1996

Year

160 Mb/s

30.342 Mb/s42.884 Mb/s

30.342 Mb/s42.884 Mb/s

Downstream

64-QAM256-QAM

64-QAM256-QAM

64-QAM256-QAM

QoSX.509 sec

QoSX.509 sec

PSTN upstream

NotesLink Type

TDMAS-CDMA

TCM

QPSK8-QAM

16-QAM32-QAM64-QAM

128-QAM

J.222DOCSIS 3.0

Euro

TDMAQPSK16-QAMJ.112DOCSIS 1.1

TDMAQPSK16-QAMDOCSIS 1.0

UpstreamStandard

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-376

© James P.G. SterbenzITTC

Residential BroadbandLL.8.3 FTTx and PONs

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

LL.8.1 DSLLL.8.2 HFCLL.8.3 FTTx and PONsLL.8.4 BPL

Page 189: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 189 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-377

© James P.G. SterbenzITTC

Residential BroadbandFiber to the Premises Overview

• FTTx (fiber to the x)– fiber replaces the local loop– may reuse entire local loop: central office to home– may be hybrid

• fiber to neighbourhood node• twisted pair to and in home

• FTTx varieties– FTTH/FTTB: fiber to the home / building– FTTC: fiber to the curb – coax or twisted pair to the home– FTTN: fiber to the node / neighborhood = VDSL

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-378

© James P.G. SterbenzITTC

Residential BroadbandPassive Optical Network (PON) Overview

• PON (passive optical network)– cost-efficient way of delivering FTTH, FTTC, and FTTN/VDSL

widespreadtwisted pairDSL

copper

fiber

coax

Medium

futureBPL

emergingFTTX PON

widespreadHFC

DeploymentTechnology

Page 190: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 190 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-379

© James P.G. SterbenzITTC

Residential BroadbandPassive Optical Network (PON) Overview

• PON (passive optical network)– cost-efficient way of delivering FTTH, FTTC, and FTTN/VDSL

• Uses shared fiber infrastructure– tree topology CWDM (coarse WDM)– downstream broadcast and select – upstream TDM

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-380

© James P.G. SterbenzITTC

Residential BroadbandPassive Optical Network (PON) Overview

• CWDM (coarse WDM): 3 of 18 G.694.2 frequencies– 1310nm upstream data+voice TDMA

• large band gap from other two frequencies• outside non-temperature controlled transmitter drift

– 1490nm downstream data+voice broadcast and select– 1550nm downstream video broadcast

Page 191: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 191 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-381

© James P.G. SterbenzITTC

Residential BroadbandPassive Optical Network (PON) Architecture

• Provider side – OLT (optical line terminal)– conncts to Internet, PSTN, & CATV infrastructure (satellite, wired)

• Subscriber side– ONT/U (optical network terminal/unit) for FTTH/FTTC

IP

ONT

ONT

≤32|64FTTH

≤20kmpacketOLT

ONU

FTTC

videoOLT

5

HE

1310nm

1490nm

1550nm

CWDM

optical splitter

PSTN

Internet

CATVinfrastructure

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-382

© James P.G. SterbenzITTC

Residential BroadbandLL.8.4 Broadband over Power Line

LL.1 Link layer functions and servicesLL.2 Framing and delineationLL.3 LAN types and topologiesLL.4 Multiplexing and switchingLL.5 Per-hop error and flow controlLL.6 Link layer componentsLL.7 IP address resolutionLL.8 Residential broadband

LL.8.1 DSLLL.8.2 HFCLL.8.3 FTTx and PONsLL.8.4 BPL

Page 192: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 192 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-383

© James P.G. SterbenzITTC

Residential BroadbandBroadband Over Power Line Overview

• BPL (broadband over power line)– last ubiquitous infrastructure

practical to consider as communication medium

reuse

new

reuse

reuse

Infrastructure

widespreadtwisted pairDSL

copper

fiber

coax

Medium

futureBPL

emergingFTTX PON

widespreadHFC

DeploymentTechnology

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-384

© James P.G. SterbenzITTC

Residential BroadbandBroadband Over Power Line Overview

• BPL (broadband over power line)– last ubiquitous infrastructure

practical to consider as communication medium

• BPL types– home automation (e.g. lighting)

• not a data networking technology• e.g. X10 and Insteon

– in home• LAN interconnection of devices within a home

– access• Internet access though public utility power lines

Page 193: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 193 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-385

© James P.G. SterbenzITTC

Residential BroadbandBPL Challenges

• BPL challenges– home wiring and power grid not designed for data– interference and noise effects of powered devices– transformers between distribution segments (esp. US)– European and US power distribution very different

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-386

© James P.G. SterbenzITTC

Residential BroadbandIn-Home BPL Products

• In-home BPL– various products available now– proprietary HomePlug Power Alliance specifications

Page 194: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 194 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-387

© James P.G. SterbenzITTC

Residential BroadbandEmerging BPL Technology

• UPA: Universal Powerline Association www.upaplc.org– industry forum to promote open standards

• in-home standard• access standard based on EU-funded OPERA

– standards submitted but not adopted to IEEE P1900

• HomePlug Powerline Alliance www.homeplug.org– industry forum for powerline commuincation

– suite of standards for BPL, access, and home control– standards submitted to IEEE P1810

• turbo FEC

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-388

© James P.G. SterbenzITTC

Residential BroadbandEmerging BPL Standards

• IEEE P1901 working group– grouper.ieee.org/groups/1901

• web site does not contain any useful public information

– BPL requirements• >100 Mb/s

– contentious standards meetings– incompatible HomePlug and ITU standards being considered

Page 195: Link Layer and LANs - KU ITTCjpgs/courses/nets/lecture-link-lan-print.pdf · KU EECS 780 – Communication Networks – Link Layer and LANs –8– 31 March 2010 KU EECS 780 – Comm

KU EECS 780 – Communication Networks – Link Layer and LANs

– 195 –

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-389

© James P.G. SterbenzITTC

Link Layer and LANsFurther Reading

31 March 2010 KU EECS 780 – Comm Nets – Link Layer & LANs NET-LL-390

© James P.G. SterbenzITTC

Communication NetworksAcknowledgements

Some material in these foils comes from the textbook supplementary materials:

• Kurose & Ross,Computer Networking:A Top-Down Approach Featuring the Internet

• Sterbenz & Touch,High-Speed Networking:A Systematic Approach toHigh-Bandwidth Low-Latency Communicationhttp://hsn-book.sterbenz.org