18
LINKING LAND INPUTS TO ESTUARINE LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup and Nontidal Water Quality Workgroup 27 March, 2013 USGS Baltimore Science Center Walt Boynton and Colleagues Center for Environmental Science Chesapeake Biological Laboratory Chesapeake Biological Laboratory Solomons, MD 20688

LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

LINKING LAND INPUTS TO ESTUARINE LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS

Joint Meeting: Tidal Monitoring and Analysis Workgroup and

Nontidal Water Quality Workgroupy g p27 March, 2013

USGS Baltimore Science Center

Walt Boynton and ColleaguesCenter for Environmental ScienceChesapeake Biological LaboratoryChesapeake Biological Laboratory

Solomons, MD 20688

Page 2: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Understanding dTrends

BMPs

e

…that’s what did it!

DO Failure Rate

All that ecology stuff and

everything else

Time

D

• Document trends for relevant variables

• UNDERSTAND the cause(s) of the trend(s)

• Relate trend(s) to BMPs…the effects of management…and everything else

Page 3: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Conceptual Models Used to Organize the Analysis: A l f An example…one of many

From: Boynton et al 1982

Page 4: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

SIMPLE RELATIONSHIP LINKING LAND AND ESTUARY

Patapscoy = 2 1 + 0 13x

LAND AND ESTUARYm

-2 6

8Patapscoy = 2.1 + 0.13x

r2 = 0.98Mass of N in mesohaline regions

proportional to loading rate

• Data from multiple sub-systems

TN M

ass,

g N

m

4 Patuxent

MD Mainstem Chesapeake

Potomac

Potomac River Estuary

mg

l-1

1 4

1.6

1.8

r ² = 0.88

Data from multiple sub systems of the Bay

• Analysis done on annual time-scale

T

2

Choptank

20 25 30 35 40 45 50 55 60

Ann

ual A

vera

ge T

N,

0.4

0.6

0.8

1.0

1.2

1.4

TN Load, g N m-2 yr-10 10 20 30 40 50

0TN Loading, g N m-2 yr-1

20 25 30 35 40 45 50 55 60

Page 5: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

N and P loading rates and Changes in Loading Rates: Several from Chesapeake Bay systems and we many more CB sites can be added

MattawomanPristine Condition

Page 6: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

The Scaling Processg• Assemble data sets

U i t l d l id • Using conceptual model as a guide to explore data for chlorophyll-a relationships

• Examine “residuals” from initial analyses and add variables as needed to improve relationship

• In an on-going analysis we are conducting 20 different CB estuaries are included, each with a time-series of 19 years

Boynton and Kemp 2000

Page 7: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Preliminary Product: l “ l d l d hl h ll l hA simple “scaled” nitrogen load vs chlorophyll-a relationship

µg l-1

120

140

160 Shallow Ches Bay tributaries

Mattawoman Ck (2005-2010)Mattawoman Ck (1985-1988)

Best Fit Regression95% Confidence Interval

hlor

ophy

ll-a,

80

100

120

MattawomanSAV Nutrient Load 

Threshold

May

-Aug

Ch

40

60

0.0 0.1 0.2 0.3 0.4 0.5

M

0

20

Jan - Mar TN Load, g N m-2 day-1

Southern New England SAV Nutrient Load Threshold

Page 8: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

350

Examples of WWTP Load Reductions: Back Riverd,

kg

P/d

ay

250

300

350

Phosphorus

nt S

ourc

e D

IP L

oad

100

150

200

Poi

n

0

50

8000• Good engineering works!

N

oad,

kg

N/d

ay

6000

• P loads very reduced.

• N loads also reduced.

Nitrogen

Poi

nt S

ourc

e TN

Lo

2000

4000

•TSS and BOD5 also greatly reduced

years

1985 1990 1995 2000 2005

P

0

Page 9: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Chlorophyll – Nutrient Load Relationship

• Strongest relationship between nutrients and Chl-a was with NITROGEN

• All strong relationships g pinvolved multi-year averaging (2-3 yrs)

• Time lags between load changes and response were important…there is a nutrient memory

f hl • Significant Chl-a reduction was achieved (~50%)

Page 10: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Trends and Analysis: Mattawoman Creek Case Study

• Major reduction in N and P loads

• Several year delay in responses

Chl h ll d li d (4X) l it • Chlorophyll declined (4X), clarity improved (2.5X) and SAV exploded

• Appeared to be a threshold ppresponse for SAV (< 18 ug/l chlorophyll)

SAV ThresholdMajor WWTP

Load Reduction

Page 11: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Another Threshold Example: SAV recovery in upper Patuxent River

ha

This section of Patuxent

Coverage, h

Strong management action – WWTP N‐removal SA

V C

NO23 Concentration, mg/l (May – July)

Page 12: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Here’s another conceptual model: Winter factors of wind, flow and n t i nt l ds pl k l in d t minin th xt nt f s mm nutrient loads play a key role in determining the extent of summer hypoxia….summer winds tend to reduce the duration and intensity of hypoxia

W Sp Su F W S S F

Annual-Scale Chesapeake Bay Hypoxia

Wind from N – E 

W‐Sp Surface Chlorophyll‐a

Surface Dissolved Oxygen

W  Sp  Su  F W  Sp  Su  F

Winter Wind

Summer Wind

Geographic positioning of spring bloom

most important

Pycnocline

W  Sp  Su  F

River Flow

Dep

osition

W‐Sp Bottom Chlorophyll‐a

Bottom Dissolved Oxygen

Sediments

W  Sp  Su  F

Nitrogen Load

Deep water respiration

Page 13: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

CB Hypoxia (June-Sept) and Controlling Features: 1985 - 2007

Lee etal 2012

Page 14: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

The Chesapeake Bay appears to have become a SOURCE The Chesapeake Bay appears to have become a SOURCE rather than a SINK for DIN…nutrients are now entering the Patuxent from both ends. A New TREND

y-1

ge, K

g N

day

DIN

Exc

hang

Net

D

Time, years since 1985

(From Testa et al 2008)

Page 15: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Understanding and Forecasting: Rockfish example

Day of peak Zooplk concentration

The Beginning The End

Martino and Houde 2010

Page 16: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Next StepsNext Steps• C ti d t bl d l i f t d i l • Continue data assembly and analysis of trends, mainly N, P, flow and sediment loading from the basins

C ntinu st tistic l ( nd simul ti n) m d lin usin • Continue statistical (and simulation) modeling using conceptual models as guides

• Add variables to the models as needed but keep • Add variables to the models as needed but keep models as simple as possible for tractability and explainability

• Look for examples other than those related to WWTP load reductions (e.g., Murphy et al).

Page 17: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Physical characteristics of basins and estuaries: arranged from smallest to largest basins

Estuary Basin Area  

Estuary Volume 

Estuary Surface Area

Average Depth  

Max Depth 

max depth: average 

mouth length  

shoreline length  

shoreline: mouth  

Basin Area: Estuary Area

Basin Area: Estuary 

Area depth 

Area Volume

m2*106  m3*106  m2*106  m  m  m  m  1/m 

Middle  33  16  10  2  3  2  6091  59763  10  3  2 WestRhode  66  24  15  2  4  3  4243  34110  8  4  3 Magothy  94  60  20  3  11  4  3998  35175  9  5  2 Corsica  97  10  5  2  5  3  1501  22458  15  18  9 Bohemia  131  28  14  2  6  3  1854  35793  19  9  5 Back  144  57  29  2  5  2  1443  32878  23  5  3 South  148  78  24  3  9  3  2936  48513  17  6  2 

Piscataway  176  4  4  1  1  1  1199  10963  9  48  47 Severn  177  154  40 4 8 2 3319  49876 15 4 1

Northeast  184  19  16  1  4  3  2294  20503  9  11  10 Sassafras  217  155  36  4  10  2  5541  51045  9  6  1 

Mattawoman  245  26  22  1  5  4  1607  29572  18  11  9 Bush  336  53  27  2  6  3  2513  46909  19  13  6 

Wi i 561 49 21 2 8 3 2757 53491 19 27 11Wicomico  561  49  21 2 8 3 2757  53491 19 27 11Gunpowder  1181  66  36  2  11  6  3392  50842  15  33  18 Patapsco  1518  469  101  5  11  2  8026  97541  12  15  3 Pocomoke  1672  19  7  3  8  3  14214  91697  6  243  90 Choptank  1951  1348  361  4  25  7  20554  239797  12  5  1 Patuxent 2343 652 137 5 36 8 2033 160597 79 17 4Patuxent  2343  652  137 5 36 8 2033  160597 79 17 4

Rappahannock  6918  1753  393  4  23  5  5899  275006  47  18  4  

Page 18: LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS · 2017. 8. 1. · LINKING LAND INPUTS TO ESTUARINE WATER QUALITY TRENDS Joint Meeting: Tidal Monitoring and Analysis Workgroup

Hypoxia Duration Linked to Summer AlgaeHypoxia Duration Linked to Summer Algae