liquid solid interfaces

Embed Size (px)

Citation preview

  • 7/30/2019 liquid solid interfaces

    1/22

    1

    Liquidsolidinterfaces

    Relevance

    HPLC Ships Sensors Microfluidics Colloids

  • 7/30/2019 liquid solid interfaces

    2/22

    2

    Adsorp9onisotherm

    Langmuir,TypeI

    Linearform

    isaconstant

    Adsorp9onofsoluteBfromsolu9on

    Adsorp9onisotherm

    Freundlichisotherm

    Linearform

    andareconstants

  • 7/30/2019 liquid solid interfaces

    3/22

    3

    Isotherms

    !Levelingoutoftheisothermisnotbecauseofcompletelayer

    !Compe99onforsurfacewiththesolvent

    Adsorp9onindifferentsolvents

    Moreinterac9onofsolventresultsinlessadsorp9onofsolute

  • 7/30/2019 liquid solid interfaces

    4/22

    4

    Amphiphilicsolutes

    Onnonpolarsubstrate

    Amphiphilicsolutes

    Onpolarsubstrate

  • 7/30/2019 liquid solid interfaces

    5/22

    5

    Adsorp9onofionsChargedsurfaces

    Surfaceincontactwithsolu9onofelectrolyte(e.g.waterwith

    fewions)usuallycarriesanelectriccharge

    chargedensity,chargeperarea[C/m 2]

    0electricalpoten9alatthesurface[V]

    !Differencesbetweenchargeandpoten9al!

    Poten9alistheenergyperunitchargeJ/C=V

    Helmholzmodel

    Oppositelychargedions

    adsorbonthesurface

    Poten9alrapidlyfallstozero

  • 7/30/2019 liquid solid interfaces

    6/22

    6

    Helmholz

    So,atconstants0,y(x)dropslinearlywithx

    d

    !Validforstronglyadsorbingions,orathighionicstrength

    GouyChapmanmodel

    Distribu9onofionsnearthe

    chargedsurface

    Gradualdecayofthepoten9al

  • 7/30/2019 liquid solid interfaces

    7/22

    7

    GouyChapman

    1/iscalledtheDebyelength(doublelayerthickness)

    Whenx=Debyelength,thepoten9alhasdroppedto36.8%(1/

    e)of0

    1/

    1/e

    Debyelength

    Ionicstrength[molm3]

    Largerionicstrength(moreions)meanssmallerDebyelength(1/)

    permi_vityliquid

    eelectroniccharge

  • 7/30/2019 liquid solid interfaces

    8/22

    8

    Exercise

    Whatisthedoublelayerthicknessof: 0,1MKNO3solu9on 0,001MKNO3solu9on

    permi_vityliquid(7.081010Fm1)

    eelectroniccharge(1.60101C)

    kBoltzmanconstant(1.381023JK1)

    Sternmodel

    Tworegions:

    Helmholzregion

    GouyChapmanregion

  • 7/30/2019 liquid solid interfaces

    9/22

    9

    SternModel

    xh

    h

    xhiscalledtheSternofHelmholzlayer

    Exercise

    Aglasscapillarywallhasasurfacepoten9alof80mV.TheDebyelayerthicknessis20nanometer.

    a.Calculatethepoten9alforthissystemat1nanometerfromthewallassumingtheGouyChapmanmodel.

    b.Saltisaddedsotheionicstrengthisincreasedbyafactorof10.Calculatethezetapoten9al(=poten9alatsurfaceofshear,assume1nanometer)forthisnewsitua9on.

  • 7/30/2019 liquid solid interfaces

    10/22

    10

    Answer

    1/

    1/e

    A.

    B.

    Electrokine9cs

    Almostiden9caltotheSternpoten9alisthezetapoten9al

    Itisthepoten9alatthesurfaceofshear

  • 7/30/2019 liquid solid interfaces

    11/22

    11

    Electrophoresis

    Movingchargedpar9cles

    Alsoproteins,DNA,etc.

    Electroosmosis

    EOFformovingliquidsinmicrofluidics

  • 7/30/2019 liquid solid interfaces

    12/22

    12

    Electroosmo9cflow

    U

    Anelectricfieldalongthesurface

    ofachargedwallinducesthe

    chargeintheEDLtomigrate

    Itcarriestherestofthefluidbytheac9onofviscouscoupling

    !Notethelengthscaleinxaxis

    Stability:DLVOtheory

    Stabilityisactualmetastability

    Energybarrierforcoagula9onmakessuspensionappearstable

    Arac9veforce:vanderWaals

    Repulsiveforce:overlappingsimilarchargeddoublelayers

  • 7/30/2019 liquid solid interfaces

    13/22

    13

    Kine9csofcoagula9on

    Rateofchangeinthenumberofpar9clesNp

    Diffusioncoefficient

    Diffusioncontrolledcoalescence

    WhenenergybarrierVmax

    Poten9alenergy

    Arac9ve Repulsive

    rpar9cleradius

    ssepara9ondistance

    HHamakerconstant

    m,pformediumandpar9cle

    0Surfacepoten9al

    risra9opar9clesizeto

    doublelayerthickness

    r1

    r1

  • 7/30/2019 liquid solid interfaces

    14/22

    14

    Overallpoten9alenergy

    Repulsiveenergy

  • 7/30/2019 liquid solid interfaces

    15/22

    15

    Metastability

    Effectofionicstrength

    Metastability

    Effectofsurfacepoten9al

  • 7/30/2019 liquid solid interfaces

    16/22

    16

    Kine9csofcoagula9on

    Rateofchangeinthenumberofpar9clesNp

    Diffusioncoefficient

    Diffusioncontrolledcoalescence

    WhenenergybarrierVmax

    Exercise

    Fordilutedispersions,therateofaggrega9oncanbeapproximatedby

    secondorderkine9cs;

    WhereNisthenumberofkine9cpar9clesperunitvolume.

    a.DerivetheexpressionforN(t).

    b.Thehalf9meforaggrega9ont1/2

    ,isdefinedasthe9meittakestoreduce

    Nbyafactoroftwo.Givetheexpressionforthehalf9me.

    c.Calculatethehalf9meatroomtemperatureforarateconstantof

    ina1%dispersionwith100nmradius.Theviscosityofthemediumis1,5

    mPas.(kB,Boltzmanconstant,1,38.1023JK1).

  • 7/30/2019 liquid solid interfaces

    17/22

    17

    a.

    b.Whent=t1/2thenNt=N0/2

    Inser9ngintheformulaabovegives:

  • 7/30/2019 liquid solid interfaces

    18/22

    18

    c.

    inser9ngthevaluesintheformulafork:

    Astheunitofkism3s1,N0mustbegivenasthenumberofpar9clespercubic

    meterdispersion(ofwhich1%consistsofpar9cles):

    N.B.Thisisthehalf9mebasedontheprobabilityofcollisiononly.

    Everycollisionresultsincoalescenceofthepar9cles.Inreality,thereis

    oenanenergybarriertoovercomebeforepar9clescollide(duetotherepulsivepoten9al).Whenanenergybarrierispresent,anaddi9onal

    termisincorporatedinthekine9csequa9on(exp(Vmax/kT)).

  • 7/30/2019 liquid solid interfaces

    19/22

    19

    Exercise

    Adispersionconsistsofpar9clesof2nmdiameter.TheDebyelayerthicknessis20nm.TheHamakerconstantforthissystemis1018J.Thesurfacepoten9alofthepar9clesis100mV.permi_vitywater()=7.11010Fm1

    a.Calculatetherepulsivepoten9alandthearac9vepoten9alwhenthepar9clesareseparatedby10nm.

    b.Saltconcentra9onisincreasedsuchthattheionicstrengthis109meshigher.Whatisthetotalinterac9onpoten9alenergynow?

    c.Explainhowthestabilityofadispersionisaffectedwhensaltisadded.

    d.Explainwhatwillhappenwhenneutralpolymersadsorbsonthepar9cles.

    Answers

    r1A.

    B.

  • 7/30/2019 liquid solid interfaces

    20/22

    20

    Exercise

    9.1.Calculateandcomparecurvesforthedoublelayer

    interac9onenergyortherela9veenergyasa

    func9onofsusingthetwoapproxima9onsofEq.

    [.23].

    .1

  • 7/30/2019 liquid solid interfaces

    21/22

    21

    Exercise

    9.2Iden9calsphericalpar9clesofradius80nmaredispersedinanaqueousmediumcontainingsodiumchlorideataconcentra9onof3mmoldm3.Thetemperatureis28K.Theeffec9veHamakerconstantis110 1Jandthedielectricconstantofthemediumis80.10.Thepermi_vityoffreespaceis8.851012Fm1.CalculatetheDebyelengthforthediffusedoublelayeraroundeachpar9cle.Electrophore9cmeasurementsgiveavalueof45mVforthepoten9al.Calculatetheenergyofinterac9onoftwopar9clesata

    separa9onof10nm.Dothesepar9clesexperienceamutualrepulsionorarac9onatthisdistance?

  • 7/30/2019 liquid solid interfaces

    22/22

    22