144

lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Dav
Page 2: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 3: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 4: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 5: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 6: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 7: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Dav
effectuer
Page 8: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 9: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 10: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 11: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 12: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 13: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 14: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ψ0

ψ1

∆Eb,min

∆Eb,max

Page 15: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 16: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 17: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 18: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 19: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 20: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 21: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 22: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 23: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 24: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 25: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 26: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Mvd

dtv(t) = Ft(t)− Fr(t),

Fr

Fr(t) = Fa(t) + Ff (t) + Fg(t) + Fd(t).

Page 27: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Fd Fa

Ft

Fg

mv .g

v

Ffα

Mv v

Ft

Tt

Ft =Tt

rroue,

rroueFa

Fa =1

2ρSCxv

2rel,

ρ Cx

S vrel

Fg

Fg = mvg (α),

αFf

Ff = Cfmvg (α),

Page 28: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Cf

Fd

FLDR(t) = a+ bv(t) + cv2(t)

a b c

Page 29: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 30: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 31: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 32: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

µ

Thermiquesconventionnels

(ICEV)

Micro-Hybrides (µHEV)

Hybrides Electrique (HEV)

Plug-In Hybrides Electriques

(PHEV)

100% Electriques (EV)

Quantité  d’énergie  électrique  

Electrique avec Range Extender

(REEV)

Taux

 d’hyb

ridation

Page 33: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Moteur Machine

BatterieRéservoir

Générateur

Page 34: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Moteur

MachineBatterie

Réservoir

Page 35: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Moteur

Machine 1

BatterieRéservoir

Machine 2

Page 36: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 500 1000 1500 20000

50

100

150

Vite

sse

[s]

Temps [s]

Page 37: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Modèle longitudinal

Gestion d’énergie

Modèle GMP simplifiéProfil de Vitesse Couple

RégimeCarburantCO2SOC/SOE

Consignes GMP:- répartirions couple électrique/thermique- démarrage/arrêt moteur

État GMP

Gestion d’énergie

Modèle dynamique GMPProfil de Vitesse Demande

de CoupleCarburantCO2SOC/SOE

Consignes GMP:- répartirions couple électrique/thermique- démarrage/arrêt moteur

État GMP+

-Modèle

conducteur

Vitesse véhicule

Page 38: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 200 400 600 800 10000

50

100

150

Vite

sse

[km

/h]

0 200 400 600 800 10004550556065

Temps [s]

SOE

[%]

Page 39: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 40: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 1000 2000 3000 4000 50000

50

100

150

Vite

sse

[km

/h]

0 1000 2000 3000 4000 50000

20406080

100

Temps [s]

SOE

[%]

Pmi

Pmi = ωiTi,

Tmi ωmi

Page 41: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 1000 2000 3000 4000 50000

50

100

150

Vite

sse

[km

/h]

0 1000 2000 3000 4000 50000

20406080

100

Temps [s]

SOE

[%]

ηmi

ηmi

ηmi =ωiTi

Pf,

Pf

Pf = mfHPCI ,

HPCI

Page 42: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

242

245245

250

250

250

255

255

255

260

260

26027

0270

270

270270

280

280280

280

300

300

325325

325

350

350

400

400

450

450

500

500

600600

Consommation spécifique [g/kWh]

Régime [tr/min]

Cou

ple

[N.m

]

1000 2000 3000 4000 5000 60000

20

40

60

80

100

120

140

160

mf ≈ a1(ωmi)Tmi + a0(ωmi),

a0 a1

Page 43: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ηme Pme

Pe

Te ωe

Page 44: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ηme =ωeTe

Pe, ωeTe > 0 ,

ηme =Pe

ωeTe, ωeTe < 0 .

−6000 −4000 −2000 0 2000 4000 6000−200

−150

−100

−50

0

50

100

150

200

0

0

0

0

5050 50508080

8080

90

90

90

90

92

9292

92

93

9393

93

94

94

94

94

Régime [tr/min]

Cou

ple

[N.m

]

Rendement [%]

Pe ≈ e2(ωme)T2me + e1(ωme)Tme + e0(ωme),

e0 e1 e2

Page 45: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Energie spécifique Wh/kg

Puis

sanc

e sp

écifi

que

W/k

g

Vocv

Page 46: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

I∗b

SoC(t) = SoC(t0) +1

QnomNcell

∫ t

t0

−I∗b (t)dt,

Qnom Ncell

ηC

I∗b (t) =

{Ib(t) Ib ≥ 0ηCIb(t) Ib < 0.

0 20 40 60 80 1002.6

2.8

3

3.2

3.4

3.6

3.8

4

SOC [%]

V OCV

[V]

LiMn2O4

Vocv

Ri

Ri

Ib Vb

Vb =Vocv(SoC)

2+

√Vocv(SoC)2 − 4Ri(SoC, sign(Ib))Pb

2,

Page 47: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Ib =Vocv(SoC)

2Rint(SoC, sign(Ib))−

√V 2ocv(SoC)− 4Ri(SoC, sign(Ib))Pb

4R2i (SoC, sign(Ib))

,

Pb

Rint

VbVocv

+

-

Pb = Ib Vb

Ib

SoC = f(VOCV )

Eb Emax

SoE(t) =Eb(t)

Emax

Page 48: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ωsec =ωprim

rk,

Tsec =

{ηtTprim Tprim ≥ 0rkTprim/ηt Tprim < 0,

ωprim ωsec

Tprim Tsec

rk k

ηt

Tprim = Tmi + Tme.

u = Tmi/Tprim u = 0 uu ≥ 1

Page 49: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 50: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 51: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 52: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Dav
inhérentes
Page 53: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

x

u

x(t) = f(x(t), u(t)),

f

Page 54: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

J =

∫ tf

t0

mf (x(t), u(t), t)dt,

mf

uJ = Φ(x(tf ), xf ) +

∫ tf

t0

L(x(t), u(t), t)dt

x(t0) = x0

x(t) = f(x(t), u(t))

x(t) ∈ X (t), ∀t > 0

u(t) ∈ U(t), ∀t > 0

Φ X Ux

x(tf ))xf

Φ

Page 55: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ux

U

X

X U

Page 56: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Approches  de  gestion  d’énergie  d’un  GMP  hybride

Approches heuristiques

Instantanées Prédictives

Approches d’optimisation

Temps-réels Globales

Page 57: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 58: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

×

K PK × P

xk+1 = F (xk, uk), k = 0, . . . , K − 1,

F

xk ∈ Xk uk ∈ Uk

k

∈ RK×P

Φ

Page 59: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Jk(xp) ≡

u∈U{lk(xp, u) + Jk+1(x

p + F (xp, u))},

lk(xp, u) uxp Jk(xp)

xp k

Jk

uN u∗

Jk

u∗k(x

p) =un∈U

{l(xp, un) + Jk+1(xp + F (xp, un))}.

uxpk+1 = xp

k + F (xp, uk)

Jk+1(xp+F (xp, uk))

xf = 50

Page 60: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Temps [s]

SOE

[%]

Coût optimal J* [g]

0 200 400 60030

40

50

60

70

0

500

1000

1500

2000

2500

3000

3500

Temps [s]

SOE

[%]

Commande optimale U* Tmi [N.m]

0 200 400 60030

40

50

60

70

0

50

100

150

k

x

u

U∗k (x

p) = un∈U{l(xp, un) + Jk+1(xp + F (xp, un))}Jk(xp)

Page 61: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

J

O(K.P p.Nn) p N

K

p n

K × P

Page 62: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

f( )

gi( ) ≤ 0, i = 1, . . . ,m

hi( ) = 0, i = 1, . . . , p.

f gi hi

Page 63: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

u∗(t)

H

H(x(t), u(t),λ(t), t) ≥ H(x(t), u∗(t),λ(t), t), ∀u = u∗, t ∈ [t0, tf ],

H

H(x(t), u(t),λ(t), t) = L(x(t), u(t), t) + λT (t)f(x(t), u(t)),

λ(t)

L(x(t), u(t), t)f(x(t), u(t))

λ

λ(t) = − ∂

∂xH(x(t), u(t),λ(t), t).

Page 64: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

t

u∗(t) =u

{H(x(t), u(t),λ(t), t)}.

tfu

λ0x(tf ) = xf λ0

λ0

x(tf )λ0

Page 65: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Heq

Heq(x, u, s, t) = Pf (u, t) + s(t)Pe(x, u, t),

Pf = HPCImf

mf HPCI

Pe = Voc.Qnom.f(x, u, t)s

Heq

Heq

u∗

u∗(t) =u

{Heq(x, u, s, t)}.

sxref s

xref

s(x(ti+1)) = s0 +Kp(xref (ti)− x(ti)) +Ki

∫ t

0

(xref (ti)− x(ti))dt,

Kp Ki

s0

s0

xref

Page 66: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 67: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 20 40 60 800

50

100

150

Vite

sse

[km

/h]

0 20 40 60 80200

300

400

Altit

ude

[m]

Distance [km]

Page 68: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 20 40 60 800

20

40

60

80

100

Distance [km]

SoE

[%]

Optimale (DP)D−M (DP)Cible

20

Page 69: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

mf

ηth[ ]

ηme mot[ ]

ηme gen[ ]

0 20 40 60 800

0.5

1

1.5

2

2.5

3

Distance [km]

Cons

omm

atio

n ca

rbur

ant [

l]

Optimale (DP)D−M (DP)

Page 70: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ηth

ηme mot

ηme gen

0 20 40 60 80 100 1200

5

10

15

20

25

30

|Ibat| [A]

Pour

cent

age

de te

mps

[%]

Optimale (DP)D−M (DP)

I2

Page 71: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

u(t)∗ = uve = 1

0 20 40 60 800

50

100

150

Vite

sse

[km

/h]

0 20 40 60 8010

20

30

40

50

60

70

Distance [km]

SoE

[%]

Libre (DP)VE (DP)Cible

LibreVE

Page 72: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 73: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 74: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 20 40 60 800

20

40

60

80

100

Distance [km]

SoE

[%]

Mixte (ECMS)D−M (ECMS)Cible (DP)

Système  d’optimisation  énergétique

Gestion des flux de

puissance

Gestion de l’énergie  

électrique - SoEref- Mode VE

- Profil de mission- Position

- Puissance à la roue - Consignes GMP

- Limitations GMP

VéhiculeSystème de Navigation

Conducteur

- Consommation énergétique- Style de conduite

Page 75: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

SoEref

Page 76: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Dav
Page 77: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ψ0

ψ1

∆Eb,min

∆Eb,max

Page 78: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 79: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 80: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Type

Distance

Vitesse

Distance

Extra Urbain

Urbain

Autoroute

110

70

50

30

Pente

Segments

+10

+5

0

-5

-10

1 2 3 4 5 6 7 8 9

Distance

Page 81: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 82: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

u

u

uu = 0 u > 1

Ef

Eb

u = 1

Dav
à
Page 83: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

−400 −300 −200 −100 0 100 200 3000

2

4

6

8

10

12

14

ΔEb [Wh/km]

E f [l/1

00km

]

Approche DPApproche Ucst

Ef = f(∆Eb)

Page 84: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Temps [s]

SOE

[%]

Coût optimal J* [g]

0 200 400 60030

40

50

60

70

0

500

1000

1500

2000

2500

3000

3500

∗ t = 0

Ef = f(∆Eb)

Page 85: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

RechargeDécharge

Recharge maximale

Maintien de la charge

Mode EV

∆Eb

Ef (∆Eb) = ψ2∆E2b + ψ1∆Eb + ψ0,

∆Eb,min ≤ ∆Eb ≤ ∆Eb,max.

ψ0 ψ1 ψ2

Page 86: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

−300 −200 −100 0 100 200 3000

2

4

6

8

10

12

14

16

ΔEb [Wh/km]

E f [l/1

00km

]

ARTEMIS EmbouteillageARTEMIS Extra−UrbainARTEMIS AutorouteARTEMIS Urbain

ψ0

ψ0

Page 87: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ψ1

λ∗

(∂H/∂Pb)∗ = 0

λ∗ =

(∂Pf

∂Pb

)∗

ψ1

ψ2

ψ2

∆Eb,min ∆Eb,max

∆Eb,min ∆Eb,max

∆Eb,max

Page 88: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

cce = [ψ0,ψ1,ψ2,∆Eb,min,∆Eb,max]T .

ψ0 ψ1

Page 89: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ψ0 ψ1 ∆Eb,max

ψ2

∆Eb,min

Dav
Page 90: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ψ0

ψ0

ψ0

ψ0

Dav
Dav
Dav
Dav
Dav
Tous ces préfixes NAV et DRV n'apparaissent pas dans l'annexe B
Page 91: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 50 100 1500

2

4

6

8

10

12

DRV_VR_AVG [km/h]

ψ0 [l

/100

km]

ψ0

ψ0

−200 0 200 400 600 8000

5

10

15

20

25

Δ Eb [Wh/km]

E f [l/1

00km

]

δψ0(v) = ψ0(v)− ψ0|v,

Dav
Dav
Dav
Tous ces préfixes DRV NAV n'apparaissent pas dans l'annexe BIci DRV sur figure et MT en légende
Page 92: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

v ψ0

v ψ0

ψ0

δψ0

δψ0

ψ0

ψ1

∆Eb,max

∆Eb,max

Dav
Dav
Page 93: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ψ0 δψ0 ψ1 ∆Eb,max

1 2 3 4 5 6 70

20

40

60

80

100

Composantes Principales

Pour

cent

age

de V

aria

nce

Expl

iqué

e [%

]

Dav
Dav
Dav
Dav
Dav
Dav
Dav
Dav
Dav
Dav
Page 94: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

−0.5 0 0.5−0.4

−0.2

0

0.2

0.4

0.6

0.8

NAV_ATS

DRV_VR_AVGNAV_GAS

DRV_V_MAX

NAV_SL

DRV_V_AVG

Axe 1

DRV_RPADRV_PKE

Axe

2

ψ2

Dav
Cette figure n'est pas citée dans le texte si je ne me trompe pas
Page 95: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ψ0

ψ0

v∗

rpaT

rpa(t) =1

d

∫ t

t−T

a(τ)+v(τ)dτ,

d va+

ψ0

v∗ rpaψ0 = f(v∗, rpa)

ψ0

R2 = 0.82

ψ0(v∗, rpa) =

0<i<N0<j<M

pi,j(v∗)i(rpa)j

pi,j

ψ0

Page 96: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

20 40 60 80 100 1200

0.1

0.2

0.3

0.4

0.5

DRV_VR_AVG [km/h]

DR

V_R

PA [m

s2 ]

20 40 60 80 100 1200

0.50

5

10

15

DRV_VR_AVG [km/h]DRV_RPA [ms2]

ψ0 [l/100km]

−3 −2 −1 0 1 2 30

200

400

600

Résidus [l/100km]

0 2 4 6 8 10 12 14

ψ0

−600 −400 −200 0 200 400 6000

0.05

0.1

0.15

0.2

0.25

0.3

ΔEb [Wh/km]

E f [l/k

m]

ARTEMIS Urbain

Pente: −10%Pente: −7%Pente: −5%Pente: 0%Pente: 5%Pente: 7%Pente: 10%

ψ0

ψ0

Page 97: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Kg

ψg0

ψg0 = ψ0 +Kg.G

G

-15 -10 -5 0 5 10 15Pente [%]

-0.1

0

0.1

0.2

0g [

l/km

]

Données brutesModèle du premier ordre

ψ0

ψ0

Eaux =Paux

v∗

Paux

ψ0

ψa0 = ψ0 + ψ1Eaux + ψ2E

2aux.

Page 98: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

−200 −100 0 100 200 3000

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16ARTEMIS Urbain

ΔEb [Wh/km]

E f [l/k

m]

Paux: 0WPaux: 500WPaux: 1000WPaux: 1500WPaux: 2000W

ψ1

ψ1

ψ1 = f1(v∗)f1

0 20 40 60 80 100 120 1402.8

2.9

3

3.1

3.2

3.3

3.4

3.5x 10−4

DRV_V_AVG [km/h]

ψ1 [l

/Wh]

ψ1

ψ1

Page 99: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

ψa1 = ψ1 + ψ1Eaux + 2ψ2Eaux.

∆Eb,min

∆Eb,min

∆Eb,min = fmin(ψ0,ψ1,ψ2) =−ψ1 +

2√ψ21 − 4ψ2ψ0

2ψ2.

∆Eb,min

∆Eab,min = ∆Eb,min − Eaux.

∆Eb,max

∆Eb,max

∆Eb,max = fmax(v∗)ψ1 fmax

∆Eb,min ∆Eb,max

∆Eab,max = ∆Eb,max − Eaux.

Page 100: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 20 40 60 80 100 120 140 160 1800

100

200

300

400

500

DRV_V_AVG [km/h]

ΔE b,

max

[Wh/

km]

∆Eb,max

Jsim =Nt∑

i=1

liEf (∆Eib)

∆Eib,max ≤ ∆Ei

b ≤ ∆Eib,max

Eb,max ≤ Eib ≤ Eb,max

i = 1, . . . , Nt,

Ef (∆Eib) Nt

i li∆Ei

b

Page 101: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

αi ≥ 1 Ef

Jgen =Nt∑

i=1

αiliEf (∆Eib)

αi i

Ef (∆Eb,min)i = 0

f( ) =1

2TQ + T

A ≤

Q hi,i = 2 ∗ψ2,i

ci = ψ1,i

APb ∆SoE

Eb

Page 102: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

A =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 0 · · · 0−1 0 · · · 0

+1 0 · · · 0−1 0 · · · 0l1 0 · · · 0−l1 0 · · · 0

−l1 l2 · · · lN−l1 −l2 · · · −lN

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,max

−x1,min

xN,max

−xN,min

ymax − y0−ymin + y0

ymax − y0−ymin + y0

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

li xi,max x1,min

∆Eb,max ∆Eb,min i ymax ymin

y0

N = 100

∆SoE N P

N P ∗ U∗

Page 103: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

∗ ∗

N = 100P = 101

f ∗ νn

f(νn) = g(νn) + h(νn),

g(νn) νn h(νn)

Page 104: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

νn

νpνs h∗

∀νs νp : h∗(νp) ≤ cνp→νn + h∗(νs),

cνp→νn νp → νn

h∗1 h∗

2

∀ νn, h∗1(νn) > h∗

2(νn) h∗1 .

gh

Page 105: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

νi ←νc ←

νi

f

ν∗ ←ν∗

νi νc

νs ν∗

g(νs) ← ν∗ cν∗→νs

νs

νs

νs

νs

hνs) ← hνs→νc

f(νs) ← g(νs) + h(νs)

νs

ν∗

Page 106: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

νi,pνi,f i li

c(νi,p, νi,f ) = li(ψ2,i∆Eb(νi,p, νi,f )2 + ψ1,i∆Eb(νi,p, νi,f ) + ψ0,i)

∆Eb(νi,p, νi,f ) =SoE(νi,f )− SoE(νi,p)

li.

g

g(νn,f ) =i=n∑

i=1

c(νi,p, νi,f ),

νi,p = νi−1,f

h(νn,p) =i=N∑

i=n

liEf (∆SoE(νn,p, νC)).

h Ef

Page 107: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

SoE [%]

Distance [km]

100100

50

10

𝒍𝟏 𝒍𝟐 𝒍𝟑 𝒍𝒊 𝒍𝑵

i

C

1234

65

7𝒈𝑺𝟒

𝒈𝟒𝟔

𝒉𝟔𝑪

X Dans open

X Dans closed

i Initial

C Cible

X Meilleur

1 2 3 …i… N

f

f

Page 108: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Dav
Page 109: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Gestion  de  l’énergie  électrique

Manageur Global

Gestion des segments de route

Estimation des paramètres CCS

Optimisation A*

Données Historique

Calcul du SoE cible

Données Véhicules

𝑺𝒐𝑬𝒄𝒊𝒃𝒍𝒆 (𝐯𝐞𝐫𝐬 𝐒𝐆𝐅𝐏)

Attributs de la route

Position du véhicule

Statu du système de Navigation

Dav
Dav
CCE
Page 110: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 500 1000 1500 2000 2500 3000 35000

20

40

60

80

100Trajectoire SoE

Temps [s]

SoE

[%]

0 500 1000 1500 2000 2500 3000 35000

20

40

60

80

100

Temps [s]

SoE

[%]

Régulation SoE

0 500 1000 1500 2000 2500 3000 35000

1

2

3

4

5

6

7

Temps [s]

E f [l]

Consommation

DP: CCSDP: SOESGEE

DP: CCSDP: SOESGEED−M

DP: CCSDP: SOESGEED−M

Page 111: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 10 20 30 40 50 60 700

20

40

60

80

100

120

140

v [k

m/h

]

vitesse véhiculeNAV_V_AVGNAV_V_LIM

Page 112: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 10 20 30 40 50 60 700

50

100

SoE

[%]

optimisé SGEErégulation SGFPcible minimale

0 10 20 30 40 50 60 70

0

100

200

Distance [km]

T th [%

]

maximalréalisé

0 10 20 30 40 50 60 700

50

100

SoE

[%]

régulation SGFPcible minimale

0 10 20 30 40 50 60 70

0

100

200

Distance [km]

T th [%

]

maximalréalisé

Page 113: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 10 20 30 40 50 60 700

0.5

1

1.5

2

2.5

3

Distance [km]

E f [l]

Optimisé SGEED−M SGFP

Page 114: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 10 20 30 40 50 60 700

20406080

100So

E [%

]

optimisé SGEErégulation SGFPcible minimale

0 10 20 30 40 50 60 70

0

100

200

Distance [km]

T th [%

]

maximalréalisé

Page 115: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 10 20 30 40 50 60 700

20406080

100

SoE

[%]

optimisé SGEErégulation SGFPcible minimale

0 10 20 30 40 50 60 70

0

100

200

Distance [km]

T th [%

]

maximalréalisé

0 10 20 30 40 50 60 70 800

0.5

1

1.5

2

2.5

3

3.5

4

Distance [km]

E f [l]

sans contrainte EVavec contrainte EV

Page 116: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 10 20 30 40 50 60 700

50

100

150

v [k

m/h

]

vitesse véhiculeNAV_V_AVGNAV_V_LIM

0 10 20 30 40 50 60 70−5

0

5

10

Distance [km]

pent

e [%

]

pente mesuréeNAV_SLOPE_AVG

0 10 20 30 40 50 60 700

50

100

SoE

[%]

régulation SGFPcible minimale

0 10 20 30 40 50 60 70

0

100

200

Distance [km]

T th [%

]

maximalréalisé

Page 117: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 10 20 30 40 50 60 700

50

100

SoE

[%]

optimisé SGEErégulation SGFPcible minimale

0 10 20 30 40 50 60 70

0

100

200

Distance [km]

T th [%

]

maximalréalisé

Page 118: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 10 20 30 40 50 60 70 800

1

2

3

4

5

6

7

Distance [km]

E f [l]

OptimiséeD−M

Page 119: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 10 20 30 40 50 60 700

50

100

150

v [k

m/h

]

vitesse véhiculeNAV_V_AVGNAV_V_LIM

0 10 20 30 40 50 60 700

500

1000

1500

P aux [%

]

Distance [km]

0 10 20 30 40 50 60 700

50

100

SoE

[%]

optimisé SGEErégulation SGFPcible minimale

0 10 20 30 40 50 60 70

0

100

200

Distance [km]

T th [%

]

maximalréalisé

Page 120: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 10 20 30 40 50 60 700

50

100

SoE

[%]

optimisérégulationcible

0 10 20 30 40 50 60 70

0

100

200

Distance [km]

T th [%

]

maximalréalisé

Niter,max

Topt,max

Page 121: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

Niter,max Topt,max

Page 122: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Dav
Page 123: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 124: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 125: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 126: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 127: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 128: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 129: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 130: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 131: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 132: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 200 400 600 800 1000Temps [s]

0

10

20

30

40

Vite

sse

[km

/h]

0 200 400 600 800 1000Temps [s]

0

20

40

60

Vite

sse

[km

/h]

Page 133: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 200 400 600 800 1000Temps [s]

0

20

40

60

80

100

120

Vite

sse

[km

/h]

0 200 400 600 800 1000 1200Temps [s]

0

50

100

150

200

Vite

sse

[km

/h]

Page 134: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

0 500 1000 1500 2000Temps [s]

0

50

100

150

Vite

sse

[km

/h]

0 200 400 600 800 1000 1200Temps [s]

0

20

40

60

80

100

120

Vite

sse

[km

/h]

Page 135: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 136: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 137: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …

1x

∫va+

x

a−

PKE =∑

(v2f−v2i )

xdvdt > 0

dvdt < 0

Page 138: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 139: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Dav
Dav
Page 140: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Dav
Page 141: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Dav
Page 142: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 143: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …
Page 144: lMBp2`bBiû/2h2+?MQHQ;B2/2*QKTB ;M2 S`û/B+iBQM …