58
Lobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin Lychagin NAFT, Odessa, Ukraine, IPU RAN, Moscow, Russia & Department of Mathematics and Statistics,University of Tromsl, Norway Workshop on Innite-dimensional Riemannian geometry Vienna, January 12 16, 2015 KL (Institute) Lobachevsky Geometry and Image Recognition Workshop on Innite-dimensional Riemannia / 19

Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

  • Upload
    others

  • View
    19

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Lobachevsky Geometry and Image RecognitionMetric invariants in image recognision

Nadiia Konovenko & Valentin Lychagin

NAFT, Odessa, Ukraine,IPU RAN, Moscow, Russia &

Department of Mathematics and Statistics,University of Tromsø, Norway

Workshop on“Infinite-dimensional Riemannian geometry”

Vienna, January 12 —16, 2015

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 1

/ 19

Page 2: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Why do we need Lobachevsky Geometry?

The Mumford - Sharon approach.

Poincaré model of Lobachevsky geometry

Figure: Escher’s circle limit iii

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 2

/ 19

Page 3: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Why do we need Lobachevsky Geometry?

The Mumford - Sharon approach.

Poincaré model of Lobachevsky geometry

Figure: Escher’s circle limit iii

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 2

/ 19

Page 4: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Lobachevsky Geometry

Structure group PSL2 (R) .Möbius transformations of the unit disk D : z 7→ e2πθı z−a

1−az ,where a ∈ D, θ ∈ R/Z .

Structure Lie algebra sl2 (R) :

x∂y − y∂x ,(1− x2 + y2

)∂x + 2xy∂y ,

(1− x2 + y2

)∂y − 2xy∂x

Invariant metric: g = dx 2+dy 2

(1−x 2−y 2)2 .

Invariant symplectic structure: Ω = dx∧dy(1−x 2−y 2)2 .

Invariant complex structure: I = ∂y ⊗ dx − ∂x ⊗ dy .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 3

/ 19

Page 5: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Lobachevsky Geometry

Structure group PSL2 (R) .Möbius transformations of the unit disk D : z 7→ e2πθı z−a

1−az ,where a ∈ D, θ ∈ R/Z .

Structure Lie algebra sl2 (R) :

x∂y − y∂x ,(1− x2 + y2

)∂x + 2xy∂y ,

(1− x2 + y2

)∂y − 2xy∂x

Invariant metric: g = dx 2+dy 2

(1−x 2−y 2)2 .

Invariant symplectic structure: Ω = dx∧dy(1−x 2−y 2)2 .

Invariant complex structure: I = ∂y ⊗ dx − ∂x ⊗ dy .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 3

/ 19

Page 6: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Lobachevsky Geometry

Structure group PSL2 (R) .Möbius transformations of the unit disk D : z 7→ e2πθı z−a

1−az ,where a ∈ D, θ ∈ R/Z .

Structure Lie algebra sl2 (R) :

x∂y − y∂x ,(1− x2 + y2

)∂x + 2xy∂y ,

(1− x2 + y2

)∂y − 2xy∂x

Invariant metric: g = dx 2+dy 2

(1−x 2−y 2)2 .

Invariant symplectic structure: Ω = dx∧dy(1−x 2−y 2)2 .

Invariant complex structure: I = ∂y ⊗ dx − ∂x ⊗ dy .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 3

/ 19

Page 7: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Lobachevsky Geometry

Structure group PSL2 (R) .Möbius transformations of the unit disk D : z 7→ e2πθı z−a

1−az ,where a ∈ D, θ ∈ R/Z .

Structure Lie algebra sl2 (R) :

x∂y − y∂x ,(1− x2 + y2

)∂x + 2xy∂y ,

(1− x2 + y2

)∂y − 2xy∂x

Invariant metric: g = dx 2+dy 2

(1−x 2−y 2)2 .

Invariant symplectic structure: Ω = dx∧dy(1−x 2−y 2)2 .

Invariant complex structure: I = ∂y ⊗ dx − ∂x ⊗ dy .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 3

/ 19

Page 8: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Lobachevsky Geometry

Structure group PSL2 (R) .Möbius transformations of the unit disk D : z 7→ e2πθı z−a

1−az ,where a ∈ D, θ ∈ R/Z .

Structure Lie algebra sl2 (R) :

x∂y − y∂x ,(1− x2 + y2

)∂x + 2xy∂y ,

(1− x2 + y2

)∂y − 2xy∂x

Invariant metric: g = dx 2+dy 2

(1−x 2−y 2)2 .

Invariant symplectic structure: Ω = dx∧dy(1−x 2−y 2)2 .

Invariant complex structure: I = ∂y ⊗ dx − ∂x ⊗ dy .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 3

/ 19

Page 9: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Functions

Invariant coframe:

ω1 = u1dx + u2dy ,

ω2 = −u2dx + u1dy .

Invariant frame:

δ1 = |∇u|−2(u1ddx+ u2

ddy

),

δ2 = |∇u|−2(−u2

ddx+ u1

ddy

),

where T = |∇u|2 = u21 + u22 .Structure equations:

dω1 = 0, dω2 =∆u∇u2 ω1 ∧ω2,

or

[δ2, δ1] =∆u

|∇u|2δ2

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 4

/ 19

Page 10: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Functions

Invariant coframe:

ω1 = u1dx + u2dy ,

ω2 = −u2dx + u1dy .Invariant frame:

δ1 = |∇u|−2(u1ddx+ u2

ddy

),

δ2 = |∇u|−2(−u2

ddx+ u1

ddy

),

where T = |∇u|2 = u21 + u22 .

Structure equations:

dω1 = 0, dω2 =∆u∇u2 ω1 ∧ω2,

or

[δ2, δ1] =∆u

|∇u|2δ2

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 4

/ 19

Page 11: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Functions

Invariant coframe:

ω1 = u1dx + u2dy ,

ω2 = −u2dx + u1dy .Invariant frame:

δ1 = |∇u|−2(u1ddx+ u2

ddy

),

δ2 = |∇u|−2(−u2

ddx+ u1

ddy

),

where T = |∇u|2 = u21 + u22 .Structure equations:

dω1 = 0, dω2 =∆u∇u2 ω1 ∧ω2,

or

[δ2, δ1] =∆u

|∇u|2δ2

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 4

/ 19

Page 12: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Metric invariants of functions

0 - orderJ0 = u.

1 -st order

J1 =(1− x2 − y2

)2 |∇u|2 or |∇gu|2 ,δ1 (J0) = 1, δ2 (J0) = 0.

2 -nd order

J2 =∆u

|∇u|2, or ∆gu

J11 = δ1 (J1) , J12 = δ2 (J2) .

k− th orderinvariant derivatives of J1 and J2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 5

/ 19

Page 13: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Metric invariants of functions

0 - orderJ0 = u.

1 -st order

J1 =(1− x2 − y2

)2 |∇u|2 or |∇gu|2 ,δ1 (J0) = 1, δ2 (J0) = 0.

2 -nd order

J2 =∆u

|∇u|2, or ∆gu

J11 = δ1 (J1) , J12 = δ2 (J2) .

k− th orderinvariant derivatives of J1 and J2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 5

/ 19

Page 14: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Metric invariants of functions

0 - orderJ0 = u.

1 -st order

J1 =(1− x2 − y2

)2 |∇u|2 or |∇gu|2 ,δ1 (J0) = 1, δ2 (J0) = 0.

2 -nd order

J2 =∆u

|∇u|2, or ∆gu

J11 = δ1 (J1) , J12 = δ2 (J2) .

k− th orderinvariant derivatives of J1 and J2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 5

/ 19

Page 15: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Metric invariants of functions

0 - orderJ0 = u.

1 -st order

J1 =(1− x2 − y2

)2 |∇u|2 or |∇gu|2 ,δ1 (J0) = 1, δ2 (J0) = 0.

2 -nd order

J2 =∆u

|∇u|2, or ∆gu

J11 = δ1 (J1) , J12 = δ2 (J2) .

k− th orderinvariant derivatives of J1 and J2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 5

/ 19

Page 16: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

TheoremThe field of rational metric differential invariants for functions given on theunit disk is generated by invariants J0, J1, J2 and invariant derivationsδ1, δ2.This field separates regular PSL2-orbits.

TheoremThe field of rational metric differential invariants for functions given on theunit disk is generated by invariants J0, J1, J11, J12, J2 and Tresse derivations

DDJ0

,DDJ1

.

This field separates regular PSL2-orbits.

Tresse derivationsDDJ0

= δ1 −J11J12

δ2,DDJ1

=1J12

δ2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 6

/ 19

Page 17: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a function f ,with df 6= 0 and J12 (f ) 6= 0.

gD -the metric, defined by the standard metric on D through theRiemann theorem.Basic invariants:

J0 (f ) = f , J1 (f ) = |∇gDf |2 , J2 (f ) = ∆gDf , J11 (f ) , J12 (f ) .

Coframe (or frame):df , Idf

Invariantization map:

Jf : D→ R2

Jf =(f , |∇gDf |

2),

and functions

∆gDf = F2(f , |∇gDf |

2), J11 (f ) = F11

(f , |∇gDf |

2), J12 (f ) = F12

(f , |∇gDf |

2).

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 7

/ 19

Page 18: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a function f ,with df 6= 0 and J12 (f ) 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem.

Basic invariants:

J0 (f ) = f , J1 (f ) = |∇gDf |2 , J2 (f ) = ∆gDf , J11 (f ) , J12 (f ) .

Coframe (or frame):df , Idf

Invariantization map:

Jf : D→ R2

Jf =(f , |∇gDf |

2),

and functions

∆gDf = F2(f , |∇gDf |

2), J11 (f ) = F11

(f , |∇gDf |

2), J12 (f ) = F12

(f , |∇gDf |

2).

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 7

/ 19

Page 19: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a function f ,with df 6= 0 and J12 (f ) 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem.Basic invariants:

J0 (f ) = f , J1 (f ) = |∇gDf |2 , J2 (f ) = ∆gDf , J11 (f ) , J12 (f ) .

Coframe (or frame):df , Idf

Invariantization map:

Jf : D→ R2

Jf =(f , |∇gDf |

2),

and functions

∆gDf = F2(f , |∇gDf |

2), J11 (f ) = F11

(f , |∇gDf |

2), J12 (f ) = F12

(f , |∇gDf |

2).

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 7

/ 19

Page 20: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a function f ,with df 6= 0 and J12 (f ) 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem.Basic invariants:

J0 (f ) = f , J1 (f ) = |∇gDf |2 , J2 (f ) = ∆gDf , J11 (f ) , J12 (f ) .

Coframe (or frame):df , Idf

Invariantization map:

Jf : D→ R2

Jf =(f , |∇gDf |

2),

and functions

∆gDf = F2(f , |∇gDf |

2), J11 (f ) = F11

(f , |∇gDf |

2), J12 (f ) = F12

(f , |∇gDf |

2).

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 7

/ 19

Page 21: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a function f ,with df 6= 0 and J12 (f ) 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem.Basic invariants:

J0 (f ) = f , J1 (f ) = |∇gDf |2 , J2 (f ) = ∆gDf , J11 (f ) , J12 (f ) .

Coframe (or frame):df , Idf

Invariantization map:

Jf : D→ R2

Jf =(f , |∇gDf |

2),

and functions

∆gDf = F2(f , |∇gDf |

2), J11 (f ) = F11

(f , |∇gDf |

2), J12 (f ) = F12

(f , |∇gDf |

2).

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 7

/ 19

Page 22: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Classification

We say that function f is regular if

J1 (f ) 6= 0 and J12 (f ) 6= 0.

For such a function find functions F2,F11,F12 and consider the abovePDEs system. This is

Frobenius type systemIntegrablePSL2 - automorphicSolution space ⇔ PSL2 - orbit of the function f .

Functions F2,F11,F12 are not arbitrary they satisfy two relations(=integrability conditions of the above system)

Theorem

The regular functions f and f are PSL2-equivalent if and only if they havethe same representive functions F2,F11,F12 and Im Jf = Im Jf .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 8

/ 19

Page 23: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Classification

We say that function f is regular if

J1 (f ) 6= 0 and J12 (f ) 6= 0.

For such a function find functions F2,F11,F12 and consider the abovePDEs system. This is

Frobenius type systemIntegrablePSL2 - automorphicSolution space ⇔ PSL2 - orbit of the function f .

Functions F2,F11,F12 are not arbitrary they satisfy two relations(=integrability conditions of the above system)

Theorem

The regular functions f and f are PSL2-equivalent if and only if they havethe same representive functions F2,F11,F12 and Im Jf = Im Jf .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 8

/ 19

Page 24: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Classification

We say that function f is regular if

J1 (f ) 6= 0 and J12 (f ) 6= 0.

For such a function find functions F2,F11,F12 and consider the abovePDEs system. This is

Frobenius type system

IntegrablePSL2 - automorphicSolution space ⇔ PSL2 - orbit of the function f .

Functions F2,F11,F12 are not arbitrary they satisfy two relations(=integrability conditions of the above system)

Theorem

The regular functions f and f are PSL2-equivalent if and only if they havethe same representive functions F2,F11,F12 and Im Jf = Im Jf .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 8

/ 19

Page 25: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Classification

We say that function f is regular if

J1 (f ) 6= 0 and J12 (f ) 6= 0.

For such a function find functions F2,F11,F12 and consider the abovePDEs system. This is

Frobenius type systemIntegrable

PSL2 - automorphicSolution space ⇔ PSL2 - orbit of the function f .

Functions F2,F11,F12 are not arbitrary they satisfy two relations(=integrability conditions of the above system)

Theorem

The regular functions f and f are PSL2-equivalent if and only if they havethe same representive functions F2,F11,F12 and Im Jf = Im Jf .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 8

/ 19

Page 26: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Classification

We say that function f is regular if

J1 (f ) 6= 0 and J12 (f ) 6= 0.

For such a function find functions F2,F11,F12 and consider the abovePDEs system. This is

Frobenius type systemIntegrablePSL2 - automorphic

Solution space ⇔ PSL2 - orbit of the function f .

Functions F2,F11,F12 are not arbitrary they satisfy two relations(=integrability conditions of the above system)

Theorem

The regular functions f and f are PSL2-equivalent if and only if they havethe same representive functions F2,F11,F12 and Im Jf = Im Jf .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 8

/ 19

Page 27: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Classification

We say that function f is regular if

J1 (f ) 6= 0 and J12 (f ) 6= 0.

For such a function find functions F2,F11,F12 and consider the abovePDEs system. This is

Frobenius type systemIntegrablePSL2 - automorphicSolution space ⇔ PSL2 - orbit of the function f .

Functions F2,F11,F12 are not arbitrary they satisfy two relations(=integrability conditions of the above system)

Theorem

The regular functions f and f are PSL2-equivalent if and only if they havethe same representive functions F2,F11,F12 and Im Jf = Im Jf .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 8

/ 19

Page 28: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Classification

We say that function f is regular if

J1 (f ) 6= 0 and J12 (f ) 6= 0.

For such a function find functions F2,F11,F12 and consider the abovePDEs system. This is

Frobenius type systemIntegrablePSL2 - automorphicSolution space ⇔ PSL2 - orbit of the function f .

Functions F2,F11,F12 are not arbitrary they satisfy two relations(=integrability conditions of the above system)

Theorem

The regular functions f and f are PSL2-equivalent if and only if they havethe same representive functions F2,F11,F12 and Im Jf = Im Jf .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 8

/ 19

Page 29: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Classification

We say that function f is regular if

J1 (f ) 6= 0 and J12 (f ) 6= 0.

For such a function find functions F2,F11,F12 and consider the abovePDEs system. This is

Frobenius type systemIntegrablePSL2 - automorphicSolution space ⇔ PSL2 - orbit of the function f .

Functions F2,F11,F12 are not arbitrary they satisfy two relations(=integrability conditions of the above system)

Theorem

The regular functions f and f are PSL2-equivalent if and only if they havethe same representive functions F2,F11,F12 and Im Jf = Im Jf .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 8

/ 19

Page 30: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

J11 =2T(u1u11 + 2u1u2u12 + u2u22 + 2t (xu1 + yu2)) ,

J12 =2T

(u1u2 (u22 − u11) + u12

(u22 − u21

)+ 2t (yu1 − xu2)

),

wheret = 1− x2 − y2,T = u21 + u22 .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 9

/ 19

Page 31: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Differential forms

Differential 1-form

θ = a (x , y) dx + b (x , y) dy

in a proper simply connected domain D ⊂ CP1.

Section

sθ : M → T∗M,sθ : (x , y) 7→ (x , y , u = a (x , y) , v = b (x , y)) ,

of the cotangent bundle τ∗ : T∗M → M, where (x , y , u, v) are thecanonical coordinates in T∗M.Let

ω = udx + vdy

be the universal Liouville 1−form on T∗M.Then

θ = s∗θ (ω) .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 10

/ 19

Page 32: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Differential forms

Differential 1-form

θ = a (x , y) dx + b (x , y) dy

in a proper simply connected domain D ⊂ CP1.Section

sθ : M → T∗M,sθ : (x , y) 7→ (x , y , u = a (x , y) , v = b (x , y)) ,

of the cotangent bundle τ∗ : T∗M → M, where (x , y , u, v) are thecanonical coordinates in T∗M.

Letω = udx + vdy

be the universal Liouville 1−form on T∗M.Then

θ = s∗θ (ω) .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 10

/ 19

Page 33: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Differential forms

Differential 1-form

θ = a (x , y) dx + b (x , y) dy

in a proper simply connected domain D ⊂ CP1.Section

sθ : M → T∗M,sθ : (x , y) 7→ (x , y , u = a (x , y) , v = b (x , y)) ,

of the cotangent bundle τ∗ : T∗M → M, where (x , y , u, v) are thecanonical coordinates in T∗M.Let

ω = udx + vdy

be the universal Liouville 1−form on T∗M.Then

θ = s∗θ (ω) .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 10

/ 19

Page 34: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Actions

sl2 (R)-action on D :

X = −y∂x + x∂y ,

Y =(1− x2 + y2

)∂x + 2xy∂y ,

Z =(1− x2 + y2

)∂y − 2xy∂x .

sl2-action on T∗D :

X = X − u∂v + v∂u ,

Y = Y − 2(xu + yv)∂u − 2 (xv − yu) ∂v ,

Z = Z + 2 (xv − yu) ∂u − 2 (xu + yv) ∂v .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 11

/ 19

Page 35: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Actions

sl2 (R)-action on D :

X = −y∂x + x∂y ,

Y =(1− x2 + y2

)∂x + 2xy∂y ,

Z =(1− x2 + y2

)∂y − 2xy∂x .

sl2-action on T∗D :

X = X − u∂v + v∂u ,

Y = Y − 2(xu + yv)∂u − 2 (xv − yu) ∂v ,

Z = Z + 2 (xv − yu) ∂u − 2 (xu + yv) ∂v .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 11

/ 19

Page 36: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Differential Invariants

Invariant coframe

ω1 = udx + vdy ,

ω2 = −vdx + udy .

Invariant frame

δ1 =1

u2 + v2

(uddx+ v

ddy

),

δ2 =1

u2 + v2

(−v d

dx+ u

ddy

).

Structure equations:

dω1 =−u2 + v1u2 + v2

ω1 ∧ω2,

dω2 =u1 + v2u2 + v2

ω1 ∧ω2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 12

/ 19

Page 37: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Differential Invariants

Invariant coframe

ω1 = udx + vdy ,

ω2 = −vdx + udy .

Invariant frame

δ1 =1

u2 + v2

(uddx+ v

ddy

),

δ2 =1

u2 + v2

(−v d

dx+ u

ddy

).

Structure equations:

dω1 =−u2 + v1u2 + v2

ω1 ∧ω2,

dω2 =u1 + v2u2 + v2

ω1 ∧ω2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 12

/ 19

Page 38: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Differential Invariants

Invariant coframe

ω1 = udx + vdy ,

ω2 = −vdx + udy .

Invariant frame

δ1 =1

u2 + v2

(uddx+ v

ddy

),

δ2 =1

u2 + v2

(−v d

dx+ u

ddy

).

Structure equations:

dω1 =−u2 + v1u2 + v2

ω1 ∧ω2,

dω2 =u1 + v2u2 + v2

ω1 ∧ω2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 12

/ 19

Page 39: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Differntial invariants

0 -order

J0 =(1− x2 − y2

)2 (u2 + v2

)= g (ω1,ω1) ,

and

g =ω21 +ω2

2

J0.

1 -st order

J1,1 =−u2 + v1u2 + v2

, J1,2 =u1 + v2u2 + v2

,

δ1 (J0) , δ2 (J0) .

k -th order

invariant derivatives of J0 and J1,1 , J1,2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 13

/ 19

Page 40: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Differntial invariants

0 -order

J0 =(1− x2 − y2

)2 (u2 + v2

)= g (ω1,ω1) ,

and

g =ω21 +ω2

2

J0.

1 -st order

J1,1 =−u2 + v1u2 + v2

, J1,2 =u1 + v2u2 + v2

,

δ1 (J0) , δ2 (J0) .

k -th order

invariant derivatives of J0 and J1,1 , J1,2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 13

/ 19

Page 41: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Differntial invariants

0 -order

J0 =(1− x2 − y2

)2 (u2 + v2

)= g (ω1,ω1) ,

and

g =ω21 +ω2

2

J0.

1 -st order

J1,1 =−u2 + v1u2 + v2

, J1,2 =u1 + v2u2 + v2

,

δ1 (J0) , δ2 (J0) .

k -th order

invariant derivatives of J0 and J1,1 , J1,2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 13

/ 19

Page 42: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a differential1-form θ, with θ 6= 0.

gD -the metric, defined by the standard metric on D through theRiemann theorem.basic invariants:

J0 (θ) = gD (θ, θ)

and J1,1 J1,2, where

dθ = J1,1 (θ) θ ∧ I θ, dI θ = J1,2 (θ) θ ∧ I θ.Invariantization map:

Jθ : D→ R2,

Jθ = (J1,1 (θ) , J1,2 (θ)) ,

and function J0 (θ) .Classification data: on the image of Jθ two differenatial 1 -forms θand I θ and function J0 (θ) .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 14

/ 19

Page 43: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a differential1-form θ, with θ 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem.

basic invariants:J0 (θ) = gD (θ, θ)

and J1,1 J1,2, where

dθ = J1,1 (θ) θ ∧ I θ, dI θ = J1,2 (θ) θ ∧ I θ.Invariantization map:

Jθ : D→ R2,

Jθ = (J1,1 (θ) , J1,2 (θ)) ,

and function J0 (θ) .Classification data: on the image of Jθ two differenatial 1 -forms θand I θ and function J0 (θ) .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 14

/ 19

Page 44: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a differential1-form θ, with θ 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem.basic invariants:

J0 (θ) = gD (θ, θ)

and J1,1 J1,2, where

dθ = J1,1 (θ) θ ∧ I θ, dI θ = J1,2 (θ) θ ∧ I θ.

Invariantization map:

Jθ : D→ R2,

Jθ = (J1,1 (θ) , J1,2 (θ)) ,

and function J0 (θ) .Classification data: on the image of Jθ two differenatial 1 -forms θand I θ and function J0 (θ) .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 14

/ 19

Page 45: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a differential1-form θ, with θ 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem.basic invariants:

J0 (θ) = gD (θ, θ)

and J1,1 J1,2, where

dθ = J1,1 (θ) θ ∧ I θ, dI θ = J1,2 (θ) θ ∧ I θ.Invariantization map:

Jθ : D→ R2,

Jθ = (J1,1 (θ) , J1,2 (θ)) ,

and function J0 (θ) .

Classification data: on the image of Jθ two differenatial 1 -forms θand I θ and function J0 (θ) .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 14

/ 19

Page 46: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a differential1-form θ, with θ 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem.basic invariants:

J0 (θ) = gD (θ, θ)

and J1,1 J1,2, where

dθ = J1,1 (θ) θ ∧ I θ, dI θ = J1,2 (θ) θ ∧ I θ.Invariantization map:

Jθ : D→ R2,

Jθ = (J1,1 (θ) , J1,2 (θ)) ,

and function J0 (θ) .Classification data: on the image of Jθ two differenatial 1 -forms θand I θ and function J0 (θ) .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 14

/ 19

Page 47: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Foliations

Foliation⇔ λωwhere ω is a non vanishing differential 1 -form and λ is a nonvanishing smooth function, defined on a domain D.

Killing infinite dimensional pseudogroup : if ω = u dx + vdy , then

w =uv

is a function defined the foliation.Action sl2 :

−y∂x + x∂y − ∂w ,(1− x2 + y2

)∂x − 2xy∂y + 2y∂w ,(

1+ x2 − y2)

∂y − 2xy∂x − 2x∂w .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 15

/ 19

Page 48: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Foliations

Foliation⇔ λωwhere ω is a non vanishing differential 1 -form and λ is a nonvanishing smooth function, defined on a domain D.Killing infinite dimensional pseudogroup : if ω = u dx + vdy , then

w =uv

is a function defined the foliation.

Action sl2 :

−y∂x + x∂y − ∂w ,(1− x2 + y2

)∂x − 2xy∂y + 2y∂w ,(

1+ x2 − y2)

∂y − 2xy∂x − 2x∂w .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 15

/ 19

Page 49: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Foliations

Foliation⇔ λωwhere ω is a non vanishing differential 1 -form and λ is a nonvanishing smooth function, defined on a domain D.Killing infinite dimensional pseudogroup : if ω = u dx + vdy , then

w =uv

is a function defined the foliation.Action sl2 :

−y∂x + x∂y − ∂w ,(1− x2 + y2

)∂x − 2xy∂y + 2y∂w ,(

1+ x2 − y2)

∂y − 2xy∂x − 2x∂w .

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 15

/ 19

Page 50: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Frames

Coframe

ω1 =sinw dx + cosw dy

1− x2 − y2 ,

ω2 =− cosw dx + sinw dy

1− x2 − y2 .

Frame

δ1 = (1− x2 − y2)(cosw ddx+ sinw

ddy),

δ2 =(1− x2 − y2

)(− sinw d

dx+ cosw

ddy).

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 16

/ 19

Page 51: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Frames

Coframe

ω1 =sinw dx + cosw dy

1− x2 − y2 ,

ω2 =− cosw dx + sinw dy

1− x2 − y2 .

Frame

δ1 = (1− x2 − y2)(cosw ddx+ sinw

ddy),

δ2 =(1− x2 − y2

)(− sinw d

dx+ cosw

ddy).

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 16

/ 19

Page 52: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Invariants

Structure equations

dω1 = J1,1 ω1 ∧ω2,

dω2 = J1,2 ω1 ∧ω2,

where J1,1 and J1,2 are the following 1 -st order invariants:

J1,1 = (−w1 sinw − w2 cosw)(1− x2 − y2

)+ 2x cosw − 2y sinw ,

J1,2 = (−w2 sinw + w1 cosw)(1− x2 − y2

)+ 2y cosw + 2x sinw .

k-th orderinvariant derivatives of J1,1 and J1,2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 17

/ 19

Page 53: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Invariants

Structure equations

dω1 = J1,1 ω1 ∧ω2,

dω2 = J1,2 ω1 ∧ω2,

where J1,1 and J1,2 are the following 1 -st order invariants:

J1,1 = (−w1 sinw − w2 cosw)(1− x2 − y2

)+ 2x cosw − 2y sinw ,

J1,2 = (−w2 sinw + w1 cosw)(1− x2 − y2

)+ 2y cosw + 2x sinw .

k-th orderinvariant derivatives of J1,1 and J1,2.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 17

/ 19

Page 54: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a foliationdefined by differential 1-form θ, with θ 6= 0.

gD -the metric, defined by the standard metric on D through theRiemann theorem. Normalize θ :

θ 7→ θ

|θ|gD.

Invariantization map:

Jθ : D→ R2,

Jθ = (J1,1 (θ) , J1,2 (θ)) ,

Classification data: on the image of Jθ two differenatial 1 -forms θand I θ.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 18

/ 19

Page 55: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a foliationdefined by differential 1-form θ, with θ 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem. Normalize θ :

θ 7→ θ

|θ|gD.

Invariantization map:

Jθ : D→ R2,

Jθ = (J1,1 (θ) , J1,2 (θ)) ,

Classification data: on the image of Jθ two differenatial 1 -forms θand I θ.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 18

/ 19

Page 56: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a foliationdefined by differential 1-form θ, with θ 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem. Normalize θ :

θ 7→ θ

|θ|gD.

Invariantization map:

Jθ : D→ R2,

Jθ = (J1,1 (θ) , J1,2 (θ)) ,

Classification data: on the image of Jθ two differenatial 1 -forms θand I θ.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 18

/ 19

Page 57: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Summary

Given D ⊂ CP1 -a proper simply connected domain and a foliationdefined by differential 1-form θ, with θ 6= 0.gD -the metric, defined by the standard metric on D through theRiemann theorem. Normalize θ :

θ 7→ θ

|θ|gD.

Invariantization map:

Jθ : D→ R2,

Jθ = (J1,1 (θ) , J1,2 (θ)) ,

Classification data: on the image of Jθ two differenatial 1 -forms θand I θ.

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 18

/ 19

Page 58: Lobachevsky Geometry and Image Recognitionshape2015/slides/lychagin1.pdfLobachevsky Geometry and Image Recognition Metric invariants in image recognision Nadiia Konovenko & Valentin

Thank you for your attention

KL (Institute) Lobachevsky Geometry and Image RecognitionWorkshop on “Infinite-dimensional Riemannian geometry” Vienna, January 12 — 16, 2015 19

/ 19