25
Loewner Equation and SLE : Overview Loewner 方程式の応用について Applications of Loewner Equation 須川 敏幸 (Toshiyuki Sugawa) 東北大学大学院情報科学研究科 2010 2 14 東北大学鳴子会館

Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Embed Size (px)

Citation preview

Page 1: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Loewner方程式の応用についてApplications of Loewner Equation

須川 敏幸 (Toshiyuki Sugawa)

東北大学大学院情報科学研究科

2010年 2月 14日 東北大学鳴子会館

Page 2: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Introduction

Semigroup of analytic germs at the origin

Semigroup of analytic germs at the origin

Let O0 be the set of analytic germs f(z) of one complexvariable z with f(0) = 0 and let

O×0 = {f ∈ O0 : f ′(0) 6= 0}.

The set O0 has a structure of semigroup concerning thecomposition and O×

0 becomes a subgroup.Our main aim is to interpret the Loewner equation in thecontext of these structures.

Page 3: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Introduction

Semigroup of analytic germs at the origin

Semigroup of analytic germs at the origin

Let O0 be the set of analytic germs f(z) of one complexvariable z with f(0) = 0 and let

O×0 = {f ∈ O0 : f ′(0) 6= 0}.

The set O0 has a structure of semigroup concerning thecomposition and O×

0 becomes a subgroup.

Our main aim is to interpret the Loewner equation in thecontext of these structures.

Page 4: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Introduction

Semigroup of analytic germs at the origin

Semigroup of analytic germs at the origin

Let O0 be the set of analytic germs f(z) of one complexvariable z with f(0) = 0 and let

O×0 = {f ∈ O0 : f ′(0) 6= 0}.

The set O0 has a structure of semigroup concerning thecomposition and O×

0 becomes a subgroup.Our main aim is to interpret the Loewner equation in thecontext of these structures.

Page 5: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Introduction

Key references

Key references

”The power matrix, coadjoint action and quadraticdifferentials”, by Eric Schippers, J. Anal. Math. 98 (2006)249–277.

”A Green’s inequality for the power matrix”, by M. Schifferand O. Tammi, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 501(1971) 15 pages.

Page 6: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Introduction

Grunsky coefficients

Grunsky coefficients

Let f(z) = a1z + a2z2 + a3z

3 + · · · be an element of O×0 . The

Grunsky coefficients Am,n of f are defined by

logf(z)− f(ζ)

z − ζ=

∞∑m,n=0

Am,nzmζn

for small enough z, ζ.

We also consider the expansion

log1

1− f(z)f(ζ)=

∞∑m,n=0

Bm,nzmζn.

Page 7: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Introduction

Grunsky coefficients

Grunsky coefficients

Let f(z) = a1z + a2z2 + a3z

3 + · · · be an element of O×0 . The

Grunsky coefficients Am,n of f are defined by

logf(z)− f(ζ)

z − ζ=

∞∑m,n=0

Am,nzmζn

for small enough z, ζ.We also consider the expansion

log1

1− f(z)f(ζ)=

∞∑m,n=0

Bm,nzmζn.

Page 8: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Introduction

Grunsky-Nehari inequality

Grunsky-Nehari inequality

Theorem (Nehari 1953)

If f : D→ D is univalent and f(0) = 0, then

ReN∑

l,m=1

(Al,mtltm + Bl,mtltm) ≤N∑

l=1

|tl|2l

for t1, . . . , tN ∈ C.

Schiffer and Tammi extended it by using the power matrix andLoewner equation.

Page 9: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Introduction

Grunsky-Nehari inequality

Grunsky-Nehari inequality

Theorem (Nehari 1953)

If f : D→ D is univalent and f(0) = 0, then

ReN∑

l,m=1

(Al,mtltm + Bl,mtltm) ≤N∑

l=1

|tl|2l

for t1, . . . , tN ∈ C.

Schiffer and Tammi extended it by using the power matrix andLoewner equation.

Page 10: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Power matrix

Power matrix

Power matrix

For f ∈ O0, we consider the expansion

f(z)m =∞∑

n=1

[f ]mn zn

for a natural number m.

Note that [f ]mn = 0 for n < m.Consider the matrix [f ] with entries [f ]mn (m,n = 1, 2, . . . ).This is called the power matrix of f.I. Schur (1945), Jabotinsky (1953), and so on.

Page 11: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Power matrix

Power matrix

Power matrix

For f ∈ O0, we consider the expansion

f(z)m =∞∑

n=1

[f ]mn zn

for a natural number m. Note that [f ]mn = 0 for n < m.Consider the matrix [f ] with entries [f ]mn (m,n = 1, 2, . . . ).This is called the power matrix of f.

I. Schur (1945), Jabotinsky (1953), and so on.

Page 12: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Power matrix

Power matrix

Power matrix

For f ∈ O0, we consider the expansion

f(z)m =∞∑

n=1

[f ]mn zn

for a natural number m. Note that [f ]mn = 0 for n < m.Consider the matrix [f ] with entries [f ]mn (m,n = 1, 2, . . . ).This is called the power matrix of f.I. Schur (1945), Jabotinsky (1953), and so on.

Page 13: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Power matrix

Connection with Loewner equation

Connection with Loewner equation

Let

ft(z) =∞∑

k=1

ck(t)zk

be a solution to the (radial) Loewner equation

ft = −z1 + u(t)z

1− u(t)zf ′t , t ≥ 0,

for a continuous u(t) with |u(t)| = 1. Then,

∞∑

k=1

ck(t)zk = −(1 + 2

∞∑

k=1

ukzk)∞∑

k=1

kck(t)zk.

Page 14: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Power matrix

Connection with Loewner equation

Therefore,

ck(t) = −kck(t)− 2k−1∑m=1

mu(t)k−mcm(t)

for k ≥ 1. (In particular, c1(t) = e−t.)

Page 15: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Power matrix

A simple but important observation

A simple but important observation

Note that ft(z)n satisfies the same Loewner equation as ft(z).

Therefore, we have

cn,k(t) = −kcn,k(t)− 2k−1∑m=1

mu(t)k−mcn,m(t)

for k ≥ n, where cn,k(t) = [ft]nk . From these equations,

Schiffer and Tammi (1971) obtained an extension ofGrunsky-Nehari inequalities.

Page 16: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Power matrix

A simple but important observation

A simple but important observation

Note that ft(z)n satisfies the same Loewner equation as ft(z).Therefore, we have

cn,k(t) = −kcn,k(t)− 2k−1∑m=1

mu(t)k−mcn,m(t)

for k ≥ n, where cn,k(t) = [ft]nk .

From these equations,Schiffer and Tammi (1971) obtained an extension ofGrunsky-Nehari inequalities.

Page 17: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Power matrix

A simple but important observation

A simple but important observation

Note that ft(z)n satisfies the same Loewner equation as ft(z).Therefore, we have

cn,k(t) = −kcn,k(t)− 2k−1∑m=1

mu(t)k−mcn,m(t)

for k ≥ n, where cn,k(t) = [ft]nk . From these equations,

Schiffer and Tammi (1971) obtained an extension ofGrunsky-Nehari inequalities.

Page 18: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Algebraic structures

Law of composition

Law of composition

The power matrix has the following remarkable property:

[f ◦ g] = [f ][g]

for f, g ∈ O0. Also, [id] = id. Therefore, this gives a matrixrepresentation of O0 and O×

0 .

Also note that

n[f ]k+1n = (k + 1)

n−k∑m=1

m[f ]1m[f ]kn−m.

Page 19: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Algebraic structures

Law of composition

Law of composition

The power matrix has the following remarkable property:

[f ◦ g] = [f ][g]

for f, g ∈ O0. Also, [id] = id. Therefore, this gives a matrixrepresentation of O0 and O×

0 .Also note that

n[f ]k+1n = (k + 1)

n−k∑m=1

m[f ]1m[f ]kn−m.

Page 20: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Algebraic structures

Lie group G and Lie algebra g

Lie group G and Lie algebra g

Let G = {[f ] : f ∈ O×0 }. Then G can be regarded as a

complex Lie group of infinite dimension.

For h ∈ O0, we define〈h〉 to be the matrix with entries

〈h〉mn =

{m[h]1n−m+1 (m ≤ n)

0 (m > n).

Then g = {〈h〉 : h ∈ O0} can be identified with the Liealgebra of G. The Lie bracket is given by

[〈h〉, 〈j〉] = 〈h〉〈j〉 − 〈j〉〈h〉.

Page 21: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Algebraic structures

Lie group G and Lie algebra g

Lie group G and Lie algebra g

Let G = {[f ] : f ∈ O×0 }. Then G can be regarded as a

complex Lie group of infinite dimension. For h ∈ O0, we define〈h〉 to be the matrix with entries

〈h〉mn =

{m[h]1n−m+1 (m ≤ n)

0 (m > n).

Then g = {〈h〉 : h ∈ O0} can be identified with the Liealgebra of G. The Lie bracket is given by

[〈h〉, 〈j〉] = 〈h〉〈j〉 − 〈j〉〈h〉.

Page 22: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Algebraic structures

An observation

An observation

We set en = 〈zn+1〉 for n ≥ 0. Then

[ek, el] = (k − l)ek+l.

Thus g can be regarded as the ”positive part” of the Virasoroalgebra with zero central charge.

Page 23: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Algebraic structures

An observation

An observation

We set en = 〈zn+1〉 for n ≥ 0. Then

[ek, el] = (k − l)ek+l.

Thus g can be regarded as the ”positive part” of the Virasoroalgebra with zero central charge.

Page 24: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Algebraic structures

Loewner equations

Loewner equations

Loewner ODE:d

dtwt = −wtpt(wt).

Loewner PDE:d

dtft = zf ′tpt.

Page 25: Loewner方程式の応用について Applications of Loewner · PDF fileLoewner Equation and SLE : Overview Loewner方程式の応用について Applications of Loewner Equation

Loewner Equation and SLE : Overview

Algebraic structures

Matrix forms of Loewner equations

Matrix forms of Loewner equations

Matrix form (Schippers 2006)

d

dt[wt] = −〈zpt〉[wt].

d

dt[ft] = [ft]〈zpt〉