66
Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Embed Size (px)

Citation preview

Page 1: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Looking forward:Linking development and research to achieve real improvement in science

education

Robin Millar

Page 2: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

… respondents were concerned that pupils found science and mathematics courses hard, that they were not enthused by the content of the science curriculum nor by the way it was taught, and that they could not relate the issues they studied in science to the world around them. All these issues … were seen to result in declining numbers taking mathematics, physics and chemistry at A-level and beyond.

(p. 32)

Page 3: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

A-level physics numbers

Year Number 1992 41301 1993 38168 1994 36147 1995 34802 1996 33033 1997 33243 1998 33769 1999 33548 2000 31794 2001 30802

(Source: Inter Examination Board Statistics)

Page 4: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Students’ Views (n=1227)

Strongly disagree

%

Disagree%

Agree%

Strongly agree

%

I like school science better than other subjects

43 25 20 11

I would like to become a scientist

58 21 13 8

I would like to get a job in technology

41 25 21 13

Jenkins, E., & Nelson, N. W. (2005). Important but not for me: Students' attitudes toward secondary school science in England. Research in Science & Technological Education, 23(1), 41-57.

Page 5: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

ROSE Project:The Relevance of Science Education

An international and cross-cultural comparative project on young peoples’ views and perceptions, attitudes, values, interests, plans and priorities – in relation to science and technology

Svein Sjøberg, University of Oslo

Page 6: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

NorwayDenmarkSwedenI celandFinlandJ apan

EnglandN. I reland

I relandEstonia

LatviaCzech Rep.

PolandRussia (Karel)Spain (Balear)

PortugalGreeceTurkey

I srael (Hebr)Trinidad & T

MalaysiaI ndia (Mumbai)I ndia (Gujarat)

BangladeshPhilippinesBotswanaZimbabweSwaziland

LesothoGhana (Centr)

Uganda

1,0 1,5 2,0 2,5 3,0 3,5 4,0

Mean F5. I like school science better than most other subjects

I like school science

better than most other

school subjects In most

industrialized countries,

science is less popular than

other subjects

Page 7: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

NorwayDenmarkSwedenI celandFinlandJ apan

EnglandN. I reland

I relandEstonia

LatviaCzech Rep.

PolandRussia (Karel)Spain (Balear)

PortugalGreeceTurkey

I srael (Hebr)Trinidad & T

MalaysiaI ndia (Mumbai)I ndia (Gujarat)

BangladeshPhilippinesBotswanaZimbabweSwaziland

LesothoGhana (Centr)

Uganda

1,0 1,5 2,0 2,5 3,0 3,5 4,0

Mean F14. I would like to become a scientist

I would like to

become a scientist

Page 8: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

y = -3.5554x + 642.4R2 = 0.4958

250

300

350

400

450

500

550

600

650

0 20 40 60 80 100Percentage of Students with high score for Positive Attitude Toward Science

Ave

rage

Sci

ence

Sco

re

Korea

J apan

TaiwanSingapore

AustraliaEnglandCanada

United StatesHong KongNew Zealand

ItalyCyprus

Israel

Int. Average

ThailandJ ordan

Turkey

Chile Indonesia

Iran

Tunisia

Malaysia

Philippines

South Africa

Science attainment and attitude (from TIMSS, 1999)

Ave

rage

sci

ence

sco

re

% of students (age 14) with high PATS (positive attitude towards science)

Page 9: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

What students say

A lot of the stuff is irrelevant. You’re just going to go away from school and you’re never going to think about it again.

It doesn’t mean anything to me. I’m never going to use that. It’s never going to come into anything, it’s just boring.

In art and drama you can choose, like whether you’re going to do it this way or that way, and how you’re going to go about it, whereas in science there’s just one way.

It’s all crammed in … You catch bits of it, then it gets confusing, then you put the wrong bits together …

[From: Osborne, J. and Collins, S. (2000). Pupils’ and Parents’ Views of the School Science Curriculum. London: King’s College.]

Page 10: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar
Page 11: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

What should we teach?

How can we teach more effectively the things we choose to teach?

Page 12: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

What should we teach?

What is school science education for? What is the role of science within the

whole curriculum? Why teach science?

Page 13: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Why teach science?

1. To maintain and develop the kind of society we value, we need people with science qualifications (the economic argument)

Page 14: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

… the Industrial Exhibition in Paris ... furnished evidence of a decline in the superiority of certain branches of English manufacture over those of other nations ... [The opinion that] this decline was partly due to a want of technical education … was general.

(Taunton Commission, 1867)

Page 15: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar
Page 16: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

“Research and development (R&D) is widely recognised to be one of the most important factors in the innovation process. Numerous studies have shown a direct link between investment in R&D and future improvements in productivity.”

(p. 19)

Page 17: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Why teach science?

1. To maintain and develop the kind of society we value, we need people with science qualifications (the economic argument)

2. It is practically useful to have some scientific knowledge (the utility argument)

Page 18: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar
Page 19: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Why teach science?

1. To maintain and develop the kind of society we value, we need people with science qualifications (the economic argument)

2. It is practically useful to have some scientific knowledge (the utility argument)

3. Everyone needs some scientific knowledge to participate fully in important decisions that society has to take (the democratic argument)

Page 20: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

European Commission (1995). White Paper on Education and Training

Democracy functions by majority decision on major issues which, because of their complexity, require an increasing amount of background knowledge. … At the moment, decisions in this area are all too often based on subjective and emotional criteria, the majority lacking the general knowledge to make an informed choice. Clearly this does not mean turning everyone into a scientific expert, but enabling them to fulfil an enlightened role in making choices which affect their environment and to understand in broad terms the social implications of debates between experts.

(pp. 11-12.)

Page 21: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Why teach science?

1. To maintain and develop the kind of society we value, we need people with science qualifications (the economic argument)

2. It is practically useful to have some scientific knowledge (the utility argument)

3. Everyone needs some scientific knowledge to participate fully in important decisions that society has to take (the democratic argument)

4. Science is a central element of our culture and should be passed on in some form to all young people (the cultural argument)

Page 22: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Why teach science?

1. To maintain and develop the kind of society we value, we need people with science qualifications (the economic argument)

2. It is practically useful to have some scientific knowledge (the utility argument)

3. Everyone needs some scientific knowledge to participate fully in important decisions that society has to take (the democratic argument)

4. Science is a central element of our culture and should be passed on in some form to all young people (the cultural argument)

Page 23: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

So what should we teach?

Page 24: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

The school science curriculum has to do two jobs.

A central tension

Develop the

scientific literacy

Provide the first stages of

a training in science

of all students for some students

It has to :

These require different approaches. No single course can hope to do both jobs well.

Page 25: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

The most fundamental error in the traditional GCE/A level system was that each stage was designed to be suited to those who were going on to the next. … The other view, which seems to be held in every other advanced country, is that each stage of education should be designed for the main body of those who take it.

Department of Education and Science and Welsh Office (1988). Advancing A Levels (Higginson Report), para. 8. London: HMSO.

Page 26: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Beyond 2000 report

“The science curriculum from 5 to 16 should be seen primarily as a course to enhance general ‘scientific literacy’.”

Page 27: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

A training in science

an induction into a particular way of seeing the world

tacit, rather than explicit, understanding of the nature of the subject, and its characteristic ways of reasoning

immersion in current ‘paradigms’ ‘accepted examples of actual scientific practice’

extensive practice in using these

Page 28: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

‘it is romantic nonsense to imagine that potential science specialists can learn all the science they need without a lot of routine learning and practice along with indoctrination into traditional ways of thinking.’

(Collins, H. (2000). Studies in Science Education, 35, 171).

Page 29: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

What students say .. [In science], there’s one answer and you’ve got to learn it. …..

You just have to accept the facts, don’t you?….. It’s just not as creative as English.

In art and drama you can choose, like whether you’re going to do it this way or that way, and how you’re going to go about it, whereas in science there’s just one way

A lot of the stuff is irrelevant. You’re just going to go away from school and you’re never going to think about it again.

It doesn’t mean anything to me. I’m never going to use that. It’s never going to come into anything, it’s just boring.

[From: Osborne, J. and Collins, S. (2000). Pupils’ and Parents’ Views of the School Science Curriculum. ]

Page 30: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Beyond 2000 report

“The science curriculum from 5 to 16 should be seen primarily as a course to enhance general ‘scientific literacy’.”

How can we achieve this, whilst also catering for the needs of those who may want to go on to further study?

Page 31: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Testing a possible solution

A more flexible model for KS4 science

Commissioned by QCA in 2000

Piloted in 78 schools from 2003

First cohort received GCSE grades summer 2005

Page 32: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

The Twenty First Century Science model

GCSE Science

10% curriculum time

Emphasis on scientific literacy

for all students

(1 GCSE)

GCSE Additional Science

10% curriculum time

or

GCSE Additional Applied Science

10% curriculum time

for many students

(1 GCSE)

Page 33: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

An emphasis on scientific literacy

What would this mean in practice?

Page 34: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Scientific literacy

a ‘toolkit’ of ideas and skills that are useful for accessing, interpreting and responding to science, as we encounter it in everyday life

Page 35: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

A key difference

Scientists – producers of scientific knowledge

All of us – consumers of scientific knowledge

Page 36: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Content selection criteria

1. Scientific knowledge that is practically useful.

2. Scientific knowledge that enables you to participate more fully in important decisions that society has to take.

3. Scientific knowledge that is culturally significant, and shapes our view of who and where we are.

Page 37: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

What science do we meet everyday?

Page 38: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

What do you need to deal with this?

Some understanding of major scientific ideas and explanations

Some understanding of science itself:

the methods of scientific enquiry

the nature of scientific knowledge

how science and society inter-relate

Page 39: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Science Explanations

The ‘big ideas’ of science

Tools for thinking

What matters is a broad grasp of major ideas and explanations, not disconnected details

For example: The idea of a ‘chemical reaction’:

rearrangement of atoms; nothing created or destroyed

The ‘radiation model’ of interactions at a distance

The gene theory of inheritance The idea of evolution by natural

selection

Page 40: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Ideas about Science The uncertainty of all data: how to

assess it and deal with it

How to evaluate evidence of correlations and causes

The different kinds of knowledge that science produces (ranging from agreed ‘facts’ to more tentative explanations)

How the scientific community works: peer review

How to assess levels of risk, and weigh up risks and benefits

How individuals and society decide about applications of science

Page 41: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Teaching is through issues and contexts; but ‘durable’ learning is of Science Explanations and Ideas about Science.

GCSE Science:• Modules on topics of interest to students

• With clear links to science that you meet in out-of-school contexts• Providing opportunities to consider ‘how we know’, ‘how sure we

can be’, and to discuss and reflect on issues

Ideas about Science

(How science works)

Science Explanations

(Breadth of study)

Putting it all together

Page 42: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

The Twenty First Century Science pilot

A feasibility study Can such a course be designed? Will it look feasible to potential users? Will it be attractive to users? Can it be implemented? Can it be assessed? How well will it work?

Page 43: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

How have students responded?

Most pupils are enthused about [the course] and its … up to date approach and take more interest.

More interest, especially in science issues, and will often comment on stories in the media. Engagement real, as opposed to often tacit with traditional courses.

[Students’ interest is] greater because of what’s happening in the news now.

Page 44: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Students’ response Number of teachers

Much better 6

Better 21

Same 7

Worse 5

Teachers’ views of their students’ response after first year of pilot (n=40)

Page 45: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

What is different?

Far more group work and emphasis on views of students. More discussion work done. Students are generally more interested in science as they can see the relevance.

Teaching styles adopted are more inclusive, focus is on where science impacts human activity, and not study of topics isolated from students’ experience.

Pupils are required to think now rather than regurgitating facts. Pupil and teacher motivation has increased significantly.

Page 46: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Comments from one pilot school science department

“Pupils can now see the relevance of what they are learning.”

“There is now a buzz in the classroom - the pupils love it.”

“This is the type of science that I have always wanted to teach.”

“It has renewed my enthusiasm for teaching science.”

Page 47: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

What should we teach?

How can we teach more effectively the things we choose to teach?

Page 48: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

What should we teach?

How can we teach more effectively the things we choose to teach?

Page 49: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Research Network:Towards Evidence-based Practice in Science Education

Robin Millar (York)John Leach (Leeds)Jonathan Osborne (King’s College London)Mary Ratcliffe (Southampton)

Page 50: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Evidence-based Practice in Science Education (EPSE) Project 1:

Using diagnostic assessment to enhance teaching and learning

Page 51: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

How to increase the influence of research on practice

improve communication of research findings to teachers (and other users)

• provide teachers with research instruments, so they can collect better data on their own practice, and make changes in the light of this.

Usual approach:

Alternative approach:

Page 52: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

What we did

worked with a group of teachers; developed banks of diagnostic questions

for three science topics, for pupils aged 9-16;

used questions developed by researchers as a starting point where possible;

wrote new ones where necessary; tested and improved questions, and

reworked them into forms that could be more readily used in teaching.

Page 53: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Andy kicks a football across a level pitch. It rolls to the point X and then stops. Think about the football when it is in the middle and still moving. (a) The pictures below show the forces acting on the football while it is moving.

The arrows just indicate the direction of the forces, not their size. Which picture best shows the forces acting on the moving football?

X

moving stopped

A B C D E

F G H I J

K L M N O

Page 54: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

In this circuit, the bulb is lit. (a) What can you say about the readings on the two ammeters?

Tick ONE box ()

(b) How would you explain this?

Tick ONE box ()

The current is the same all round the circuit.

Some of the current is used up by the bulb.

All of the current is used up by the bulb.

The reading on ammeter A1 is bigger.

The reading on ammeter A2 is bigger.

The readings on the two ammeters are the same.

A1 A2

Page 55: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

In the diagrams below, the atoms of different elements are represented by the symbols . The diagrams represent the changes which occur when two gases are put together. (a) Is change X a chemical change?

Tick ONE box () yes no

Explain your answer: _____________________________________________ ______________________________________________________________ (b) Is change Y a chemical change?

Tick ONE box () yes no

Explain your answer: _____________________________________________ ______________________________________________________________

+ X Y

Page 56: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Research study: effects on practice

gave each teacher a bank of diagnostic questions on one science topic,

to use as they wished in their teaching; monitored how they used them, and the

effects of this.

23 teachers involved, in 10 schools

Page 57: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Stimulating discussion

T4: … so much of what is generated from this is discussion with the pupils, which is what these have prompted a great deal, which wouldn’t have been there without them. ... It’s prompted more discussions than I would normally have had … which is good.

Page 58: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Starting points for discussion

T10: … that’s a very useful feature of them, the fact that they give alternatives, so the kids aren’t thinking in a vacuum. They … have a starting point.

-----------------

T13: It made a lot more openings for discussion … The children had … lots of ideas in front of them … And then they can bring in their own.

Page 59: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Sustained discussion

T10: … question 5, about the motion of a football, proved to be a real problem for them. … the question as to whether or not there was a forward force provoked a heated debate.

What I got - from one EPSE question - was an entire lesson with pupils fully engaged and making real progress with their thinking.

Page 60: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Across the ability range

T10: With the upper sets I expected them to want to talk about these things .. But the bottom, that Set 5, were talking about it just as well … listening to each other, the actually talked about things, I thought, very well.

Page 61: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Changing teaching

T9: Oh it has [influenced my teaching], without question, in a beneficial way. I mean if I was the sort of teacher that was always prompting discussion then it probably wouldn’t have been a necessity, I wouldn’t have needed that. But I did need that and it’s helped, without question it’s helped. I’m having more discussions in class than previously, which is a good thing.

Page 62: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Working outside your specialist subject

T15: I've taken an approach with this that has been much more the approach that I would take with chemistry … much more open, you know, rather than me just giving information and working through things, a much more sort of interactive, discursive approach, which is a style of teaching I prefer. I think it's a better way of going about things, but perhaps I haven't been as confident in physics before to risk it.

Page 63: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Conclusions

Carefully designed teaching materials can stimulate specific changes in practice

Resources have impact when they enable teachers to make changes they want to make

Many students are interested in ideas, even when they have no obvious use

Page 64: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

How can we teach more effectively the things we choose to teach?

Being clear about learning outcomes and about how to recognise learning

Recognising the critical importance of dialogue in coming to an understanding of ideas

Page 65: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar

Research and practice To have impact, research findings need to be

reworked in the form of teaching materials or practical guidelines

Innovations must be practical, and consistent with what teachers ‘already know’

Development matters as part of an R&D (or D&R) cycle to work out the practical implications of research

findings and insights to enable research-informed ideas and

approaches to be tested and evaluated

Page 66: Looking forward: Linking development and research to achieve real improvement in science education Robin Millar