12
ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne Saxhof and Allan A. Nielsen 142 The Hjortekar project of six low energy house designs north of Copenhagen has become renowned. Here, the authors, from the Thermal Insulation Laboratory, the Technical University of Denmark, explain some of the construction details to avoid cold bridges, including a new-type structural element, and to ensure airtightness. Test results of infiltration air change rates range from 0.02 to 0.12 ach, while other tests show less than 15 per cent difference between calculated and measured transmission heat losses, which range from only 70 to 155 W/DC. A discussion of the correlation of tests forms a major part of this article. Until about 20-25 years ago most houses in Denmark were brick-built (solid or cavity walls), and internal surfaces were plastered. In the late fifties timber structures became prevalent, often with a brick facing, and internal surfaces were panelled. There followed the use and misuse of vapour barriers, and too little attention has been given to the joining of these vapour checks. In general, therefore, the change in building methods has caused an increase in air change by infiltration. However during the past few years the air-tightness of houses has been improved, mainly through introduction of weather stripping of doors and windows. The six low-energy houses at Hjortekar, built as part of the Danish Energy Research and Development Programme, offer a diversity of architectural and technical solutions as to design, choice of building materials, heating systems, energy sources, etc. (ref. 1). Each house has a living area of about 120 m2 and a designe d energy supply of approximately 5000 kWh/year, covering space heating, ventilation and domestic hot water. The low designed energy supply is achieved through an interplay of a low energy demand and utilisation of alternative energy sources, greater importance being attached to the former (ref. 2). In this issue we feature aspeets of energy eeonomy in buildings, includingt selected and edited papers from the international symposium held by CIB commission W67 in Dublin last year. The fuH Proceedings are now available from An Foras Forbartha, St. Martin's House, Waterloo Road, Dublin 4, Ireland. The six-volume set eost IR!80, plus postage eosts of IR!1.40 (Ireland and UK), IR!6.25 (rest of Europe), IR!6.00 (USA and Canada) and IR!10.50 (rest of the world). The Hjortekar project houses of various designs and forms of construetion. Distinctive among them is the solar heated house Building Research and Practice May-June 1983

Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489)

Low-energy houses:insulation and air tightnessby Bjarne Saxhof and Allan A. Nielsen

142

The Hjortekar project of six low energy housedesigns north of Copenhagen has becomerenowned. Here, the authors, from the ThermalInsulation Laboratory, the Technical University ofDenmark, explain some of the construction detailsto avoid cold bridges, including a new-typestructural element, and to ensure airtightness.Test results of infiltration air change rates rangefrom 0.02 to 0.12 ach, while other tests show lessthan 15 per cent difference between calculatedand measured transmission heat losses, whichrange from only 70 to 155 W/DC. A discussion ofthe correlation of tests forms a major part of thisarticle.

Until about 20-25 years ago most houses in Denmarkwere brick-built (solid or cavity walls), and internalsurfaces were plastered. In the late fifties timberstructures became prevalent, often with a brick facing,and internal surfaces were panelled. There followedthe use and misuse of vapour barriers, and too littleattention has been given to the joining of these vapourchecks. In general, therefore, the change in buildingmethods has caused an increase in air change byinfiltration. However during the past few years theair-tightness of houses has been improved, mainlythrough introduction of weather stripping of doorsand windows.

The six low-energy houses at Hjortekar, built as partof the Danish Energy Research and DevelopmentProgramme, offer a diversity of architectural andtechnical solutions as to design, choice of buildingmaterials, heating systems, energy sources, etc.(ref. 1). Each house has a living area of about120 m2 and a designe d energy supply of approximately5000 kWh/year, covering space heating, ventilationand domestic hot water. The low designed energysupply is achieved through an interplay of a lowenergy demand and utilisation of alternative energysources, greater importance being attached to theformer (ref. 2).

In this issue we feature aspeets of energy eeonomy inbuildings, includingt selected and edited papers fromthe international symposium held by CIB commissionW67 in Dublin last year. The fuH Proceedings arenow available from An Foras Forbartha, St. Martin'sHouse, Waterloo Road, Dublin 4, Ireland. Thesix-volume set eost IR!80, plus postage eosts of IR!1.40(Ireland and UK), IR!6.25 (rest of Europe), IR!6.00(USA and Canada) and IR!10.50 (rest of the world).

The Hjortekar project houses of various designs andforms of construetion. Distinctive among them is thesolar heated house

Building Research and Practice May-June 1983

Page 2: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

ECONOMIE D'ENERGIE

Maisonsisolation

consommantet etancheite

peu d'energie·å I'air

par Bjarne Saxhof et Allan A. Nielsen

Le projet Hjortekar de six types de maisonconsommant peu d'{mergie au nord de Copenha­gue est devenu celebre. Dans cet article, lesauteurs du Laboratoire Isolation Thermique deI'Universite Technique du Danemark exposentcertains details de construction permettant d'evi­ter les pants thermiques, dont un element porteurd'un nouveau type, et d'assurer I'etancheite a I'air.Les resultats des essais relatifs au taux derenouvel/ement d'air par infiltration vont de 0,02 a0,12 rah, tandis que d'autres essais revelent uneinfluence inferieure a 15 % entre les calculs et lesmesures des deperditions thermiques par trans­mission qui vont de 70 a 155 V/oC seulement.L'essentiel de cet article est consacre a unediscussion des correlations des essais.

Jusqu'a il Y a environ 20-25 ans, au Danemark,presque toutes les maisons etaient construites enbriques (murs pleins ou creux) et les surfacesinterieures recouvertes de platre. C'est vers la fin desannees 50 que les ouvrages en bois se sont repandus,avec souvent des parements exterieurs en briques etdes panneaux a l'interieur, d'ou l'utilisation, bonne oumauvaise, de barrieres de vapeur et des problemes dusessentielle ment au peu d'attention accorde au join­toiement de ces pare-vapeur. Ces nouvelles methodesde construction ont done entraine, en general, uneaugmentation des renouvellements de l'air par infiltra­tion. Cependant, l'etancheite a l'air a ete amelioree aucours de ces dernieres annees, grace surtout ål'introduction des bourrelets d'etancheite des portes etdes fenetres.

Les six maisons de Hjortekar, construites dans lecadre du programme de R & D danois sur l'energie,offrent une diversite de solution s architecturales et

techniques quant a la conception, au choix desmateriaux de construction, des systemes de chauffage,des sources d'energie, etc. (rM. 1). Chaque maison a

Nous avons consacre plusieurs articles de ce numero ådes problemes economiques de I'energie, avec uneselection de communications, dejå publiees, duColloque international de la commission du CIB W 67qui a eu Iieu å Dublin I'annee derniere. Le compterendu complet en est maintenant en vente å An ForasForbatha, St Martin's House, Waterloo Road, Dublin4, Ireland. II comporte six volumes et coute IR ! 80plus les frais d'expedition s'elevant å IR ! 1,40 pourl'Irlande et le RU, IR! 6,25 pour le reste de I'Europe,IR ! 6,00 pour les USA et le Canada et, enfin, IR! 10,50 pour le reste du monde.

Båtiment international Mai-Juin 1983

Les maisons du projet Hjortekar de conceptions etformes de construction variees. Une des plus remar­quables est la maison a chauffage solaire

143

Page 3: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

All six houses are extremely well insulated (typicalU-values for walls 0.13 - 0.20 W/m2C, and for roofs0.09 - 0.12 W/m2C). An attempt has been made tokeep the air leakage to a negligible level.

Some construetion details

It must be emphasised that the main reason for theextreme care given to the use af and the joining af

:><

,"><)< •

)<

)<

-

Figure lHorizontal section of corner of prefabricated house,built of concrete sandwich-type elements

Coupe horizontale d'un angle de la maison prefabri­quee, construite en elements du type sandwich en beton

Figure 3Detail of connection of pitched roof and wall, in ahouse built of cavity-filled aerated block walls

Detail d'une jonction toiture en pente-mur dans unemaison a murs creux isoles en blocs cellulaires

144

polyethylene ar aluminium foils in this project is notto prevent mai sture transport by diffusion, but toprevent air leakage through the construction. Air­tightness is important for two main reasons. First,possible maisture transport by convection considera­bly exceeds maisture migration by diffusion, andcondensation in the timber structures ean cause severedamage (wet and dry rot). Secondly, controlledventilation with heat recovery is only energy-efficientif the heat loss by infiltration is kept low ,as illustratedby the simple calculations in table 1. All six housesat Hjortekar have commercially built cross-flow platetype heat exchangers.

Table 1 Example, heat exchanger with 50 %efficiency

Infiltration rate (a.c.h.) ..............0.100.501.00

Controlled ventilation (a.c.h.) ....0.500.500.50

Total air change (a.c.h.) ............0.601.001.50

Thermal net air change (a.c.h.)0.350.751.25

True

heatrecoveryefficiency(%) .........................................

422517

The first construction detail (fig. 1) shows a horizontalsection of the corner af a prefabricated house, built afconcrete sandwich building elements. The elementsare insulated with 200 mm mineral wool (the termmineral wool being used for rockwool as well as forglass fibre wool). In this new building unit theinsulation thickness has not been reduced at the edgesaf the elements. The concrete facing and the innerleaf are connected with stainless steel reinforcement(approx. 350 mm2/m2) which causes an increase of theU-value af less than 6 per cent. No vapour barrier isshown - the painted interior surface of the concreteacts as vapour barrier.

The joint between two elements is cast with cementmortar, except that lime mortar has been used for theinner 20 mm, to be replaced with mastic, ifnecessary. The house was completed in March 1979,and so far the mortar joints have proved satisfactory.

Figure 2 shows a vertical section af a faundation for ahouse with a slab-on-ground construction, tradition­nally a weak point, thermally speaking. In this casethe 200 mm wall insulation is adjacent to the 225 mmfaundation insulation (both mineral wool), the onlythermal bridge being the concreting at the bottomconnecting the two prefabricated concrete elements.This faundation construction has since been further

developed into a U-shaped precast and pre-insulatedunit.

To prevent water suction a bituminous millboard isplaced between the faundation slab and thebrickwork. The interior surface af the lightweightconcrete wall is puttied and painted and serves asvapour barrier. The polyethylene foil an theconcrete floor slab is fastened between the lightweightconcrete wall and the skirting board, sealed withmastic to compensate for warping.

Figure 3 shows a vertical section af the connection af asloping roof to the upper part of the lower wall. Theouter and inner leaf of the sandwich wall are builtfrom blocks of aerated concrete, a special insulatingmortar being employed for the joints. Very fewbinders (ties) - and then only plastic binders - havebeen used, causing only infinitesimal thermal bridges.

Building Research and Practice May-June 1983

Page 4: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

une superficie habitable d'environ 120 m2 et unepuissance instaIlee d'enviran 5 000 kWh/an pour lechauffage central, la ventilation et l'eau chaudedomestique. Ce chiffre, relativement faible, estpossible gråce a une interaction entre une faibledemand e en energie et l'utilisation de sourcesd'energie de remplacement, une plus grande attentionetant accordee au premier point (ref. 2).

Ces six maisons sont toutes extremement bien isolees(coefficients K des murs 0,13 a 0,20 W/m2. °C, et destoitures de 0,09 a 0,12 W/m2. 0C). Les responsablesont cherche a maintenir a un niveau negligeable lesfuites d'air.

Quelques details de construetion

II faut souligner que la principale raison du soin toutparticulier apporte, dans ce prajet, a I'utilisation defeuilles de polyethylene ou d'aluminium et a leurjointoiement n'est pas d'empecher le transfert d'humi­dite par diffusion, mais de prevenir les fuites d'air autravers de la construction. L'etancheite a I'air estimportante pour deux raisons principales. Premiere­ment, un transfert d'humidite par convection depassede beaucoup la migration d'humidite par convectionet la condensation peut eauser des dommages tresgraves aux structures en bois (pourriture humide etcubique). Deuxiemement, la ventilation controleeavec recuperation de chaleur n'est efficace du point devue energetique que si la perte de chaleur parinfiltration est maintenue a un niveau faible, comme lemontrent les calculs simpies du tableau 1. Ces sixmaisons ont toutes des echangeurs de chaleur plansindustrialises a flux oblique.

Tableau 1 Exemple d'un echangeur de chaleurefficace a 50 %

Taux d'infiltration (rah).............0,100,501,00

Ventilation controlee (rah) ........0,500,500,50

Renouvellement d'air total (rah)0,601,001,50

Renouvellement d'air thermique net (rah)..................................0,350,751,25

Efficacite

reelle delarecupera-tion de chaleur (%) ..................

422517

Le premier detail de construction (fig. 1) montre unecoupe horizontale d'un coin d'une maison industriali­see en elements sandwiches de beton. Les elementssont isoles avec 200 mm de laine mineraIe (le termelaine mineraie etant utilise pour de la laine de rochecomme pour la laine de fibre de verre). Dans cenouvel element de construction, l'epaisseur de l'iso­lant n'a pas ete reduite sur les bords. Le parement debeton et la feuille interieure sont connectes par unearmature en acier inoxydable (environ 350 mm2/m2)qui ne cause qu'une augmentation du coefficient Kinferieure a 6 %. On ne voit aucune barriere de

vapeur car la surface interieure, peinte, du beton enjoue le role.

Le joint entre deux elements est rem pli avec dumortier de ciment, sauf pour les 20 mm interieurs ou ils'agit de mortier de chaux que I'on peut remplacer pardu mastic, si necessaire. L'achevement de la maisondate de mars 1979 et jusqu'a maintenant les joints onteu un comporte ment satisfaisant.

Båtiment international Mai-Juin 1983

Figure 2Section of foundation for a house with slab-on-groundconstruetion

Coupe des fondations pour une maison de construetiondalles sur le sol

La figure 2 montre une coupe verticale de fondationspour une maison de construction dalles sur le sol, quiconstitue toujours un point faible, thermiquementparlant. Dans ce eas, I'isolation du mur de 200 mm estadjacente a l'isolation des fondations de 225 mm(toutes deux constituees de laine minerale), le seulpont thermique dant le betonnage au fond constituantla liaison entre les deux elements de beton prefabri­ques. Ce type de construction s'est developpe depuissous la forme d'un element manufacture et pre-isoleen U.

Pour empecher tout e aspiration d'eau, une plaque decarton epais recouverte de bitume est placee entre ladalle de fondation et la ma~onnerie de briques. Lasurface interieure du mur de beton leger est lute puispeint et sert de barriere de vapeur. La feuille depolyethylene sur la dalle de plancher en beton est fixeeentre le mur en beton leger et la plinthe, etancheeavec du mastic pour compenser le voilement.

La figure 3 montre une coupe verticale de la liaisontoiture en pente/partie superieure du mur. Les feuillesexterieure et interieure du mur sandwich sont en blocsde beton alveolaire, avec un mortier isolant specialpour les joints. Tres peu de tirants - et seulement enplastique - ont de utilises, d'ou des ponts thermiquesinfiniment petits. Les surfaces exterieure et interieureont ete plåtrees et peintes, la surface interieure du

145

Page 5: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

Figure 4Vertical section of insulated storey-height partltwnshows how to seal a break through a vapour barrierwhen introducing ducts or tubes

La coupe verticaie d'une cloison de hauteur d'etageavec isolation montre comment realiser l'etancheitedans une coupure ti travers une barriere de vapeur lorsde la pose de conduits ou de tuyaux

Figure 5Vertical section at roof ridge. Masonite rafters areused and the vapour barrier goes between two layers ofplasterboard

Coupe verticale du fa/tage d'un toit. Des poutres enmasonite sont utilisees et la barriere de vapeur passeentre deux couches de plaques de platre

146

The exterior and interior wall surfaces have been

plastered and painted, the internal wall surface actingas vapour bar rier. The mineral wool insulation ofroof and walls measure 400 mm and 200 mm

respectively. The 65 mm wide laminated rafters(indicated by dashed lines) form a thermal bridge ofminor importance, causing an increase of the meanU-value for the roof of less than 7 per cent.

In the roof the vapour banier consists of polythenesheeting between the lathing and the gypsum ceilingpanels. Along the edges a wooden board is screwedonto the wall, squeezing the foil- two strips of foamplastic compensate for warping of the board. Thewide window casing is preassembled, nailed and gluedto the window frame to form an airtight box, open tothe roorn. The joint between the casing and theaerated concrete is sealed with mastic. The exteriorsilicone mastic shown should be replaced by a weatherstrip.

The vertical section of a ceiling construction shown infigure 4 demonstrates one way to take ducts, tubes orwires through the vapour banier without introducinga leakage. The normal cross section of the storey­height partition is seen to the left of the masonitebeam (the first floor is a one-room loft, designed forlater enlargement of the house). Certain specificareas are predesigned for perforations, then thepolyethylene sheeting is squeezed between twoplywood boards, and the lead-in is sealed withmastic. The mastic sealing can be canied out frombelow, as shown, or from above if prefened. Thestructural beam has a depth of 400 mm, and its 8 mmwide web plate of hard fibreboard minimises thermalbridges. The enlargement to the left shows thesqueezed lap joints of the polyethylene foil.

Figure 5 shows a vertical section of a roof constructionat the ridge. The rafters are 400 mm masoniterafters as in figure 4; thus the cold bridges areminimised. In this case the vapour banier is placedbetween two layers of plaster boards. Otherconstruction details not included in this papersuggested this solution. As everywhere else in the sixhouses, joints between polyethylene sheets are squeez­ed lap joints. As soon as the laminated girder is inposition a sheet of heavy polyethylene foil is rolled outon top of it and stapled to its sidestemporarily. When the rafters, the lathing and thefirst layer of gypsum ceiling panels have been put upthe foil is unstapled and a lap joint can be established(as indicated in the enlargement).

A new type of structural element, a post without anythermal bridges, is shown in figure 6. It consists oftwo strips of wood glued to a hard core of mineralwool. Two posts, glued and nailed to a thin plywoodpanel, form a strong beam, as shown to the right infigure 6. The post and the beam are used asstructural parts in the building elements of aprefabricated thermally Iight house, the post beingused in the roof and walls, and the beam in thefloar. A vertical cross section of two such floorelement s is shown in figure 7, before and after thejoining.

No vapour banier has been indicated in theillustration. The idea was to use 15 mm plywoodboards with aluminium foil integrated in thepanels. This is not a standard product, and to keep

Building Research and Practice May-June 1983

Page 6: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

Figure 7Two floor elements, before and after joining (verticalcross section). Matched floor boards rest directly onmineral wool,. ducts, tubes, etc. go in space betweenfloor boards and plywood panels and above the vapourbarrier

Figure 6A new type of structural element which avoids thermalbridges. In post (left) and beam form, it has woodstrips glued to a hard core of mineral wooi. Two suchpanels, glued and nailed to a central plywood layer,form the beam

XIX;)<

I

,

~

X~lY Y

,X

X

Deux elements de plancher, avant et apres confectiondes joints (coupe verticale). Les planches assortiesreposen t directement sur la laine minerale ,. lesconduits, tuyaux, etc. passent dans l'espace entre lesplanches du plancher et les panneaux de contre-plaqueet au-dessus de la barriere de vapeur

Nouveau type d'eLement de construetion qui evite lesponts thermiques. Du type montant (d gauche) poutres,il comporte des bandes de bois collees a une arne dureen laine minerale. Deux panneaux de ce type, colles etcloues sur une couche centrale de contre-plaque,forment la poutre

neaux. II ne s'agit pas d'un produit standard et, pourrester dans les Iimites de temps fixees, il a ete decided'utiliser pour cette premiere maison, des feuilles depolythene (entre les 15 mm de contre plaque et les300 mm d'isolant en laine minerale). On peut, malgretout, supposer raisonnablement que les panneaux decontre plaque seuls seraient suffisamment etanches.Les joints entre elements sont etanches au' mastic.L'utilisation de grands elements (6 unites de plancher,6 unites de toiture et 6 unit es de murs exterieursseulement pour la maison) perm et de maintenir al,!minimum la longueur totale des joints. La partiedroite de la figure 7 montre les plaques de sol assortiesqui sont posees directement sur la laine minerale, leplan des fibres de la laine mineraIe etant vertical. II est

mur jouant le role de barriere de vapeur. L'isolationen laine mineraie de la toiture et de ses murs mesure

respectivement 400 mm et 200 mm. Les chevronsstratifies de 65 mm de large (en pointilles sur ledessin) forment un pont thermique d'importancemineure, entrainant une augmentation du coefficientK pour la toiture inferieure a 7 %. Dans la toiture, labarriere de vapeur consiste en feuilles de polyethyleneentre le lattis et les panneaux de plafond en platre.Une planche de bois est vissee le long des bords dansles murs, serrant la feuille - deux bandes de moussede plastique compensant le voilement de la planche.Le large dormant de la fenetre est pre-assemble, doueet colle au chassis de la fenetre pour former une bolteetanche a I'air, s'ouvrant a I'interieur. Le joint entre ledormant et le beton alveolaire est etanche au mastic.Le mastic au silicone pour emploi exterieur peut etreremplace par un bourrelet d'etancheite.

La coupe verticale d'un plafond montree figure 4illustre une fa~on de faire traverser la barriere devapeur aux conduits, tuyaux et fils sans creer de fuite.On voit a gauche de la poutre en masonite une coupenormale d'une cloison de hauteur d'etage (le premieretage est un grenier d'une seule piece con~u pour unagrandissement ulterieur de la maison). Certaineszones specifiques sont prevues pour des perforations,puis les feuilles de polyethylene sont comprimeesentre deux planches de contre plaque et le pointd'entree est etanche au mastic. Cette pose du masticd'etancheite peut se faire par en-dessous comme lemontre la figure ou par au-dessus, si on le prefere. Lapoutre porteuse a 40 cm d'epaisseur et son arne pleined'une largeur de 8 mm en plaque de fibre dureminimise les ponts thermiques. L'agrandissement agauche montre les joints par chevauchement compri­mes de la feuille de polyethylene.

La figure 5 montre une coupe verticale du faitaged'une toiture. Les chevrons sont des chevrons enmasonit e de 400 mm comme dans la figure 4, ce quiminimise les ponts froids. Dans ce eas, la barriere devapeur est placee entre deux couches de plaques deplatre. Ce sont d'autres details de construction, noninclus dans cet article, qui ont suggere cette solution.Comme partout ailleurs dans les six maisons, les jointsentre les feuilles de polyethylene sont des joints dechevauchement comprimes. Des que la poutre stra­tifiee est en place, une feuille de polyethylene lourdest deroulee au-dessus et agrafee provisoirement surles cotes de la poutre. Une fois les chevrons, le lattis etla premiere couche de panneaux de plafond en platreposes, la feuille est degrafee et l'on peut realiser unjoint par chevauchement (cf. I'agrandissement).

La figure 6 montre un nouveau type d'element deconstruction, un montant sans aucun pont thermique.II consiste en deux bandes de bois collees a une arnedure de laine minerale. Les montants, colles et clouesa un panneau mince de contre plaque, forment unepoutre resistante (cf. fig. 6 a droite). Le poteau et lapoutre sont utilises comme parties porteuses dans leselements de construction d'une maison prefabriqueede faible inertie thermique, les montants etant utilisesen toiture et pour les murs et les poutres pour leplancher. On peut voir, en figure 7, une coupeverticaie de deux de ces types d'elements de plancher,avant et apres realisation des joints. L'illustration nefait etat d'aucune barriere de vapeur. L'idee etaitd'utiliser des plaques de contre plaque de 15 mm avecune feuille d'aluminium incorporee dans ces pan-

Båtiment international Mai-Juin 1983 147

Page 7: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

LOW-ENERGY HOUSES/continued

within the time limits it was decided to use polyethy­lene sheeting (between the 15 mm plywood and the300 mm mineral wool insulation) for this first house.However, it is reasonable to assume that the plywoodpanels alone would be sufficiently tight. The jointsbetween elements are sealed with mastic. Throughthe use of large units (only 6 floor units, 6 roof unitsand 6 external wall units for the house) the totallengthof joints is kept low. As shown to the right infigure 7 the matched floor boards rest directly onmineral wool, the fibre plane of the mineral woolbeing vertical. In the space between the floor boardsand the plywood panels rectangular ventilation ducts,pipes and (as indicated) wire tubes can be placed,above the vapour barrier.

Air change measurements

Normally controlled ventilation provides an airchange of approx. 0.5 per hour. To determine the air

leakage of the houses, ie through the construction, theventilation ducts were sealed during the test periods.When the first tests were carried out the houses wereabout 18 months old and had been heated all thetime. The weather data were recorded locally as partof the continuous monitoring programme of thisproject.

Tracer gas methodNo equipment for constant-concentration measure­ments was available. Tracer gas was injected inall rooms until the concentration reached a fixedlevel. A uniform distribution was obtained by meansof transportable fans. The concentration was thenmonitored as a function of time, and the assumedconstant air change rate was derived as a reciprocal ofthe time constant of the exponential decrease func­tion.

The first measurements were carried out simulta­

neouslyin all six houses, using NzO as trace rgas. The results are shown in table 2. Later testswere performed one house at a time, using aradioactive tracer, Kr-85. These results are alsoshown in the table.

Pressurisation and depressurisationIn all six houses depressurisation measurements weremade, and in four houses additional pressurisationtests were carried out. (The normaloperatingconditions of the houses result in a slightdepressurisation). In each test an exterior door wasreplaced by a plywood panel with a fan, and a venturitube for air flow measurement. An attempt wasmade to replace the tightest door of each house,mostly from a choice between two possibilities. Theresults are shown in figure 8 and table 3. House C is

• Insulating shulters closed.Volets isolants fermes.

Table 2 Air change rates measured by the tracer gas decay method

House

Measured infiltrationWind speedTemperatureTracer gas

(a.c.h.)(mis)difference (C)(N = N20, K = Kr - 85)

A

0.10 5.918N0.07

2.014N0.05

1.813K0.05

1.56K

B

0.03 5.623N0.02

1.623N0.02

3.416N0.02

3.115K

C

0.12 5.920N0.07

1.68N0.05

1.910K

D

0.09 5.917N0.08

3.216N0.08*

4.111K

E

0.08 5.918N0.11

4.513N0.10

4.612K

F

0.07 5.919N0.07

2.211N0.08

2.313K

Maison

Infiltration mesun;eVitesse du ventdifference deGaz traceur(rah)

(mis)temperature (OC)(N = N20, K = Kr - 85)

Tableau 2 Taux de renouvellement de I'air mesures par la methode de decroissance des gaz traceurs

148 Building Research and Practice May-June 1983

Page 8: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

possible de faire passer dans l'espace entre lesplanches du plancher et les panneaux de con tre­plaque des conduits rectangulaires de ventilation, destuyaux et des fils sous gaine, au-dessus de la barrierede vapeur.

MAISONSCONSOMMANTPEU D'ENERGIE/suite

25 50 75 100 Pa.

2

3

100 75 50 25

Measured air change ratesat a differential pressure of 50 Pa

House

PressurisationDepressurisation

(a.c.h.)(a.c.h.)

A

- 1.42

B0.21 0.29

Cl- 3.39

C2- 2.59

D1.65 1.61

E

1.12 1.24F

0.64 0.64

D*

- 2.22

E*

- 1.23

F*

- 0.72

Maison

PressurisationDepressurisation

(rahl(rahl

Taux de renouvellement d'air

a une pression differentielle de 50 Pa

a.e.h.5

4

~ PRESSURISATION DEPRESSURISATION ..•.

Figure 8Measured air change rates for the different housesunder positive and negative pressures

Taux de renouvellement d'air mesures pour lesdifferentes maisons soumises a des pressions positiveset negatives

Tableau 3 Renouvel/ements de I'air mesures pourdifferentes pressions differentiel/es

Table 3 Measured air change rates at different diffe­rential pressures

Mesures du renouvellement d'air

La concentration a ete mesuree en fonction du tempset le taux constant de renouvellement de I'air derive

en tant que reciproque de la constante te mps de lafonction de decroissance exponentielle.

Les premiere s mesures ont ete effectuees simultane­ment dans les six maisons, avec du NzO. Le tableau 2donne les resultats de cette etude ainsi que des essaisulterieurs realises maison apres maison avec untraceur radioactif, le Kr-85.

Methode du traceur a gazLes responsables ne disposaient d'aucun appareillagepour mesurer la concentration constante. Vn gaztrace ur a ete injecte dans toutes les pieces jusqu'li ceque la concentration ait atteint un niveau determine etune repartition uniforme a ete obtenue grace li desventilateurs portatifs.

Vne ventilation contralee donne normalement un

taux approximatif de 0,5 rah. Pour determiner lesfuites d'air, par l'enveloppe, les conduits de ventila­tion ont ete bouches pendant les periodes d'essai. Lorsdes premiers essais, les maisons avaient environ18 mois et avaient ete chauffees en continu. Les

donnees meteorologiques avaient ete enregistreeslocalement dans le cadre du programme de contralecontinu de ce projet.

Pressurisation et depressurisationDes mesures de depressurisation ont ete faites dansI'ensemble des six maisons ainsi que, dans qua tred'entre elles, des essais complementaires de pressuri­sation. (Les conditions normales de fonctionnementde la maison ont pour resultat une legere perte depression). Dans chaque essai, une porte d'entree a eMremplacee par un panneau de contre-plaque avecventilateur et un tube de venturi pour mesurerl'ecoulement d'air. On a tente de remplacer la porte laplus etanche de chaque maison, essentiellement unchoix entre deux possibilites. La figure 8 et letableau 3 donnent les resultats. La maison C estrepresentee par deux courbes de defaut d'etancheitepour des raisons que nous exposerons ci-apres. Letaux de renouvellement de l'air y est enregistreegalement pour une pression differentielle de 50 Pa.D*, E* et F* representent les mesures dans troismaisons avec volets exterieurs ; pour ces mesures, lesvolets etaients fermes mais les fenetres derriereouvertes.

Diseussion des resultats

II apparait clairement des resultats de ces deuxtechniques de mesure que les six maisons doivent etreconsiderees comme etanches. Mais, li en juger par lesessais de perte de charge, il est possible de les diviseren trois groupes: 1. extremement etanches (B et F) ;

2. tres etanches (A, D et E) ; et 3. relativement bienetanches (C). B et F sont tautes les deux des maisonsindustrialisees en grand s elements, tandis que lesautres ant ete construites sur le chantier. La maison Ca un porche et, li la suite d'un malentendu, leconstructeur a mis des bourrelets d'etancheite li laporte du parche dannant sur I'exterieur mais a ,~tilise

Båtiment internationalMai-Juin 1983 149

Page 9: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

150

LOW-ENERGY HOUSES/continued

represented by two leakage curves for reasonsdiscussed later. In the same figure and table, the airchange rate at a differential pres sure of 50 Pa islisted. D*, E* and F* represent measurements inthree houses with external shutters ; in these measure­ments the shutters have been closed, but the windowsbehind them opened.

Diseussion of resultsIt is obvious from the results by the two measurementtechniques that all six houses must be consideredtight. Judged by the depressurisation tests, however,they can be divided into three groups : 1. extremelytight (B and F); 2. very tight (A, D and E); and3. fairly tight (C). B and Fare both prefabricatedhouses built from large elements, while the others aresite constructions. C has a porch, and due to somemisunderstanding the builder put weather strips onthe exterior porch door, but used interior doors(without plastic strips and without sills) between theporch and the house. In figure 8 the curve C2 showsthe air leakage values when the porch doors and aleaking loft hatch had been sealed with tape. In B,all windows and doors open inward, and the resultsillustrate that the weather stripping, though good, isthe weak point in this connection. The results D*,E* and F* indicate that the external insulating shuttersare effective, ie that their effect on the transmissionheat loss is not diminished by unexpected air leakage.

The results quo ted so far, and other measurementvaluesnot included in thi s paper, have not demonstra­ted any significant relations between the infiltration airchange of tight houses and the wind speed. It mustbe emphasised that, so far, too few tests have beenmade, considering the low infiltration ratesmeasured. The work will be continued, but until thisrelation is established, no special effort is made tocorrelate the wind speed and wind direction to thedifferential pres sure governing the air leakage.

Transmission heat loss measurements

Test procedureAs with the air change measurements the ventilationducts were sealed for these tests.The tests were

performed during the winter 1979-80 in two houses ata time, for periods ranging from 7 to24 days. Houses D, E and F were calibrated twice,the shutters being closed the first time and open thesecond, Each room was heated by a thermostat­controlled electric resistance heater, and meterreadings were logged twice a day. Room tempera-

ture s as well as weather data were recorded every tenminutes (solar radiation data were measured every tenseconds, and the sums were recorded every tenminutes).

Calculation method

From each test two periods were selected; first, thelongest period beginning and ending with much thesame intern al and external temperatures (to minimisethe problem of heat accumulation in the construc­tions), and, secondly, a short stationary period (24-48hours) with a minimum of insolation. For the chosenperiods, the folIowing heat balance applies:Transmission heat loss + infiltration heat loss =Electricity for heating + solar heat gain.

The transmission heat loss is calculated from thetheoretical U-values, the actual average temperaturedifference and the transmission areas (as prescribed inref. 3). The lower sky radiation temperature is takeninto account through a 15 per cent increase of thetransmission heat loss through the roof, in accordancewith those rules. This one-dimensional model isslightly modified regarding the heat flow at thefoundation. An additional heat loss is calculated,using a model for two-dimensional heat flow,(ref. 4). The transmission heat loss coefficients listedin table 4 are obtained by dividing the calculated heatlosses by the average internal to external temperaturedifference for each period. In thi s case the houseaverage temperature is deri ved from the roomtemperatures, each room temperature being weightedwith respect to the room's designed transmission heatloss.

The solar heat gain is obtained as the product of themeasured solar radiation, the window area andstandard solar transmission factors, (ref. 5). Theinfiltration heat loss is calculated from the measuredair change rate s ; the values obtained from the firstNzO measurements were chosen for thispurpose. The measured transmission heat loss isfound as the sum of the solar heat gain and theelectricity meter readings with the subtraction of theinfiltration heat loss. As before, the heat losscoefficient is obtained from division by the averageinternal to external temperatur e difference. Theresults are listed in table 4.

Diseussion of resultsThe agreement between the theoretical and theexperimental values is good, considering the simplicityof the model applied. The longer test periods showthe better agreement (measured coefficients rangefrom 8 per cent below to 7 per cent above thecalculated values ; relevant percentages for the shorterperiods are 14 per cent and 13 per cent respectively).

Generally , the product of the heat loss coefficient andthe number of heating degree hours is used as anestimate of the annual transmission heat

loss. Denmark has approximately 70 000 heatingdegree hours (17 deg C base) in a year. The simpleproduct, however, will not necessarily be in agree­ment with the measured annual transmission heatlosses.

Some of the houses have been designed to utilise alarge part of the free heat (especially house F, whichwas designe d as a passive solar house), and the steadystate model does not take this into account, except

Building Research and Practice May-June 1983

Page 10: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

des porte s interieures (sans bandes plastiques et sansseuil) entre le porche et la maison. Dans la figure 8, lacourbe C2 donne les valeurs de fuites d'air apres queles porte s du porche et la trappe du grenier laissantpasser l'air aient ete scellees avec une bande. Dans lamaison B, toutes les fenetres et les portes ouvrent versl'interieur et les resu1tats montren t clairement que lesbourrelets d'etancheite, bien que de bonne qualite,sont le point faible a cet egard. Les resu1tats D*, E* etF* indiquent que les volets isolants exterieurs sontefficaces, c'est-a-dire que leur effet sur la deperditionde chaleur par transmission n'est pas diminue par desfuites d'air non prevues.

Les resultats cites jusqu'ici et d'autres valeurs demesure non comprises dans cet article n'ont pas fait lapreuve de relations significatives entre le renouvelle­ment d'air par infiltration et la vitesse du vent. II fautsouligner que, jusqu'a maintenant, il y a eu trop peud'essais, compte tenu des faibles taux d'infi1trationmesures. Ce travail se poursuivra, mais jusqu'a ce quece rapport soit prouve, il ne sera fait aucun effort pourcorreler vitesse et direction du vent et la pressiondifferentielle correlant les fuites d' air.

Mesures des deperditions de ehaleurpar transmission

Procedure d' essai

Comme pour les mesures de renouvellement de l'air,les conduits d'air ont ete etanches pour ces essais quiont ete realises au cours de l'hiver 1979-80 dans deux

maisons en meme temps, sur des periodes allant de 7 a24 jours. Les maisons D, E et Font ete calibrees deuxfois, les volets etant fermes la premiere fois et ouvertsla seconde. Chaque piece etait chauffee par unradiateur a resistance electrique avec thermostat et les

compteurs releves deux fois par jour. Les tempera­tures des pieces ainsi que les donnees meteorologiquesl'ont ete tout es les dix minutes (les donnees relative sau rayonnement solaire ont ete mesurees toutes les dixsecondes, et les totaux enregistres toutes les dixminutes).

Methode de calcul

Deux periodes ont ete selectionnees dans chaqueessai, d'abord, la plus longue periode commen<;ant etse terminant avec les memes temperatur es (approxi­mativement) interieure et exterieure (pour minimiserle problem e de l'accumulation de chaleur dans lesconstructions) et deuxiemement, une courte periodestationnaire (24-28 heures) avec un minimum d'enso­leillement. Pour les periodes choisies, l'equilibrethermique suivant s'applique: deperdition de chaleurpar transmission + deperdition de chaleur parinfiltration = electricite pour le chauffage + apport dechaleur solaire.

La deperdition de chaleur par transmission estcalculee a partir des coefficients K theoriques, de ladifference de temperature moyenne reelle et deszones de transmission (comme prescrit dans lareference 3). La temperature inferieure du rayonne­ment du ciel est prise en compte par une augmentationde 15% de la deperdition de chaleur par transmissionpar le toit, conformement a ces regles. Ce modele aune dimension est legerement modifie en ce quiconcerne l'ecoulement de chaleur au niveau des

fondations. Vne deperdition de chaleur supplemen­taire est calculee gråce a un modele d'ecoulement dechaleur a deux dimensions (ref. 4). On obtient lescoefficients de deperdition de chaleur donnes autableau 4 en divisant les deperditions de chaleurcalculees par la difference de temperature exterieur­interieur moyenne pour chaque periode. Dans ce eas,

Table 4 Results from transmission heat loss measurements

House

LPL\.tIELTCTMTC - TM. 100TMV

Maison

TC

(h)(C)(kWh)(kWh)(W/C)(W/C)(%)(W/m"C)

A

119.321.96.5214.58376 80.31A

22.822.50.340.68371 140.29B

119.222.15.4195.87973 80.25B

46.822.50.477.07870 100.24C

516.223.3124.01 077.28889-1 0.33C

44.821.31.197.78993-4 0.35D

328.221.6172.9592.69797 O0.28D

47.720.46.789.29788 90.25D*

454.021.90.0765.66866 30.19D*

49.322.30.086.46868 O0.20E

424.622.1195.6732.28288-7 0.21E

47.720.94.287.08280 20.19E*

334.422.80.0560.56062-3 0.15E*

93.922.80.0162.06065-8 0.16F

410.722.6550.0966.5145155-7 0.44F

24.521.15.966.7145132 90.38F*

311.823.30.0788.892100-7 0.29F*

23.120.90.055.795107- 130.31

LP

Length of period LPDu"!e de la periode.6.t

Average temperature difference during LP .6.tDifference de temperature moyenne pendant LPI

lnsolation during LP (solar heat gain) IEnsoleiilement pendant LPEL

Eiectricity for heating during LP ELEleetricite pour ie chauffage pendant LPTe

Calculated transmission heat 1055 coefficient TCCoefficient calcule de deperdition de chaleur par transmissionTM

Measured transmission heat loss coefficient TMCoefficient mesure de deperdition de chaleur par transmissionTMV

TM per m3 hause volume TMVTM par m3 de volume de la maison

Tableau 4 Resultats des mesures de deperdition de ehaleur par transmission

Batiment international Mai-Juin 1983

0*, E*, F*Houses with insulatingshutters c10sed

Maisons avec voletsisolants fermes

151

Page 11: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

152

LOW-ENERGY HOUSES/continued

that the stipulation of a 17 deg C base to some extentdoes compensate for this free heat effect. It must beemphasised that the main achievement of thisexperiment has been to verify the calculation ofU-values, and thus the standard design procedure, forlow-energy houses.Some of the differences between calculated andmeasured heat losses are considered to be due to thedifficulties of assessing the solar heat gain. Thestandard solar transmission factors have been determi­ned from experiments with clean windows. Thewindows at Hjortekar were not cleaned immediatelybefore the house calibrations, and their glass might bedifferent from that of the reference windows (eg withrespect to the concentration of iron oxide). However,some preliminary solarimeter measurements of thesolar transmission indicate that the solar heat gainderived from the standard factors was too high.

A comparison between the transmission heat losscoefficients derived from the longer test periods (ofhouse D, E, and F respectively) with and withoutshutters, verifies that the expected energy savingsfrom the use of insulated shutters is obtained(table 5). The shorter periods all indicate smallerenergy savings than expected.

Table 5 Energy saving effect af shutters(sp = the shorter period, lp = longer period)

D(sp}D(lp)E(sp)E(lp)F(sp)F(lp)

Calculatedeffect(W/C) ..........

292922225053Measured effect(W/C) ..........

203115262555

Conclusions

It has been shown in this project that it is possible tobuild well insulated airtight houses, and that it can bedone in various ways using many different buildingmaterials. The designer must pay attention to thetwo- and three-dimensional character of the tightnessproblems, and he must make the builder aware of theimportance of a properly sealed structure. During aperiod of transition intensified supervision may benecessary.

Although no direct correlation has so far been foundbetween the tracer gas measurements and thedepressurisation tests it is advis able to apply bothmethods to assess and/or improve the air tightness of a

house. The trace r gas decay method gives the levelof the weather-dependant air infiltration at the specifictime of the measurements, and the depressurisationtests supply information on the physics of thebuilding. Under depressurisation it is possible to findair leaks, as they cause cold draughts, and apressurisation/depressurisation test can furthermorebe combined with a smoke test.

The thermal calibration of the houses shows goodagreement between the measured transmission heatloss and the transmission heat loss calculated accor­ding to the present simplified designprocedures. Test periods should have a length of notless than 10 days. It has been found that resultsbased on shorter extracts of the test periods, eg 24homs, are more dispersed, even if the data areselected from a quasi-stationary period. Future workwill show if it is possible to derive a simple heat lossequation for each low-energy house from regressionanalysis of the experimental data, an equation basedon the three variables - temperature difference, solarradiation and wind speed (ref. 6).

Acknowledgement

We thank our colleagues in the research team,Mogens R. Byberg (project manager), RolfG. Djurtoft, Gad Nissenbaum, Johannes Poulsen,Kirsten E. Poulsen and Niels Henrik Rasmussen, whohave participated in either the planning or theexecution of the experiments and calculations repor­ted in this paper.

The Low-Energy House Project is funded by theDanish Ministry of Energy.

References/Bibliographie

1. BYBERG M., DJURTOFI R.G. and SAXHOF B., Six low-energyhouses at Hjortekar, Deseription of thehouses. Thermal Insulation Laboratory, ReportNo. 83, May 1979.

2. SAXHOF B., DJURTOFI R.G, BYBERG M. and AASBJERG

NIELSEN A., Six low-energy houses at Hjortekar, Den­mark, Deseription of the houses and presentation ofenergy measurements during the first winter. 7thInternational Congress of Heating and Air Conditio­ning, 'Clima-2000', Budapest 1980.

3. NP-138-S(DS 418). Dansk Ingeniørforening's. Rulesfor the ealculation of heat loss from buildings, 4thEdition. Copenhagen 1977. In Danish.

4. TODlM, Internat doeument on the two-dimensionalheatflow programme. Thermal Insulation Laboratory.

5. NIELSEN, ANKER, Beregningaf energiforbrug i bygninger(EFB-1). Thermal Insulation Laboratory, ReportNo. 92, 1980.

6. KORSGAARD, VAGN, Warmeersparnisse dureh besserewarmedammung an einfamilienwohnhausern, Gesun­dheits-Ingenieur. Nr. 8, 1960,Thermal Insulation La­boratory, 1960.

Building Research and Practice May-June 1983

Page 12: Low-energy houses: insulation and air tightness · 2008. 1. 4. · ENERGY ECONOMY CII5fB 81 (R3) (L2) (M2) UDC 728.3 (489) Low-energy houses: insulation and air tightness by Bjarne

on denve la temperature moyenne de la maison destemperatures des pieces, chacune d'elles etant ponde­ree en fonction de la deperdition de chaleur partransmission du prajet.

L'apport de chaleur solaire est obtenu, comme etantle produit des radiations solaires mesurees, de lasuperficie des fenetres et des coefficients de transmis­sion solaire standard (ref. 5). La deperdition dechaleur par infiltration est calculee d'apres les taux derenouvellement de l'air mesures ; on a choisi, dans cebut, les valeurs obtenues d'apres les premiere smesures de NzO. On obtient la deperdition de chaleurpar transmission mesuree par l'addition de I'apport dechaleur solaire et des releves du compteur d'electricitemoins la deperdition de chaleur par infiltration.Comme precedemment, le coefficient de deperditionest obtenu par division par la difference des tempera­tures exterieur-interieur (cf. les resultat s autableau 4).

Diseussion des resultats

La concordance entre les valeurs theoriques etexperimentales est bonne, malgre la simplicite dumodele applique. Les essais sur des periodes pluslo"ngues revelent une meilleur concordance (lescoefficients mesures vont de - 8 % a + 7 % desvaleurs calculees, les pourcentages correspondantspour les periodes plus courtes sont respectivement de14 et 13 %).

On utilise, en general, le produit du coefficient dedeperdition de chaleur et du nombre de degres-heuresde chauffage pour estimer la deperdition de chaleurannuelle par transmission. Le Danemark compteapproximativement 70 000 degres-heures de chauf­fage (sur la base de 17 DC)par an. Ce produit simplene sera pas forcement en accord avec les deperditionsde chaleur par transmission mesurees.

Certaines maisons ont ete con~ues pour utiliser unegrande part de l'energi e libre (en particulier la maisonF, con~ue comme maison solaire passive), et lemodele en regime permanent ne tient pas compte dece fait, sauf que la prescription d'une base de 17 DCcompense en fait, dans une certaine mesure, I'inci­dence de cette chaleur gratuite. II faut souligner quecette experience a eu pour mente principal de verifierle calcul des coefficients K et donc la procedurestandard de calcul au stade du projet pour les maisonsconsommant peu d'energie.

Certaines differences entre les deperditions de chaleurcalculees et mesurees sont dues, pense-t-on, auxdifficultes d'une estimation exacte des apports dechaleur solaire. Les coefficients standard de transmis­

sion solaire ont ete determines a partir d'experiencesfaites avec des fenetres prapres. A Hjortekar, lesvitres n'ont pas ete nettoyees immediatement avant lecalibrage des maisons, et leurs vitrages etaientpeut-etre differents des fenetres de reference (en cequi concerne, en particulier, la teneur en oxyd e defer). Mais quelques mesures preliminaires au solari­metre indiquent que les apports solaires derives descoefficients standard etaient trop eleves).

Vne comparaison entre les coefficients de deperditionde chaleur par transmission derives des periodesd'essais plus longues (des maisons D, E et Frespectivement) avec et sans volets permet de verifierque l'on obtient bien les economies d'energie atten­dues de I'utilisation des volets isolants (cf. tableau 5).

Båtiment international Mai-Juin 1983

Les periodes plus courtes donnent toutes des econo­mies inferieures a celles que l'on escomptait.

Tableau 5 Energie economisee grace aux volets(sp = periode courte, lp = periode longue)

D(sp)D(lp)E(sp)E(lp)F(sp)F(lp)

Incidencecalculee(W/oC) .........

292922225053Incidence mesuree(W/oC) .........

203115262555

Conclusions

Ce prajet a permis de montrer qu'il est possible deconstruire des maisons bien isolees et etanches a l'air,et ce de differentes fa~ons et en utilisant des materiauxde construction nombreux et varies. Le projeteur doitfaire attention au caractere a double ou tripledimension des problemes d'etancheite a l'air et c'est alui de faire prendre conscience au constructeur del'importance d'un ouvrage correctement etanche. Vnesupervision tres rigoureuse peut et re necessairependant une periode de transition.

Bien que I'on n'ait pas, jusqu'ici, etabli de correlationdirecte entre les mesures au gaz traceurs et les essaisde pressurisation, il est conseille d'appliquer les deuxmethodes pour evaluer et/ou ameliorer I'etancheite al'air d'une maison. La methode d'attenuation des gaztraceurs donne le niveau d'infiltration d'air dependantdes conditions meteoralogiques au moment specifiquedes mesures, tand is que les essais de depressurisationfournissent des informations sur I'etat du båtiment. IIest possible, en cours de depressurisation, de trouverles fuites d'air, car elles provoquent des courants d'airet, en outre, de combiner ce type d'essai avec un essaid'enfumage.

L'etalonnage thermique de ces maisons a revele unebonne concordance entre les deperditions de chaleurpar transmission mesurees et calculees selon lespracedures simplifiees actuelles de conception. Lesessais devraient porter sur des periodes de 10 jours aumoins, car on s'est aper~u que les resultats bases sur24 h, par exemple, sont plus disperses, meme si lesdonnees sont choisies sur une periode quasi station­naire. Les travaux ulterieurs montreront s'il est

possible de deriver une equation simple de deperdi­tion de chaleur pour chaque maison consommant peud'energie d'une analyse de regression des donneesexperimentales, equation basee sur trois variables :difference de temperature, radiations solaires etvitesse du vent (ref. 6).

Remerciements

Nous tenons a remercier nos collegues de l'equipe derecherche, Mogens R. Byberg (chef du projet), RolfG. Djurtoft, Gad Nissenbaum, Johannes Poulsen,Kirsten E. Poulsen et Niels Henrik Rasmussen qui ontparticipe soit a la prepatation, soit a I'execution desexperiences et des calculs rapport es dans cet article.

Le Projet Maisons consommant peu d'energie estsubventionne par le ministere de I'Energie duDanemark.

153