23
Low Impact Storm Water Management October 10, 2013 Candice Green, P.Eng., LEED AP

Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Low Impact Storm Water Management

October 10, 2013Candice Green, P.Eng., LEED AP

Page 2: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Storm Water Management

• Storm Water Management refers to procedures or methods used to design drainage works that:– Control the quantity of storm runoff;– Preserve or enhance the quality of storm water runoff;

– Reduce erosion and prevent flooding.

Page 3: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Storm Water Management

Impacts of unmitigated Storm Water in an urban environment:

• Increased flooding and property damage.

• Degradation of stream channels• Less groundwater recharge and dry weather flow.• Impaired water quality

– Hydrocarbons and trace metals from vehicles.– Suspended solids from erosive stream banks and construction sites.– Chlorides from road salts.– Nutrients from fertilizer and grass clippings and leaves from yards and 

streets.

– Bacteria from pet waste and other wildlife.• Increased water temperature.

• Loss of habitat.• Decreased recreational opportunities

Page 4: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Storm Water Management• Storm Water Management is required to mitigate the effects of 

urbanization on the hydraulic cycle.• Urbanization results in an 

– increase in direct runoff and corresponding decrease in infiltration,– Decrease in infiltration reduces soil moisture replenishment and 

groundwater recharge.

Page 5: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

City of Greater Sudbury Storm Water Background Study

to the City’s Official Plan

• Pipe Design

• Quantity Control– Increased peak flow rates due to new development must be controlled before being discharged to approved outlets. 

In general, post‐development peak flow rates must not exceed pre‐development peak flow rates, or if a subwatershedplan exists, the peak flow rates identified in the subwatershed plan. (Match pre‐ to post‐)

– The minimum level of peak flow control shall be control of the post‐development 2‐year design storm peak flow rate to pre‐development levels prior to discharge into the minor system (storm sewers)

– control of the post‐development Regional or 100‐year design storm peak flow rate (which ever is larger) to pre‐development levels prior to discharge into the major system (surface drainage system).

• Quality Control– 80%  Total Suspended Solids, 30% Phosphorous – 75% of pollutants are found in small storms (storms with rainfall less than 1”)

Road Classification Design Storm Return Period

Urban Arterial 10 Year

Rural Arterial/Collector Road 5 Year

Local Road 2 Year

Page 6: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

City of Greater Sudbury Storm Water Background Study to the City’s Official Plan

How do we calculate the quantity of water, pre‐ and post‐ development?

Land UseRunoff Coefficient

Minimum

Runoff Coefficient

Maximum

Pavement – Asphalt or Concrete– Brick  

0.80

0.70

0.95

0.85

Gravel Roads and Shoulders 0.40 0.60

Roofs 0.70 0.95

Business      – Downtown– Neighbourhood

– Light

– Heavy

0.70

0.50

0.50

0.60

0.95

0.70

0.80

0.90

Residential   – Single Family Urban– Multiple, Detached

– Multiple, Attached

– Suburban

0.30

0.40

0.60

0.25

0.50

0.60

0.75

0.40

Industrial – Light

– Heavy

0.50

0.60

0.80

0.90

Apartments 0.50 0.70

Parks, Cemeteries 0.10 0.25

Playground (Unpaved) 0.20 0.35

Railroad Yards 0.20 0.35

Unimproved Areas 0.10 0.30

Lawns           – Sandy Soil‐ Flat, to 2%‐ Average, 2% to 7%‐ Steep, over 7%

– Clayey Soil

‐ Flat, to 2%‐ Average, 2% to 7%‐ Steep, over 7%

0.05

0.10

0.15

0.13

0.18

0.25

0.10

0.15

0.20

0.17

0.22

0.35

Page 7: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Storm Water Management Pond

• Could this process be considered storm water disposal rather than storm water management?

Page 8: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Low Impact Storm Water Management

• Instead of conveying and managing/treating storm water in a large, costly end of pipe facilities located at the bottom of drainage areas (storm ponds) Low Impact Development (LID) addresses storm water through small cost‐effective landscape features.

• LID’s goal is to mimic a site’s pre‐development hydrology by using design techniques that evaporate, infiltrate, filter, store and detain runoff close to its source.

• LID’s manage rainfall where it lands.

Page 9: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Low Impact Storm Water Management

How do LID’s work?• LID’s strive to replicate virtually all components of the natural water cycle by:– Minimizing total runoff volume

– Controlling peak rate of runoff– Maximizing infiltration and groundwater recharge– Maintaining stream base flow– Maximizing evapotranspiration and– Protecting water quality.

• LID’s are often more cost effective and aesthetically pleasing than traditional, structural storm water conveyance.

Page 10: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

City of Greater Sudbury Storm Water Background Study

to the City’s Official Plan

Quality Control• It is preferred that storm water quality be addressed as close to the source of runoff as possible.

• On‐site controls are much more flexible and may include infiltration, oil grit separators (for commercial or industrial sites with high imperviousness), buffer strips, enhanced swales, or bio‐retention areas.

• Infiltration of stormwater will be encouraged for every site where local conditions make infiltration feasible and desirable

Page 11: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Low Impact Storm Water Management

Toronto and Region Conservation Authority approved LID Practices• Green Roofs• Rainwater Harvesting• Soakaways, Infiltration Trenches and Chambers

• Bio‐retention• Vegetated Filter Strips• Pervious, Permeable and Porous Pavement

• Enhanced Grass Swales

Page 12: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Green Roofs

Typically constructed in Commercial applications.

Requires sufficient load bearing capacity of building structure.

Conserves energy by insulating the roof from heat and cold.

Reduces runoff volume and removes most pollutants.

Page 13: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Rainwater  Harvesting

Residential Applications  can range in size up to 400 L.

Commercial Applications can be as large as 40,000 L.

OBC allows for the use of rainwater for toilet/urinal flushing.

If systems are to be used year‐round they will have to be insulated to prevent freezing (underground, indoors)

Page 14: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Soakaways and Infiltration Trenches

A square or rectangular excavation lined with geotextile fabric and filled with clear stone.

Rock fill could be considered infiltration areas.

Typically receive roof runoff from individual lots

Can receive road runoff with sedimentation pretreatment.

Page 15: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Infiltration Chambers

Includes a range of proprietary manufactured modular structures installed subsurface typically under parking or landscaped areas.

Structures have open bottoms and perforated side walls.

Can treat roof, road and walkway runoff with sedimentation pre‐treatment.

Well suited for projects where surface treatment facilities are scarce.

Page 16: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Bioretention

Elm Drive, Mississauga

Lake View Neighbourhood, Mississauga

A shallow excavated surface depression containing a soil mix planted with native vegetation overlying a stone reservoir.

Page 17: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Bioretention

A shallow excavated surface depression containing a soil mix planted with native vegetation overlying a stone reservoir.

Other names include rain garden, bioswale, biofilter.

Page 18: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Vegetated Filter Strips

Gently sloping densly vegetated areas that treat runoff as sheet flow from adjacent impervious areas.

Slow water velocity and filter out suspended solids

Width of “strip” is to be at least 5m and have a slope between 1 – 5%.

Also known as buffer strips and grassed filter strips.

Page 19: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Pervious, Permeable and Porous Pavement

A permeable pavement surface underlain by a gravel bed that stores runoff and allows it to infiltrate.

Surface can be interlocking concrete blocks, concrete grid, plastic grid, permeable concrete, etc.

Depth of aggregate dependant on quantity of water to be stored.

Page 20: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Enhanced Grass Swales

Vegetated open channels designed to convey, treat, and attenuate storm water runoff.

Similar to conventional grass ditches, enhanced grass swales incorporate features such as check dams and modified geometry.

Check dams in swales slows water to allow for sedimentation and filtration, evapotranspiration and infiltration.

Slopes of 0.5 – 6% can be used.  Slopes over 3% should include check dams.

Also known as enhanced vegetated swales.

Page 21: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Low Impact Storm Water Management

Cold Weather Concerns• Clogging of systems resulting from winter maintenance (sand, salt).

• Freeze‐Thaw conditions.• Water migration into parking/road structural base.

• Contaminant concerns– Soil and groundwater contamination.

Page 22: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

Low Impact Storm Water Management

Benefits of LID’s• Developers

– Can reduce land clearing and grading costs.– Potentially reduces infrastructure costs (eg. curb, storm pipes and structures)

– Can reduce storm water management construction costs.– Potentially increases lot yields/amount of developable land. 

• Municipality

– Reduces municipal infrastructure and utility maintenance costs (eg. curb, storm infrastructure, ponds).

Page 23: Low Impact Storm Water Management - R.V. Anderson ... · Low Impact Storm Water Management • Instead of conveying and managing/treating storm water in a large, costly end of pipe

QUESTIONS?