1
Mo#va#on Observa#ons indicate Atlan#c SSTs exhibit significant lowfrequency variability (Bjerknes 1964; Kushnir 1994; Ting et al. 2009). e.g. Atlan=c Mul=decadal Oscilla=on (Kerr, 2000; Knight et al., 2005) The origin of Atlan#c SST anomalies is not known. Likely depends on #mescale Intraannual to interannual: response to local atmospheric forcing (Frankignoul and Hasselmann, 1977), e.g. the NAO tripole (Cayan, 1992). Longer =mescales (how long?) ocean circula=on may play a role. Ocean dynamics that are important have not been isolated Wind and/or buoyancy forced baroclinic Rossby waves (Sturges et al 1998). Large scale changes in Atlan=c ocean heat transport due to changes in the AMOC (Kushnir 1994, etc.) and gyre circula=ons. Lozier (2010): most significant ques=on concerning the AMOC is role of AMOC in crea=ng decadal SST anomalies. ECCO version 4 state es#mate (19922010) MITgcm least squares fit to observa=ons using adjoint (Wunsch et al., 2009) fit achieved by adjus=ng ini=al condi=ons, forcing, and model parameters wellsuited to understand UOHC variability because it sa=sfies equa=ons of mo=on and preserves property budgets exactly (Wunsch and Heimbach, in press) . Atmospheric forcing: ERAInterim Ocean data: Insitu: Argo, CTDs, XBTs, mooring arrays Satellite: AVHRR & AMSRE SST, al=metry Model Details (G. Forget) New global grid (LLC90): includes Arc=c, 50 ver=cal levels with par=al cells Nominal 1 o resolu=on with telescopic resolu=on to 1/3 o near Equator State of the art dynamic/thermodynamics sea ice model Nonlinear free surface + real freshwater fluxes Ques#on What are the rela#ve roles of atmospheric forcing and ocean dynamics in seNng upperocean heat content variability in the North Atlan#c? Upperocean heat content variability a) b) c) d) e) f) Heat Content integrated over maximum climatological mixed layer depth (D) Measure of heat contained in “ac=ve” ocean layers Implicitly accounts for reemergence of SST anomalies (Deser et al, 2003; Coetlogon and Frankignoul, 2003; Buckley et al, subm.) Define: H = o C p Z -D T dz To right: (a) The first two PC =me series of monthly H anomalies (seasonal cycle removed) over the North Atlan=c and (b) their respec=ve power spectra. (cd) The first two EOFs of North Atlan=c H. (ef) The spa=al palerns of SST variability associated with the first two PC =me series of North Atlan=c H, obtained by projec=ng the PC =me series onto monthly SST anomalies (seasonal cycle removed). A a) b) c) d) o C p Z -D @ T @ t dz | {z } H t = -o C p Z -D r · ( uT + u T ) dz | {z } C adv - o C p Z -D r · K dz | {z } C dif f + Q net Heat content budgets Dynamics of Advec#ve heat transport convergences Maximum Climatological mixed layer depth (D) Regionally integrated budgets Fluxes: terms in regionally integrated budgets 10 2 10 0 10 2 (W m 2 ) 2 cpy 1 Subtropical 0.4 0.5 0.6 0.7 0.8 0.9 1 10 0 10 2 10 4 (W m 2 ) 2 cpy 1 Gulf Stream 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 1 10 10 0 10 2 10 4 cpy (W m 2 ) 2 cpy1 Subpolar H t Q net C Ek C loc C g C diff +C bol C loc +C g 0.1 1 10 0.4 0.5 0.6 0.7 0.8 0.9 1 cpy Power spectra Coherence Temporally integrated regional budgets 0.5 0 0.5 Subtropical ° C 10 8 10 6 10 4 10 2 10 0 ( ° C) 2 cpy 1 2 1 0 1 2 ° C Gulf Stream 10 8 10 6 10 4 10 2 10 0 ( ° C) 2 cpy 1 1995 2000 2005 2010 1 0.5 0 0.5 1 year Subpolar ° C TT o T airsea T ek T loc T g T diff +T bol 0.1 1 10 10 8 10 6 10 4 10 2 10 0 cpy ( ° C) 2 cpy 1 Time series Power spectra Conclusions Heat content integrated over the climatological mixed layer depth H is a useful measure of upperocean heat content. Both advec=on & airsea heat fluxes play a role in variability in H t , the tendency of H. Approxima=ng the advec=ve heat transport convergence as the sum of the Ekman & geostrophic convergences is successful over most of subtropical and subpolar gyres. Excep=ons: boundary regions of subpolar gyre, Mann Eddy region Over the interior of the subtropical and subpolar gyres >70% of the variance of H t can be explained by local airsea heat flux + Ekman transport variability. Geostrophic convergence plays a role along Gulf Stream Path. Importance of various terms in variance of H t depends on =mescale Subtropical gyre: local forcing dominates on all =mescales. Gulf Stream: local forcing dominates for periods less than 6 months; geostrophic convergences increasingly important on longer =mescales. Subpolar gyre: local forcing dominates for periods less than 1 year; geostrophic transports, bolus transports, and diffusion play a role on longer =mescales. Temporally integrated budgets emphasize terms important in H variability Subtropical gyre: majority of H variance explained by local forcing Gulf Stream region: geostrophic transports important, an=correlated with airsea heat fluxes H variability is forced by geostrophic convergences & damped by airsea fluxes. Subpolar gyre: diffusion and bolus transports also important a) b) c) d) a) b) c) d) Variance of monthly anomalies (seasonal cycle removed) of terms in the H t budget. (a) tendency H t , (b) advec=ve convergence C adv , (c) airsea heat flux Q net and (d) diffusive convergence C diff . Advec=ve convergences play a large role in H t budget in areas of strong currents/fronts, such as along the Gulf Stream path. Variance of monthly anomalies of components of advec=ve convergence C adv , a) linear C lin , b) es=mated C ek+ C g , c) Ekman C ek , and d) geostrophic C g . Maps showing the frac=on of the variance of H t explained by a) C lin +Q net b) C ek +C g +Q net , c) Q net , and d) C loc =C ek +Q net . Black contours are where the frac=on of the variance is 0.7. Variance of C lin and C ek +C g similar to that of C adv in most regions. Both C ek and C g are largest in regions of strong currents/ fronts. C ek also plays a role in gyre interiors. Variance of H t is well explained by Q net +C lin or Q net +C ek +C g in most regions. Excep=ons: Mann Eddy region shallow subpolar regions In gyre interiors About 50% of variance of H t explained by Q net . More than 70% of variance of H t explained by local forcing C loc =C ek +Q net . Geostrophic convergences important along Gulf Stream path (ler panels) Power spectra of terms in H t budget and (right panels) magnitude squared coherence between H t and Q net ,C loc , and C loc +C g for (top panels) subtropical gyre (middle panels) Gulf Stream region and (bolom panels) subpolar gyre. (ler panels) Time series and (right panels) power spectra for terms in (temporally integrated) T budget for (top) subtropical gyre (middle) Gulf Stream region and (bolom) subpolar gyre. 1) Subtropical gyre C loc dominates for all τ 2) Gulf Stream C loc dominates for τ<6 mo C g has increasing role for τ>6 mo 3) Subpolar gyre C loc dominates for τ< 1 yr C g ,C diff, C bol all play a role for τ> 1 yr. Z t 0 H t o C p V dt | {z } (T -T o ) = Z t 0 C adv o C p V dt | {z } T adv + Z t 0 C dif f o C p V dt | {z } T dif f + Z t 0 Q net o C p V dt | {z } T air-sea . 1) Subtropical gyre T loc explains 91% of the variance of TT o 2) Gulf Stream T g important in TT o budget T g and T airsea an=correlated (0.90) 3) Subpolar gyre T diff and T bol contribute to TT o budget Comparison of observed and ECCO v4 SST variability The first two empirical orthogonal func=ons (EOFs) of monthly (seasonal cycle removed) North Atlan=c SST anomalies from (ab) mapped Reynolds et al. (2002) data and (cd) ECCO v4, which respec=vely explain ~25% and ~15% of the spa=ally integrated variance. (e) The first two principal component (PC) =me series and (f) respec=ve power spectra. Temperature misfits for (ler) “firstguess” solu=on and (right) op=mized ECCO v4 solu=on at 100 m depth for all insitu data (Argo, CTDs, XBTs, SeaOs) averaged over 19922010. Misfits are calculated as the sample mean for each grid cell of T e −T o , where T o are observa=onal profiles and T e are the corresponding profiles from the model. Temperature Misfits Comparison to observa#ons References 1. Buckley, M., R. Ponte, G. Forget, and P. Heimbach. Lowfrequency SST and upperocean heat content variability in the North Atlan=c, subm. J. Climate. 2. Bjerknes, J., 1964. Atlan=c airsea interac=on. Advances in Geophysics, 10, 182. 3. Cayan, D. R., 1992. Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859–881. 4. Deser, C., M. A. Alexander, and M. S. Timlin, 2003. Understanding the persistence of sea surface temperature anomalies in midla=tudes. J. Climate, 16, 57–72. 5. de Coetlogon, G. and C. Frankignoul, 2003: The persistence of winter sea surface temperature in the North Atlan=c. J. Climate, 16, 1364– 1377 6. Frankignoul, C., P. Muller, and E. Zorita, 1997. A simple model of the decadal response of the ocean to stochas=c wind forcing. J. Phys. Oceanogr., 27, 1533–1546 7. Kerr, R., 2000: A North Atlan=c climate pacemaker for the centuries. Science, 288, 1984–1986. 8. Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, and M. E. Mann, 2005. A signature of persistent natural thermohaline circula=on cycles in observed climate. Geophys. Res. Le=., 32 (20). 9. Kushnir, Y., 1994. Interdecadal varia=ons in North Atlan=c sea surface temperatures and associated atmospheric condi=ons. J. Climate, 7, 141157. 10.Lozier, M.S., 2010. Deconstruc=ng the conveyor belt. Science, 328, 15071511. 11.Sturges, W., B.G. Hong, and A.J. Clarke, 1998, Decadal forcing of the North Atlan=c subtropical gyre. J. Phys. Oceanogr., 28, 659668. 12.Ting, Mingfang and Kushnir, Yochanan and Seager, Richard and Li, Cuihua. Forced and Internal Twen=ethCentury SST Trends in the North Atlan=c. J. Climate, 22, 14691481. 13.Trenberth, K.E. and J.M. Caron, 2001: Es=mates of meridional atmospheric and oceanic heat transports. J. Climate, 14, 34333443. 14.Wunsch, C. and P. Heimbach, in press: Dynamically and kinema=cally consistent global ocean circula=on and ice state es=mates. Ocean circula=on and climate: observing and modelling the global ocean, G. Siedler, J. Church, J. Gould, and S. Gries, Eds., Elsevier, 2d ed. 15.Wunsch, C., P. Heimbach, R. M. Ponte, and I. Fukumori, 2009: The global general circula=on of the ocean es=mated by the ECCO consor=um. Oceanography, 22, 88–103. (2) (1) (3) ) Regions: (1) subtropical gyre interior, (2) Gulf Stream region, and (3) subpolar gyre interior. T ek R t 0 C ek o C p V dt T g R t 0 C g o C p V dt T loc T air-sea + T ek T bol R t 0 C bol o C p V dt Martha W. Buckley and Rui M. Ponte (Atmospheric and Environmental Research) and Gaël Forget (Massachusels Ins=tute of Technology) a) b) c) d) e) f) u g = 1 f o ˆ z ⇥rp, u ek = ˆ z o fD ek ,D ek = min(D, 100 m) w(-D) R -D r H · u dz Z -D ek r H · u ek dz | {z } w ek (-D) + Z -D r H · u g dz | {z } w g (-D) Z Z C adv = -o C p Z -D r · ( u T ) dz | {z } linear: C lin -o C p Z -D r · ( u 0 T 0 + u T ) dz | {z } bolus: C bol C ek = o C p R -D ek r · ( u ek T ) dz + o C p w ek (-D) T (-D) C g = o C p R -D r · ( u g T ) dz + o C p w g (-D) T (-D) Lowfrequency SST and upperocean heat content variability in the North Atlan=c Nota=on: ū, etc. are monthly means u’ etc. are devia=ons from monthly means u* is the eddy induced transport velocity parameterized by the Gent and McWilliams (1990) scheme. u u

LowIfrequency)SST)and)upperIocean)heatcontentvariability ... · 389 Similarly, we divide the equations for Clin, Cbol, Cg, Cek,andCloc by ⇢o Cp V and integrate in 390 time to yield

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • Mo#va#on  • Observa#ons  indicate  Atlan#c  SSTs  exhibit  significant  low-‐frequency  variability  (Bjerknes  1964;  Kushnir  1994;  Ting  et  al.  2009).  – e.g.  Atlan=c  Mul=decadal  Oscilla=on  (Kerr,  2000;  Knight  et  al.,  2005)      

    •  The  origin  of  Atlan#c  SST  anomalies  is  not  known.  •  Likely  depends  on  #mescale  – Intra-‐annual  to  inter-‐annual:  response  to  local  atmospheric  forcing  (Frankignoul  and  Hasselmann,  1977),  e.g.  the  NAO  tripole  (Cayan,  1992).    – Longer  =mescales  (how  long?)  ocean  circula=on  may  play  a  role.  

    • Ocean  dynamics  that  are  important  have  not  been  isolated  – Wind  and/or  buoyancy  forced  baroclinic  Rossby  waves  (Sturges  et  al  1998).  – Large  scale  changes  in  Atlan=c  ocean  heat  transport  due  to  changes  in  the  AMOC  (Kushnir  1994,  etc.)  and  gyre  circula=ons.  – Lozier  (2010):  most  significant  ques=on  concerning  the  AMOC  is  role  of  AMOC  in  crea=ng  decadal  SST  anomalies.  

    ECCO  version  4  state  es#mate  (1992-‐2010)  •  MITgcm  least  squares  fit  to  observa=ons  using  adjoint  (Wunsch  et  al.,  2009)  •  fit  achieved  by  adjus=ng  ini=al  condi=ons,  forcing,  and  model  parameters  •  well-‐suited  to  understand  UOHC  variability  because  it  sa=sfies  equa=ons  of  

    mo=on  and  preserves  property  budgets  exactly  (Wunsch  and  Heimbach,  in  press)  .  •  Atmospheric  forcing:  ERA-‐Interim  •  Ocean  data:    •  In-‐situ:  Argo,  CTDs,    XBTs,  mooring  arrays  •  Satellite:  AVHRR  &  AMSR-‐E  SST,  al=metry    

    •  Model  Details  (G.  Forget)  •  New  global  grid  (LLC90):  includes  Arc=c,  50  ver=cal  levels  with  par=al  cells  •       Nominal  1o  resolu=on  with  telescopic  resolu=on  to  1/3o  near  Equator  •  State  of  the  art  dynamic/thermodynamics  sea  ice  model  •  Nonlinear  free  surface  +  real  freshwater  fluxes  

    Ques#on  What  are  the  rela#ve  roles  of  atmospheric  forcing  and  ocean  dynamics  in  seNng  upper-‐ocean  heat  content  variability  in  the  North  Atlan#c?        

    Upper-‐ocean  heat  content  variability  a) b)

    c) d)

    e) f)

    Heat  Content  integrated  over  maximum    climatological  mixed  layer  depth  (D)  • Measure  of  heat  contained  in  “ac=ve”  ocean  layers  • Implicitly  accounts  for  reemergence  of  SST  anomalies  (Deser  et  al,  2003;  Coetlogon  and  Frankignoul,  2003;  Buckley  et  al,  subm.)  

    • Define:    

    Brief Article

    The Author

    June 19, 2013

    H = ⇢oCp

    Z ⌘

    �DT dz

    ⇢oCp

    Z ⌘

    �D

    @T

    @tdz = �⇢oCp

    Z ⌘

    �Dr · (uT + u⇤T ) dz

    | {z }Cadv

    � ⇢oCpZ ⌘

    �Dr ·K dz

    | {z }Cdiff

    +Qnet

    ug =1

    f⇢oẑ⇥rp,

    uek =⌧ ⇥ ẑ⇢ofDek

    Dek = min(D, 100 m)

    w(�D) ⇡Z ⌘

    �DrH · u dz ⇡

    Z ⌘

    �DekrH · uek dz

    | {z }⌘wek(�D)

    +

    Z ⌘

    �DrH · ug dz

    | {z }⌘wg(�D)

    1

    To  right:    (a)  The  first  two  PC  =me  series  of  monthly  H  anomalies  (seasonal  cycle  removed)  over  the  North  Atlan=c  and  (b)  their  respec=ve  power  spectra.      (c-‐d)  The  first  two  EOFs  of  North  Atlan=c  H.    (e-‐f)  The  spa=al  palerns  of  SST  variability  associated  with  the  first  two  PC  =me  series  of  North  Atlan=c  H,  obtained  by  projec=ng  the  PC  =me  series  onto  monthly  SST  anomalies  (seasonal  cycle  removed).    

    A  

    a) b)

    c) d)

    Brief Article

    The Author

    June 19, 2013

    H = ⇢oCp

    Z ⌘

    �DT dz

    ⇢oCp

    Z ⌘

    �D

    @T

    @tdz

    | {z }Ht

    = �⇢oCpZ ⌘

    �Dr · (uT + u⇤T ) dz

    | {z }Cadv

    � ⇢oCpZ ⌘

    �Dr ·K dz

    | {z }Cdiff

    +Qnet

    ug =1

    f⇢oẑ⇥rp,

    uek =⌧ ⇥ ẑ⇢ofDek

    Dek = min(D, 100 m)

    w(�D) ⇡Z ⌘

    �DrH · u dz ⇡

    Z ⌘

    �DekrH · uek dz

    | {z }⌘wek(�D)

    +

    Z ⌘

    �DrH · ug dz

    | {z }⌘wg(�D)

    1

    Heat  content  budgets  

    Dynamics  of  Advec#ve  heat  transport  convergences  

    Maximum  Climatological  mixed  layer  depth  (D)  

    Regionally  integrated  budgets  Fluxes:  terms  in  regionally  integrated  budgets  

    10−2

    100

    102

    (W m

    −2)2

    cpy

    −1

    Subtropical0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    100

    102

    104

    (W m

    −2)2

    cpy

    −1

    Gulf Stream0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0.1 1 10

    100

    102

    104

    cpy

    (W m

    −2)2

    cpy−1

    Subpolar

    Ht

    Qnet

    CEk

    Cloc

    Cg

    Cdiff

    +Cbol

    Cloc

    +Cg

    0.1 1 100.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    cpy

    Power  spectra                                                          Coherence  

    Temporally  integrated  regional  budgets  

    −0.5

    0

    0.5Subtropical

    ° C

    10−8

    10−6

    10−4

    10−2

    100

    (° C)2

    cpy

    −1

    −2

    −1

    0

    1

    2

    ° C

    Gulf Stream

    10−8

    10−6

    10−4

    10−2

    100

    (° C)2

    cpy

    −1

    1995 2000 2005 2010

    −1

    −0.5

    0

    0.5

    1

    year

    Subpolar

    ° C

    T−To

    Tair−sea

    Tek

    Tloc

    Tg

    Tdiff

    +Tbol

    0.1 1 1010−8

    10−6

    10−4

    10−2

    100

    cpy

    (° C)2

    cpy

    −1

    Time  series                                                  Power  spectra    

    Conclusions  •  Heat  content  integrated  over  the  climatological  mixed  layer  depth  H  is  a  useful  

    measure  of  upper-‐ocean  heat  content.  •  Both  advec=on  &  air-‐sea  heat  fluxes  play  a  role  in  variability  in  Ht,  the  

    tendency  of  H.  •  Approxima=ng  the  advec=ve  heat  transport  convergence  as  the  sum  of  the  

    Ekman  &  geostrophic  convergences  is  successful  over  most  of  subtropical  and  subpolar  gyres.  •  Excep=ons:  boundary  regions  of  subpolar  gyre,  Mann  Eddy  region  

    •  Over  the  interior  of  the  subtropical  and  subpolar  gyres  >70%  of  the  variance  of  Ht  can  be  explained  by  local  air-‐sea  heat  flux  +  Ekman  transport  variability.  

    •  Geostrophic  convergence  plays  a  role  along  Gulf  Stream  Path.  •  Importance  of  various  terms  in  variance  of  Ht  depends  on  =mescale  •  Subtropical  gyre:  local  forcing  dominates  on  all  =mescales.  •  Gulf  Stream:  local  forcing  dominates  for  periods  less  than  6  months;  

    geostrophic  convergences  increasingly  important  on  longer  =mescales.  •  Subpolar  gyre:  local  forcing  dominates  for  periods  less  than    1  year;  

    geostrophic  transports,  bolus  transports,  and  diffusion  play  a  role  on  longer  =mescales.  

    •  Temporally  integrated  budgets  emphasize  terms  important  in  H  variability  •  Subtropical  gyre:  majority  of  H  variance  explained  by  local  forcing  •  Gulf  Stream  region:    geostrophic  transports  important,  an=-‐correlated  with  

    air-‐sea  heat  fluxes  è  H  variability  is  forced  by  geostrophic  convergences  &  damped  by  air-‐sea  fluxes.  

    •  Subpolar  gyre:  diffusion  and  bolus  transports  also  important  

    a) b)

    c) d)

    a) b)

    c) d)

    Variance  of  monthly  anomalies  (seasonal  cycle  removed)  of  terms  in  the  Ht  budget.    (a)  tendency  Ht,  (b)  advec=ve  convergence  Cadv,  (c)  air-‐sea  heat  flux  Qnet  and  (d)  diffusive  convergence  Cdiff.  

    Advec=ve  convergences  play  a  large  role  in  Ht  budget  in  areas  of  strong  currents/fronts,  such  as  along  the  Gulf  Stream  path.    

    Variance  of  monthly  anomalies  of  components  of  advec=ve  convergence  Cadv,  a)  linear  Clin,  b)  es=mated  Cek+Cg,  c)  Ekman  Cek,  and  d)  geostrophic  Cg.  

    Maps  showing  the  frac=on  of  the  variance  of  Ht  explained  by  a)  Clin+Qnet  b)  Cek  +Cg+Qnet  ,  c)  Qnet  ,  and  d)  Cloc=Cek+Qnet  .  Black  contours  are  where  the  frac=on  of  the  variance  is  0.7.    

    •  Variance  of  Clin  and  Cek+Cg  similar  to  that  of  Cadv  in  most  regions.    

    •  Both  Cek  and  Cg  are  largest  in  regions  of  strong  currents/fronts.    

    •  Cek  also  plays  a  role  in  gyre  interiors.  

    •  Variance  of  Ht  is  well  explained  by  Qnet+Clin  or  Qnet+Cek+Cg  in  most  regions.    Excep=ons:    •  Mann  Eddy  region    •  shallow  subpolar  regions  

    •  In  gyre  interiors  •  About  50%  of    variance  of  

    Ht  explained  by  Qnet.  •  More  than  70%  of  variance  

    of  Ht  explained  by  local  forcing  Cloc=Cek+Qnet.    

    •  Geostrophic  convergences  important  along  Gulf  Stream  path  

     

    (ler  panels)  Power  spectra  of    terms  in  Ht  budget  and                          (right  panels)  magnitude  squared  coherence  between  Ht  and  Qnet,  Cloc,  and  Cloc+Cg  for  (top  panels)  subtropical  gyre  (middle  panels)  Gulf  Stream  region  and  (bolom  panels)  subpolar  gyre.  

    (ler  panels)  Time  series  and  (right  panels)  power  spectra  for  terms  in  (temporally  integrated)  T  budget  for  (top)  subtropical  gyre  (middle)  Gulf  Stream  region  and  (bolom)  subpolar  gyre.  

     1)   Subtropical  gyre  Ø Cloc  dominates  for  all  τ  

    2)   Gulf  Stream  Ø Cloc  dominates  for  τ6  mo      

    3) Subpolar  gyre  Ø Cloc  dominates  for  τ<  1  yr  Ø   Cg  ,  Cdiff,  Cbol  all  play  a  role  for  τ>  1  yr.  

    can be rationalized by noting that mixed layers deepen when air-sea heat fluxes cool the379

    ocean surface, leading to heavier water overlying light water. The resulting mixing warms380

    the mixed layer. The correlation with Cbol is likely the result of increased stirring by the381

    Gent and McWilliams (1990) scheme when when isopycnal slopes increase.382

    To determine which terms play the largest role in creating H anomalies, we now consider383

    time integrated budgets. As the volume of each region is quite di↵erent, instead of consid-384

    ering the heat content, which will depend on the volume of the box, we chose to consider385

    budgets of the average temperature over the the layer from the surface to �D: T = 1⇢o

    Cp

    V H,386

    where V is the volume of the box. Dividing Equation (1) for the H budget by ⇢oCpV and387

    integrating in time yields:388

    Z t

    0

    Ht⇢oCpV

    dt

    | {z }⌘(T�T

    o

    )

    =

    Z t

    0

    Cadv⇢oCpV

    dt

    | {z }⌘T

    adv

    +

    Z t

    0

    Cdiff⇢oCpV

    dt

    | {z }⌘T

    diff

    +

    Z t

    0

    Qnet⇢oCpV

    dt

    | {z }⌘T

    air�sea

    . (8)

    Similarly, we divide the equations for Clin, Cbol, Cg, Cek, and Cloc by ⇢oCpV and integrate in389

    time to yield Tlin, Tbol, Tg, Tek, and Tloc, respectively.390

    Figure 13 shows time series and power spectra of the terms in the T budget in each of391

    the three regions. As the quantities plotted are cumulative sums of fluxes, they start at zero.392

    Since the mean monthly climatology has been subtracted from the fluxes, the cumulative393

    sums tend to come back to near zero at the end of the time series (although this is not a394

    constraint). In all three regions the correlations between Tlin (not plotted on graphs) and395

    Tek+Tg are found to be greater than 0.9, and the percent of the variance of T �To explained396

    by Tek + Tg is comparable to that explained by Tlin, indicating that no significant errors are397

    introduced by our approximations for separating Tlin into Ekman and geostrophic parts.398

    In the interior of the subtropical gyre, Tloc explains a large portion of the variability of399

    19

    1)   Subtropical  gyre  Ø Tloc  explains  91%  of  the  variance  of  T-‐To  

    2)   Gulf  Stream  Ø Tg  important  in  T-‐To  budget  

    Ø Tg  and  Tair-‐sea  an=correlated  (-‐0.90)    

    3) Subpolar  gyre  Ø Tdiff  and  Tbol  contribute  to  T-‐To  budget  

    Comparison  of  observed  and  ECCO  v4    SST  variability    

    The  first  two  empirical  orthogonal  func=ons  (EOFs)  of  monthly  (seasonal  cycle  removed)  North  Atlan=c  SST  anomalies  from  (a-‐b)  mapped  Reynolds  et  al.  (2002)  data  and  (c-‐d)  ECCO  v4,  which  respec=vely  explain  ~25%  and  ~15%  of  the  spa=ally  integrated  variance.  (e)  The  first  two  principal  component  (PC)  =me  series  and  (f)  respec=ve  power  spectra.    

    Temperature  misfits  for  (ler)  “first-‐guess”  solu=on  and  (right)  op=mized  ECCO  v4  solu=on  at  100  m  depth    for  all  in-‐situ  data  (Argo,  CTDs,  XBTs,  SeaOs)  averaged  over  1992-‐2010.  Misfits  are  calculated  as  the  sample  mean  for  each  grid  cell  of  Te  −  To,  where  To  are  observa=onal  profiles  and  Te    are  the  corresponding  profiles  from  the  model.    

    Temperature  Misfits    Comparison  to  observa#ons  

    References  1.   Buckley,  M.,  R.  Ponte,  G.  Forget,  and  P.  Heimbach.  Low-‐frequency  SST  and  upper-‐ocean  heat  content  variability  in  the  North  Atlan=c,  

    subm.  J.  Climate.    2.  Bjerknes,  J.,  1964.  Atlan=c  air-‐sea  interac=on.  Advances  in  Geophysics,  10,  1-‐82.  3.  Cayan,  D.  R.,  1992.  Latent  and  sensible  heat  flux  anomalies  over  the  northern  oceans:  Driving  the  sea  surface  temperature.  J.  Phys.  

    Oceanogr.,  22,  859–881.    4.  Deser,  C.,  M.  A.  Alexander,  and  M.  S.  Timlin,  2003.  Understanding  the  persistence  of  sea  surface  temperature  anomalies  in  midla=tudes.  J.  

    Climate,  16,  57–72.  5.  de  Coetlogon,  G.  and  C.  Frankignoul,  2003:  The  persistence  of  winter  sea  surface  temperature  in  the  North  Atlan=c.  J.  Climate,  16,  1364–

    1377    6.  Frankignoul,  C.,  P.  Muller,  and  E.  Zorita,  1997.  A  simple  model  of  the  decadal  response  of  the  ocean  to  stochas=c  wind  forcing.  J.  Phys.  

    Oceanogr.,  27,  1533–1546    7.  Kerr,  R.,  2000:  A  North  Atlan=c  climate  pacemaker  for  the  centuries.  Science,  288,  1984–1986.    8.  Knight,  J.  R.,  R.  J.  Allan,  C.  K.  Folland,  M.  Vellinga,  and  M.  E.  Mann,  2005.  A  signature  of  persistent  natural  thermohaline  circula=on  cycles  

    in  observed  climate.  Geophys.  Res.  Le=.,  32  (20).  9.  Kushnir,  Y.,  1994.    Interdecadal  varia=ons  in  North  Atlan=c  sea  surface  temperatures  and  associated  atmospheric  condi=ons.    J.  Climate,  

    7,  141-‐157.  10. Lozier,  M.S.,  2010.  Deconstruc=ng  the  conveyor  belt.    Science,  328,  1507-‐1511.  11. Sturges,  W.,  B.G.  Hong,  and  A.J.  Clarke,  1998,  Decadal  forcing  of  the  North  Atlan=c  subtropical  gyre.  J.  Phys.  Oceanogr.,  28,  659-‐668.  12. Ting,  Mingfang  and  Kushnir,  Yochanan  and  Seager,  Richard  and  Li,  Cuihua.  Forced  and  Internal  Twen=eth-‐Century  SST  Trends  in  the  North  

    Atlan=c.  J.  Climate,  22,  1469-‐1481.  13. Trenberth,  K.E.  and  J.M.  Caron,  2001:  Es=mates  of  meridional  atmospheric  and  oceanic  heat  transports.    J.  Climate,  14,  3433-‐3443.  14. Wunsch,  C.  and  P.  Heimbach,  in  press:  Dynamically  and  kinema=cally  consistent  global  ocean  circula=on  and  ice  state  es=mates.  Ocean  

    circula=on  and  climate:  observing  and  modelling  the  global  ocean,  G.  Siedler,  J.  Church,  J.  Gould,  and  S.  Gries,  Eds.,  Elsevier,  2d  ed.    15. Wunsch,  C.,  P.  Heimbach,  R.  M.  Ponte,  and  I.  Fukumori,  2009:  The  global  general  circula=on  of  the  ocean  es=mated  by  the  ECCO  

    consor=um.  Oceanography,  22,  88–103.    

    (2)

    (1)

    (3)

    a)

    b)Regions:  (1)  subtropical  gyre  interior,  (2)  Gulf  Stream  region,  and  (3)  subpolar  gyre  interior.    

    Brief Article

    The Author

    June 25, 2013

    H = ⇢oCp

    Z ⌘

    �DT dz

    ⇢oCp

    Z ⌘

    �D

    @T

    @tdz

    | {z }H

    t

    = �⇢oCpZ ⌘

    �Dr · (uT + u⇤T ) dz

    | {z }C

    adv

    � ⇢oCpZ ⌘

    �Dr ·K dz

    | {z }C

    diff

    +Qnet

    Tek ⌘R t0

    Cek

    ⇢o

    Cp

    V dt

    Tg ⌘R t0

    Cg

    ⇢o

    Cp

    V dt

    Tloc ⌘ Tair�sea + Tek

    Tbol ⌘R t0

    Cbol

    ⇢o

    Cp

    V dt

    Cadv = �⇢oCpR ⌘�D r · (uT + u⇤T ) dz

    = �⇢oCpZ ⌘

    �Dr · (uT ) dz

    | {z }linear: C

    lin

    �⇢oCpZ ⌘

    �Dr · (u0T 0 + u⇤T ) dz

    | {z }bolus: C

    bol

    Cadv = �⇢oCpZ ⌘

    �Dr·(uT+u⇤T ) dz = �⇢oCp

    Z ⌘

    �Dr · (uT ) dz

    | {z }linear: C

    lin

    �⇢oCpZ ⌘

    �Dr · (u0T 0 + u⇤T ) dz

    | {z }bolus: C

    bol

    ,

    (1)

    1

    Martha  W.  Buckley  and  Rui  M.  Ponte  (Atmospheric  and  Environmental  Research)  and  Gaël  Forget  (Massachusels  Ins=tute  of  Technology)  

    a) b)

    c) d)

    e) f)

    Dek = min(D, 100 m)

    ug =1

    f⇢oẑ⇥rp, uek =

    ⌧ ⇥ ẑ⇢ofDek

    , Dek = min(D, 100 m)

    w(�D) ⇡Z ⌘

    �DrH · u dz ⇡

    Z ⌘

    �Dek

    rH · uek dz| {z }

    ⌘wek

    (�D)

    +

    Z ⌘

    �DrH · ug dz

    | {z }⌘w

    g

    (�D)

    Cadv = �⇢oCpZ ⌘

    �Dr · (uT ) dz

    | {z }linear: C

    lin

    �⇢oCpZ ⌘

    �Dr · (u0T 0 + u⇤T ) dz

    | {z }bolus: C

    bol

    ug =1

    f⇢o

    ẑ⇥rp, uek = ⌧⇥ẑ⇢o

    fDek

    , Dek = min(D, 100 m)

    w(�D) ⇡R ⌘�D rH · u dz ⇡

    Z ⌘

    �Dek

    rH · uek dz| {z }

    ⌘wek

    (�D)

    +

    Z ⌘

    �DrH · ug dz

    | {z }⌘w

    g

    (�D)

    Cek = ⇢oCpR ⌘�D

    ek

    r · (uekT ) dz + ⇢oCp wek(�D) T (�D)

    Cg = ⇢oCpR ⌘�D r · (ugT ) dz + ⇢oCp wg(�D) T (�D)

    ug =1

    f⇢o

    ẑ⇥rp, uek = ⌧⇥ẑ⇢o

    fDek

    , Dek = min(D, 100 m)

    w(�D) ⇡R ⌘�D rH · u dz ⇡

    Z ⌘

    �Dek

    rH · uek dz| {z }

    ⌘wek

    (�D)

    +

    Z ⌘

    �DrH · ug dz

    | {z }⌘w

    g

    (�D)

    Cadv = �⇢oCpZ ⌘

    �Dr · (uT ) dz

    | {z }linear: C

    lin

    �⇢oCpZ ⌘

    �Dr · (u0T 0 + u⇤T ) dz

    | {z }bolus: C

    bol

    Cek = ⇢oCpR ⌘�D

    ek

    r · (uekT ) dz + ⇢oCp wek(�D) T (�D)

    Cg = ⇢oCpR ⌘�D r · (ugT ) dz + ⇢oCp wg(�D) T (�D)

    F = 1� var(Cadv � Clin)var(Cadv)

    2

    Dek = min(D, 100 m)

    ug =1

    f⇢oẑ⇥rp, uek =

    ⌧ ⇥ ẑ⇢ofDek

    , Dek = min(D, 100 m)

    w(�D) ⇡Z ⌘

    �DrH · u dz ⇡

    Z ⌘

    �Dek

    rH · uek dz| {z }

    ⌘wek

    (�D)

    +

    Z ⌘

    �DrH · ug dz

    | {z }⌘w

    g

    (�D)

    Cadv = �⇢oCpZ ⌘

    �Dr · (uT ) dz

    | {z }linear: C

    lin

    �⇢oCpZ ⌘

    �Dr · (u0T 0 + u⇤T ) dz

    | {z }bolus: C

    bol

    ug =1

    f⇢o

    ẑ⇥rp, uek = ⌧⇥ẑ⇢o

    fDek

    , Dek = min(D, 100 m)

    w(�D) ⇡R ⌘�D rH · u dz ⇡

    Z ⌘

    �Dek

    rH · uek dz| {z }

    ⌘wek

    (�D)

    +

    Z ⌘

    �DrH · ug dz

    | {z }⌘w

    g

    (�D)

    Cek = ⇢oCpR ⌘�D

    ek

    r · (uekT ) dz + ⇢oCp wek(�D) T (�D)

    Cg = ⇢oCpR ⌘�D r · (ugT ) dz + ⇢oCp wg(�D) T (�D)

    ug =1

    f⇢o

    ẑ⇥rp, uek = ⌧⇥ẑ⇢o

    fDek

    , Dek = min(D, 100 m)

    w(�D) ⇡R ⌘�D rH · u dz ⇡

    Z ⌘

    �Dek

    rH · uek dz| {z }

    ⌘wek

    (�D)

    +

    Z ⌘

    �DrH · ug dz

    | {z }⌘w

    g

    (�D)

    Cadv = �⇢oCpZ ⌘

    �Dr · (uT ) dz

    | {z }linear: C

    lin

    �⇢oCpZ ⌘

    �Dr · (u0T 0 + u⇤T ) dz

    | {z }bolus: C

    bol

    Cek = ⇢oCpR ⌘�D

    ek

    r · (uekT ) dz + ⇢oCp wek(�D) T (�D)

    Cg = ⇢oCpR ⌘�D r · (ugT ) dz + ⇢oCp wg(�D) T (�D)

    F = 1� var(Cadv � Clin)var(Cadv)

    2

    Low-‐frequency  SST  and  upper-‐ocean  heat  content  variability  in  the  North  Atlan=c  

    Nota=on:    •  ū,  etc.  are  monthly  means  •   u’  etc.  are  devia=ons  from  monthly  

    means  •   u*  is  the  eddy  induced  transport  

    velocity  parameterized  by  the  Gent  and  McWilliams  (1990)  scheme.    

    uu