36
LP. Csernai, NWE'2001, Be rgen 1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

Embed Size (px)

Citation preview

Page 1: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 1

Part II

Relativistic HydrodynamicsFor Modeling Ultra-Relativistic Heavy Ion Reactions

Page 2: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 2

Multi Module ModelingMulti Module Modeling

• Initial state - pre-equilibrium: Parton Cascade; Coherent Yang-Mills [Magas]

• Local Equilibrium Hydro, EoS

• Final Freeze-out: Kinetic models, measurables

• If QGP Sudden and simultaneous hadronization and freeze out (indicated by HBT, Strangeness, Entropy puzzle)

Landau (1953), Milekhin (1958), Cooper & Frye (1974)

Experiment

Page 3: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 3

Global Flow Directed Transverse flow

Elliptic flow

3rd flow component(anti - flow)

Squeeze out

Page 4: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 4

Spherical Flow from Identified Particle Spectra

pT (GeV/c) pT (GeV/c)

Fit K, p spectra to obtain

<T> ~ 0.35Tfo ~ 180-200 MeV

Systematic errors:to be determined

[W.A. Zajc, QM’2001]

Page 5: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 5

More spherical flow at RHIC !

[N.Xu, QM’2001]

Page 6: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 6

Global Flow Directed Transverse flow

Directed Transverse flow

Elliptic flow

3rd flow component(anti - flow)

Squeeze out

Page 7: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 7

Repulsion Driven by Gradients in Mean-Field

• Flow decreases as function of Ebeam

• Measured sideways flow cannot be reproduced by cascade calculations (RQMD 2.3)

– “thermal” pressure insufficient amount of deflection

• Additional repulsion caused by gradients in mean-field

E895, Phys. Rev. Lett 84, 5488 (2000) Mike Lisa E895 Talk[C.Ogilvie, QM’2001]

Page 8: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 8

Global FlowDirected

Transverse

flow

Elliptic flowElliptic flow

3rd flow component(anti - flow)

Squeeze out

Page 9: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 9

Page 10: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 10

Elliptic flow - SPS - NA49

Page 11: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 11

pT dependence for ,p

• Hydro calculations: P. Huovinen, P. Kolb and U. Heinz

Page 12: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 12

Elliptic flow at RHIC

[Huovinen, QM’2001]

Page 13: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 13

Elliptic flow in MPC

[ D. Molnar, QM’2001 ]

Page 14: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 14

Page 15: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 15

Elliptic flow vs. Squeeze out

• At LBL, GSI, AGS flow is orthogonal to the reaction plane: Squeeze out

• At SPS, RHIC central flow is in the reaction plane: Elliptic flow. This is due to the initial state and shadowing.

[R. Lacey, QM’2001]

Page 16: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 16

Comparison of all v2 results

PHENIX (pT>500 MeV)

nch/nmax

v2

[P.Steinberg, QM’2001]

Page 17: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 17

Page 18: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 18

Global FlowDirected

Transverse

flow

Elliptic flow

3rd flow component(anti - flow)

3rd flow component(anti - flow)

Squeeze out

Page 19: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 19

K0s Anti-Flow Au+Au 6 AGeV

• Striking opposite flow for K0s

• Reproduced using repulsive mean-field for K0

Chris Pinkenberg E895 Talk

proton Chung et al.,Phys. Rev Lett85, 940 (2000)

Pal et al.,Phys. Rev. C 62, 061903 (2000)

K0s

Page 20: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 20

Third flow component

[SPS NA49]

Page 21: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 21

Third flow component / SPS / NA49

Page 22: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 22

3rd flow component and QGP

• Csernai & Röhrich [Phys.Lett.B458(99)454]

observed a 3rd flow component at SPS energies, not discussed before.

• Also observed that in ALL earlier fluid dynamical calculations with QGP in the EoS there is 3rd flow comp.

• The effect was absent without QGP.

• In string and RQMD models only peripheral collision showed the effect (shadowing).

• The effect is attributed to a flat (Landau type) initial condition.

• Similarity to elliptic flow.

Page 23: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 23

3rd flow component

Hydro

[Csernai, HIPAGS’93]

Page 24: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 27

Multi Module Modeling

• Initial state - pre-equilibrium: Parton Cascade; Coherent Yang-Mills [Magas]

• Local Equilibrium Hydro, EoS

• Final Freeze-out: Kinetic models, measurables

• If QGP Sudden and simultaneous hadronization and freeze out (indicated by HBT, Strangeness, Entropy puzzle)

1

2

3

Page 25: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 28

Modified Initial StateIn the previous model the fwd-bwd surface was too sharp two propagating peaks

Thus, after the formation of uniform streak, the expansion at its end is included in the model

This led to smoother energy density and velocity profiles

Z [fm]Z [fm]

ye [GeV/ fm3 ]

[Magas, Csernai, Strottman, in pr.]

Page 26: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 29

Modified Initial State

Page 27: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 30

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=0.0 fm/c, Tmax= 420 MeV, emax= 20.0 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

EoS: p= e/3 - 4B/3B = 397 MeV/fm3

8.7 x 4.4 fm

Page 28: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 31

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=2.3 fm/c, Tmax= 420 MeV, emax= 20.0 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

11.6 x 4.6 fm

Page 29: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 32

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=4.6 fm/c, Tmax= 419 MeV, emax= 19.9 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

14.5 x 4.9 fm

Page 30: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 33

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=6.9 fm/c, Tmax= 418 MeV, emax= 19.7 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

17.4 x 5.5 fm

Page 31: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 34

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=9.1 fm/c, Tmax= 417 MeV, emax= 19.6 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

20.3 x 5.8 fm

Page 32: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 35

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=11.4 fm/c, Tmax= 416 MeV, emax= 19.5 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

23.2 x 6.7 fm

Page 33: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 36

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=13.7 fm/c, Tmax= 417 MeV, emax= 19.4 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

26.1 x 7.3 fm

Page 34: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 37

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=16.0 fm/c, Tmax= 417 MeV, emax= 19.4 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

31.9 x 8.1 fm

Page 35: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 38

3-dim Hydro for RHIC EnergiesAu+Au ECM=65 GeV/nucl. b=0.5 bmax Aσ=0.08 => σ~10 GeV/fm

e [ GeV / fm3 ] T [ MeV]

t=18.2 fm/c, Tmax= 417 MeV, emax= 19.4 GeV/fm3, Lx,y= 1.45 fm, Lz=0.145 fm

. .

34.8 x 8.7 fm

Page 36: LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions

LP. Csernai, NWE'2001, Bergen 39

NEXT

• Freeze-out

• Discontinuities in hydro --- Eq. => Eq.

• Freeze-out to non-eq.

• Kinetic freeze-out