61
8/10/2019 LTE Internal Training Course (1) http://slidepdf.com/reader/full/lte-internal-training-course-1 1/61 1 © Nokia Siemens Networks HH + AT/ 9 th  August 2007 For internal use OFDMA in LTE (UTRAN Long Term Evolution) Oulu 9th August, 2007  An tt i To sk ala, Harr i Holma Nokia Siemens Networks For internal use 2 © Nokia Siemens Networks HH + AT/ 9 th  August 2007 Outline UTRAN LTE background 3GPP schedule LTE Physical Layer LTE Layer 2/3 LTE Architecture LTE Network Algorithms LTE Network Performance Benchmarking with HSPA and WiMAX

LTE Internal Training Course (1)

Embed Size (px)

Citation preview

Page 1: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 1/61

1 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

OFDMA in LTE (UTRAN Long TermEvolution)

Oulu

9th August, 2007

 Antt i Toskala, Harr i Holma

Nokia Siemens Networks

For internal use

2 © Nokia Siemens Networks HH + AT/ 9th August 2007

Outline

• UTRAN LTE background

• 3GPP schedule

• LTE Physical Layer 

• LTE Layer 2/3

• LTE Architecture

• LTE Network Algorithms

• LTE Network Performance

• Benchmarking with HSPA and WiMAX

Page 2: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 2/61

For internal use

3 © Nokia Siemens Networks HH + AT/ 9th August 2007

2H/2007

   F   E   A   S   I   B   I   L   I   T   Y   S   T   U   D   Y

   W   O   R   K   I   T   E   M

2H/2005 1H/2006 2H/2006

Japan

1H/2007

Multiple Access

Decision

RAN/CN

functional splitFeasibility study

closed 

Work Item

(feature level)

Start

Work tasks and

work plan

approved 

Stage 2

approved 

Stage 3

approved

(WG1-3)

Stage 3

approved

(WG4)

• End 2004: 3GPP workshop on UTRAN Long Term Evolution• March 2005 Start of the study

•12/2005 Multiple Access & 03/2006 (BTS/Core functional split)

• September 2006 close of the study item & approval of the work items anddetailed work plan

• There will be some delay, 1st realistic target is December 2007

• To be part of Release 8 3GPP specifications

Background of LTE

For internal use

4 © Nokia Siemens Networks HH + AT/ 9th August 2007

3GPP Schedule – Latest Update

3GPP TSG RAN#36 plenary (end May) revised the schedule

• Physical Layer Specifications (RAN WG1) due approval still inSeptember 

• Obviously they will not be 100% ready, but anyway for approval

• Protocol specifications generally will not be for approval inSeptember, earliest in December (RRC, S1, X2) but this schedulemay not necessary hold

 – Would be approval take place in December, anyway closing of all details inprotocol side shall take to mid 2008. Especially RRC specs will bechallenging based on WCDMA learnings (and schedule v.s. resources v.s.work remaining calculations…)

• Please follow the NSN/Nokia 3GPP std. raports for updates onschedules

Page 3: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 3/61

For internal use

5 © Nokia Siemens Networks HH + AT/ 9th August 2007

UTRA Long Term Evolution

WCDMA

384 kbps DL

384 kbps UL

RTT ~150ms

CS/PS

HSDPA

14.4 Mbps peak

RTT ~100ms

PS

HSUPA

5.7 Mbps peak

RTT ~50ms

PS

Towards

4G

2009/102007/82005/62003/4

UTRA evolution : WCDMA: 5MHz

UTRA Long term evolution: Up 20

MHz BW

Approx. year of roll-out

UL improvements

To WCDMA

DL improvements

To WCDMA

New radio accesstechnique

EUTRA

100 Mbps peak DL

50 Mbbps peak UL

RTT ~10ms

PS

3GPP Rel.99/4 Release 5 Release 6 Release 7-8 Release9?

2011/12

Control and user plane

latency improvements

Capacity enhancements

HSPA evolution

28/42 Mbps peak DL

11 Mbps peak UL

For internal use

6 © Nokia Siemens Networks HH + AT/ 9th August 2007

General Requirements for UTRAN Evolution

Feasibility study started in 3GPP for UTRAN Long Term Evolution with thefollowing requirements

• Packet switched domain optimized

• Server UE round trip time below 30 ms and access delay below 300 ms

• Peak rates uplink/downlink 50/100 Mbps

• Ensure good level of mobility and security

• Improve terminal power efficiency

• Frequency allocation flexibility with 1.25/2.5, 5, 10, 15 and 20 MHz allocations,possibility to deploy adjacent to WCDMA

• WCDMA evolution work on-going to continue with full speed

Operators are also requiring higher radio capacity

• Depending on the case 3-4 times higher capacity expected than withRelease 6 HSDPA/HSUPA reference case

Page 4: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 4/61

For internal use

7 © Nokia Siemens Networks HH + AT/ 9th August 2007

Multiple Access Selection

Due to the large bandwidth, up to 20 MHz, and up to 100 Mbps data rates ->something more than just a new modulation or larger chip rate was needed

3GPP decided in the feasibility study to use as multiple access OFDMA (Downlink)and SC-FDMA (Uplink)

3GPP considered several alternatives

• OFDMA

• SC-FDMA

•  And use of Multicarrier WCDMA

• For the downlink the choise was clear, while for the uplink a bit more debate tooplace between OFDMA and SC-FDMA as especially companies with WiMAXbackground preferred similarity with WiMAX.

 – SC-FDMA was also the Nokia preference (see later slides on PAR issues)

8 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

OFDMA in LTE Downlink

Page 5: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 5/61

For internal use

9 © Nokia Siemens Networks HH + AT/ 9th August 2007

OFDM benefits

Superior performance in frequency selective fading channels

Complexity of base-band receiver is much lower 

Good spectral properties and handling if multiple bandwidths

Link adaptation and frequency domain scheduling

offer high potential for throughput etc gain

Other cell interference can be effectively reduced byInterference Rejection Combining (IRC).

For internal use

10 © Nokia Siemens Networks HH + AT/ 9th August 2007

Bandwidth Scalability

1.4 MHz

3.0 MHz

5 MHz

10 MHz

20 MHz

FFT size

128

256

512

1024

2048

Bandwidth

Scalable bandwidth 1.4 – 20 MHz using different number of subcarriers and different FFTsize

Large bandwidth provides high data rates

Small bandwidth allows simpler spectrum refarming, e.g. 450 MHz and 900 MHz

 Narrow spectrum refarming

High data rates

Page 6: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 6/61

For internal use

11 © Nokia Siemens Networks HH + AT/ 9th August 2007

DL air interface technology

OFDM-based DL air interface

Frequency bandwidth options are 1.4 MHz,3.0 MHz, 5 MHz, 10 MHz, 15 MHz and 20MHz

Each BW has fundamentally similar features

• Symbol is parametrised equally

• 15 kHz subcarrier spacing

• Clock is 2N (8x) multiple of 3.84 MHz

• FFT scales as a power of two

3GPP is discussion also alternativeparameters for the broadcast use (MobileTV case

Up to 20 MHz

For internal use

12 © Nokia Siemens Networks HH + AT/ 9th August 2007

OFDM Transmitter/Receiver Chain

OFDM is used in various systems,like:

• DVB-T

• DVB-H

• WLAN (IEEE family)

 – Including WiMax

Key component is theinverse discrete Fourier

transform

• IDFT/IFFT

• Moving between time andfrequecy domainrepresentation

frequency

Transmitter

total radio BW (eg. 20 MHz)

Modulator Cyclic

Extension

Remove

CyclicExtension

Equaliser 

Bits

frequency

Receiver total radio BW (eg. 20 MHz)

Modulator 

Bits

IFFTIFFTSerial to

Parallel …

IFFTSerial to

ParallelFFT …

Demodulator 

Page 7: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 7/61

For internal use

13 © Nokia Siemens Networks HH + AT/ 9th August 2007

OFDM symbol fundamentals

 At 20 MHz BW, FFT=2048OFDM symbol length 66.68 µs

• Robust for mobile radio channel withthe use of gurard internal/cyclic prefix(see next slide)

• Overheads of guard interval andchannel spacing are not excessive

6 OFDM data symbols per one 0.5 mssub-frame

•  Additionally one symbol for pilotsequence (& TS), Shared Controlsignalling and occasionally for systeminfo

copy of Np last samples

cyclicprefix

OFDM symbol, TsymFFT length NFFT

GuardInterval

symbol window

OFDM symbol beforeCP insertion

delayspread

cyclicprefix

symbol window

cyclicprefix

OFDM symbol beforeCP insertion

OFDM symbol, T symFFT length N FFT

GuardInterval

OFDM symbol at the transmitter

OFDM symbol at the receiver

For internal use

14 © Nokia Siemens Networks HH + AT/ 9th August 2007

Cyclic Prefix – Preventing Intersymbol Interference

(ISI)Having the cyclic prefix longer than the channel multpath delayspread prevents ISI

The part of the signal waveform itself is copied to be used and cyclicprefix (instead of a break in transmission)

Page 8: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 8/61

For internal use

15 © Nokia Siemens Networks HH + AT/ 9th August 2007

Maintaining sub-carriers orthogonal

The OFDMA refers indeed to the Orthogonal FDMA as theparameters for the sub-carrier are chosen to that neighboring sub-carriers have zero value the desired sampling point for any sub-carrier  Sampling point

for sub-carrier

Zero value for

other sub-carriers

15 kHz

For internal use

16 © Nokia Siemens Networks HH + AT/ 9th August 2007

OFDMA Transmitter 

Windowing is needed for pulse shaping for meeting the spectrum masks

• This is even more needed if some clipping is applied (typical) in the transmitter as thatmakes the spectrum wider compared to the ideal OFDM spectrum

• Compare to pulse shaping filters with WCDMA

The length of the filters will “eat” part of the time from cyclic prefix

Serial

to

Parallel

X0

XN-1

x0

xN-1

IFFT

Parallel

to

SerialAdd

CP

WindowingDACRF Section

Input

Symbols

Page 9: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 9/61

For internal use

17 © Nokia Siemens Networks HH + AT/ 9th August 2007

OFDM challenges

Peak-to-average ratio of the transmitted signal (crest factor)

Sensitivity to frequency error • This addressed by having sufficiently large sub-carrier spacing• In case of too large frequency error, the sub-carriers start to

interfere each others

For internal use

18 © Nokia Siemens Networks HH + AT/ 9th August 2007

Why not to use OFDM in the uplink?

The transmitted OFDM signal shou ld be seen as a sum of sinusoid

This is not suited for a highly linear, power efficient terminal amplifier 

The envelope needs to be with as low Peak-to-Average Ratio (PAR) as

possible.

Power Amplifier sees this!

IFFT …

Frequency domain

QAM modulated inputs

Time domain signal

FFT …

Frequency domain

QAM modulated outputs

Page 10: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 10/61

19 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

SC-FDMA in LTE Uplink

For internal use

20 © Nokia Siemens Networks HH + AT/ 9th August 2007

SC-FDMA with CP

Sending only one symbol at the time results to low PAR envelope

• In 3GPP Cubic Metric being considered as it represent better the deviceamplifier impact than PAR

This allows to benefit from the modulation PAR/CM properties in devices

This is important for small size devices aiming for up to 24 dBm TX power.

frequency

Transmitter

Receiver

total radio BW (eg. 20 MHz)

Modulator Cyclic

Extension

RemoveCyclic

Extension

FFTMMSEEqualiser 

IFFT Demodulator  Bits

Bits

frequency

Transmitter

Receiver

total radio BW (eg. 20 MHz)

Modulator Cyclic

Extension

RemoveCyclic

Extension

FFTMMSEEqualiser 

IFFT Demodulator  Bits

Bits

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4CM vs rolloff with different modulations

rolloff 

   C

   M    [   d

   B   ]

SC pi/2-BPSK

SC QPSK

SC 16-QAM

OFDM pi/2-BPSK

OFDM QPSK

OFDM 16-QAM

Page 11: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 11/61

Page 12: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 12/61

23 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

Physical Layer Structures

For internal use

24 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Physical Layer Structure – Frame Structure

The slot structure (allocation with 1 ms sub-frame resolution) has been designed tofacilitate short round trip time

With FDD only the generic frame structure is intended to be used, with TDD bothare possible while the alternative is only intended for the TD/SCDMA co-existancecase.

 

#0#0 #1#1 #2#2 #3#3 #19#19

One slot, T slot = 15360×T s = 0.5 ms

One radio frame, T f = 307200×T s=10 ms

#18#18

One subframe

 

#0 #1 #2 #3 #4 #5 #6

DwPTS

Guard period

UpPTS

One radio frame, Tf  = 307200×Ts 

Generic

Alternative one for TD/SCDMA co-existence

Page 13: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 13/61

For internal use

25 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Physical Layer Structure – Frame Structure (2)

Data SymbolsControl Symbols

DL Sub-carriers

0.5 ms Slot

1 ms Sub-frame

10 ms Radio Frame

…0 1 2 3 191817

For internal use

26 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Physical Layer Structure – Downlink

The following downlink physical channels are defined

• Physical Downlink Shared Channel, PDSCH

 – This is intended for the user data (compare with HS-PDSCH in WCDMA)

• Physical Downlink Control Channel, PDCCH

• Physical Broadcast Channel, PBCH

• Physical Control Format Indicator Channel, PCFICH

• Physical Multicast Channel, PMCH

symb N   

ConfigurationGeneric frame struct ure Alternative frame structu re

Normal cyclic prefix kHz15=∆ f    7 9

kHz15=∆ f    6 8Extended cyclic prefix

kHz5.7=∆ f    3 4

Page 14: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 14/61

For internal use

27 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Physical Layer Structure – Downlink ReferenceSignal

1

1

1

Not used for 

transmission on

this antenna port

Reference

signals on this

antenna port

Resource elementR0

R0

R0

R0

R0R0

R0

R0

reference signal: R1reference signal:

R1 R1

R1

R1

R1

R1

R1

R1

subframe xsubframe x

1RB

Needed for receiver channel estimation (like CPICH in WCDMA)

Sufficient distribution in time and frequency domain needed.

For internal use

28 © Nokia Siemens Networks HH + AT/ 9th August 2007

Downlink channels for data & control (PDCCH/PDSCH)

Downlink control information in the few first symbols to indicate which resources(resource blocks) are allocated for a given user (UL&DL!)

Respectively the uplink resources to be used are informed by eNode B

• Under consideration whether uplink allocations could be for longer periods aswell

Data SymbolsControl Symbols

DL

UL

Uplink Allocations

User 1 Data & Control

User 2 Data & Control

Frequency

Sub-carriers

0.5 ms Sub-frame

Page 15: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 15/61

For internal use

29 © Nokia Siemens Networks HH + AT/ 9th August 2007

Subframe structure

Short cyclic prefix

Long cyclic prefix

Symbol 66.68 µs

Copy

= Cyclic prefix

= Data

5.21 µs

16.67 µs

Subframe length is 1 ms for all bandwidths• 0.5 ms is the slot length (recent 3GPP decision)

Subframe carries 6 symbols with short cyclic prefix or 7 symbolswith long prefix

For internal use

30 © Nokia Siemens Networks HH + AT/ 9th August 2007

Resource Blocks

Resource allocation can be done with Resource blocks

Resource block has bandwidth of 180 kHz, equal to 12 subcarriers

10 MHz = 50 resource blocks = 600 subcarriers (subject to 3GPP confirmation)

Resource block180 kHz = 12subcarriers

Subcarrier 15 kHz

Page 16: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 16/61

For internal use

31 © Nokia Siemens Networks HH + AT/ 9th August 2007

Synchronization Channel SynCH in Downlink

Sycnchronization Channel SynCh is allocated in the 1.25-MHz blockin the middle of downlink bandwidth

SynCH is located in the last OFDM symbol of every 4th subframe

#0

Frame Tf = 10 ms

#19

1.25 MHz

Subframe 0.5 ms

For internal use

32 © Nokia Siemens Networks HH + AT/ 9th August 2007

Subcarrier Modulation

QPSK

2 bits/symbol

16QAM

4 bits/symbol

64QAM

6 bits/symbol

In both directions QPSK, 16QAM or 64QAM are used, depending on the channel(expected that control channels to be using mainly QPSK)

Page 17: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 17/61

For internal use

33 © Nokia Siemens Networks HH + AT/ 9th August 2007

Downlink Physical Layer Parameters

1.4 MHz 3.0 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Subframe (TTI) 1 ms

Subcarrier 15 kHz

FFT 128 256 512 1024 1536 2048

Subcarriers1 72+1 180+1 300+1 600+1 900+1 1200+1

1DC subcarrier included

Symbols per frame 7 with Short CP and 6 with Long CP

Cyclic prefix 5.21 µs with Short CP and 16.67 µs with Long CP

For internal use

34 © Nokia Siemens Networks HH + AT/ 9th August 2007

Uplink Subframe Structure

In the uplink direction the QAM modulation is sending only onesymbol at the time.

Momentary data rate (controlled by the eNode B scheduler)depends on the allocated transmission bandwidth (and CP lenght)

LB#1

Subframe Tsf = 0.5 ms

= Cyclic prefix

= Long block data

= Short block dta

LB#2 LB#3 LB#4 LB#5 LB#6

Page 18: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 18/61

For internal use

35 © Nokia Siemens Networks HH + AT/ 9th August 2007

Random Access Channel (RACH)

The RACH operation uses 1.08 MHz bandwidthSimilar ramping as with WCDMA (due inaccuracy of absolute powerlevel setting in devices)

307200×Ts

TPRE TGTTCP

PreambleCP 

0.1 ms 0.1 ms0.8 ms

36 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

Physical Layer Procedures

Page 19: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 19/61

For internal use

37 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Uplink Power Control

LTE uplink is using also closed loop power control, rate slower than

with WCDMA• This needed due reuse 1 and to limit uplink receiver dynamic

range

Power control commands connection with scheduling grants

Control over power spectral density, not absolute power 

-> Thus power is changing based on the BW used

frequency

frequency

Power per Hz unchanged

TTI 1

TTI 2

For internal use

38 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Uplink Power Control (cont)

Cell wide overload indicator (OI) exchanged over X2 between

nodes on a slow basis,

• Expected average delay is in the order or 20 ms, number of bits is

still for discussion in 3GPP

UEeNode BServing eNode B

Overload indicator

Scheduling and TPC

Uplink data

X2

A neigboring eNodeB

I  n t e r  f   e r  e n c e 

To AGW

Page 20: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 20/61

For internal use

39 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Timing Advance

When UE has previously established time alignment:

• TA update rate: on a per-need basis, 2 Hz is fast enough also for high speed UEs• Granularity of TA signalling: 0.52us

•What to base the TA command on: – When the UE has data to transmit, implementation issue in NodeB (e.g. based on sounding

RS, CQI)

 – If the UE has no data to transmit, FFS whether e.g. periodic signals such as sounding RS maybe ordered

• How to transmit TA in the DL: TBD whether L1L2, in-band (MAC or RRC)

When no TA is established or UE is out of sync

• TA command is based on RACH preamble

• Initial TA will have to cover the full cell range, part of RACH procedure

UEeNode B

Timing Advance

Uplink data or RACH

For internal use

40 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Measurements

• measurements from LTE on LTE (intra-LTE):

 –UE measurements:

▪ RSRP (reference signal received power ),

▪ E-UTRA carrier RSSI (received signal strength indicator),

▪ RSRQ (reference signal received quality)

 –eNode B measurement:

▪ DL reference signal transmit power 

• measurements from LTE on other systems:

 –UTRA FDD: CPICH RSCP, carrier RSSI, CPICH Ec/No

 –GSM : GSM Carrier RSSI

 –UTRA TDD: P-CCPCH RSCP ,carrier RSSI

Page 21: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 21/61

For internal use

41 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Measurements – Carrier RSSI & RSRQ

E-UTRA Carrier Received Signal Strength Indicator, comprises the totalreceived wideband power observed by the UE from all sources, including co-channel serving and non-serving cells, adjacent channel interference, thermalnoise etc.

Reference Signal Received Quality (RSRQ) is defined as the ratio N×RSRP/(E-UTRA carrier RSSI), where N is the number of RB’s of the E-UTRA carrier RSSImeasurement bandwidth. The measurements in the numerator anddenominator shall be made over the same set of resource blocks.

• 3GPP has open issues on these e.g. measurement bandwidth onRSSI

• New Measurements may still be added

For internal use

42 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Measurements – RSRP & DL Reference Signal

Transmitted Power 

• Downlink reference signal transmit power is determined for a considered

cell as the linear average over the power contributions (in [W]) of the resourceelements that carry cell-specific reference signals which are transmitted by theeNode B within its operating system bandwidth.

Reference signal received power (RSRP) is determined for a considered cell asthe linear average over the power contributions (in [W]) of the resourceelements that carry cell-specific reference signals within the consideredmeasurement frequency bandwidth.If receiver diversity is in use by the UE, the reported value shall be equivalent tothe linear average of the power values of all diversity branches.

Page 22: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 22/61

Page 23: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 23/61

For internal use

45 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE layer 2 Structure

Segm. ARQ

Multiplexing UE1

Segm. ARQ

...

HARQ

Multiplexing UEn

HARQ

BCCH PCCH

Scheduling / Priority Handling

Logical Channels

Transport Channels

MAC

RLC

Radio Bearers

Segm. ARQ

Segm. ARQ

PDCP

ROHC ROHC ROHC ROHC

SAE Bearers

Security Security Security Security

...

Header

CompressionsCiphering

For internal use

46 © Nokia Siemens Networks HH + AT/ 9th August 2007

Layer 3 (RRC)

The Radio Resource Control (RRC) signaling is also terminated in eNode B(compared to RNC in WCDMA)

One of the enablers for the flat model is the lack of macro-diversity

• Not need for RNC like functional element -> everything radio related can beterminated in eNode B

RRC to handle: Broadcast, Paging, RRC connection management, Mobility

managements and UE measurements …

Control Plane LTE protocol stacks

RRC

UE

RLC

MAC

Physical Layer 

RRC

eNode B

RLC

MAC

Physical Layer 

Page 24: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 24/61

47 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

LTE Archi tecture

For internal use

48 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Architecture Evolution

GGSN

Node B

HSPA R6

SGSN

LTE R8

RANeNode B

SAE

Gateway

Only user plane elements shown!

RNC

The LTE architecture isflat, only two nodes forthe user data

• See later slides fordetails

This is similar that isenabled in I-HSPA whendeployed together withthe one tunnel solution

 Also the ciphering is ineNode B

Page 25: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 25/61

For internal use

49 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Architecture Overview

RB Control

ConnectionMobility Cont .

eNBMeasurement

Configuration &Provision

DynamicResource Allocation

(Scheduler )

RRC

PHY

Mobility Management

SAE BearerControl

MAC

PDCP

Inter Cell RRM

Radio Admission

Control

RLC

eNode BMME

Idle Mode Handling

S1-MME

S1-U

Serving SAE GW PDN SAE GW

Local Mobility Anchor Point for LTE Handover 

Mobility Anchoring for GSM/WCDMA Mobility

Legal Interception

Policy Enforcement

Packet Filtering

EUTRAN CORE NETWORK

Hard Handover facilitate a decentralized network architecturewithout a centralized Radio Network Controller (RNC).

Radio Access related control functionality and protocol terminationon the network side is located in the eNB:

For internal use

50 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Architecture – Control Plane

The interface betweenRAN & Core network iscalled S1 interface

Interface betweeneNodeB is named X2

S1_MME between

MME& eNodeB

X2RRC

UE

RLC

MAC

Physical Layer

RRC

eNode B

RLC

MAC

Physical Layer

RRC

eNode B

RLC

MAC

Physical Layer MME

S1_MME

S1_MME

NAS NAS

Page 26: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 26/61

For internal use

51 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE/SAE Architecture (Radio and Core)

PCRF

MME

SGSNIu-ps

HSS

IP Networks

Data

ControlUTRAN

S1_MME

Serving SAE

Gateway

eNode B

S1_U

PDN SAE

Gateway

S11

SGI

Operator Services(IMS etc…)

Radio

52 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

Protocols and QoS

Page 27: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 27/61

For internal use

53 © Nokia Siemens Networks HH + AT/ 9th August 2007

Protocol Layers

 

CMAC

MAC-u SAP

RRC SAP 

PHY SAP

Physical layer

Radio link layer

IP layer

Radio network layer

PDCP 

IP

RRC  

RLC

PHY

MAC  

MAC-c SAP

CPHY 

MM&X 

PHY:• FEC encoding/decoding• Error detection• Support of HARQ• Modulation/demodulation• Frequency and time synchronization• Power control, antenna diversity, MIMO

MAC:• Mapping & mux of logical channels totransport channels• Traffic volume measurement reporting• Hybrid-ARQ• Priority handling

RLC:• Retransmission control (ARQ)• Segmentation• Flow control towards aGW

RRC:• Broadcast of system information• Radio connection & Radio bearers

• Paging, handovers, QoS management,radio measurement control

For internal use

54 © Nokia Siemens Networks HH + AT/ 9th August 2007

 ARQ & HARQ Retransmissions

LTE provides both

•  ARQ at RLC layer and

• H-ARQ at MAC layer 

RLC retransmissions

•  Acknowledged mode (AM) withretransmissions

• Transparent mode (TM) used for e.g.BCCH

H-ARQ: N-process Stop and Wait based on ACK/NACK

• DL: Asynchronous retransmission withadaptive transmission parameters

• UL: Synchronous retransmission with fixedor adaptive transmission parameters

Page 28: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 28/61

Page 29: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 29/61

57 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

LTE Peak Bit Rates

For internal use

58 © Nokia Siemens Networks HH + AT/ 9th August 2007

Resource bloc 6 15 25 50 100

Subcarriers 72 180 300 600 1200

Modulation coding 1.4 MHz 3.0 MHz 5.0 MHz 10 MHz 20 MHz

QPSK 1/2 Single stream 0.8 2.1 3.6 7.2 14.3

16QAM 1/2 Single stream 1.7 4.3 7.2 14.3 28.716QAM 3/4 Single stream 2.6 6.4 10.7 21.5 43.0

64QAM 3/4 Single stream 3.9 9.7 16.1 32.2 64.5

64QAM 4/4 Single stream 5.1 12.9 21.5 43.0 86.0

64QAM 3/4 2x2 MIMO 7.7 19.3 32.2 64.5 129.0

64QAM 4/4 2x2 MIMO 10.3 25.8 43.0 86.0 172.0

64QAM 4/4 4x4 MIMO 20.6 51.6 86.0 172.0 343.9

Downlink Peak Bit Rate

• 2x2 MIMO

• 64QAM

• Pilot symbols 1 out of 14

• Reference symbol overhead 7.7%

•Result : 172 Mbps in 20 MHz and 86 Mbps in 10 MHz

Page 30: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 30/61

For internal use

59 © Nokia Siemens Networks HH + AT/ 9th August 2007

Resource bloc 6 15 25 50 100

Subcarriers 72 180 300 600 1200

Modulation coding 1.4 MHz 3.0 MHz 5.0 MHz 10 MHz 20 MHz

QPSK 1/2 Single stream 0.8 2.1 3.6 7.2 14.3

16QAM 1/2 Single stream 1.7 4.3 7.2 14.3 28.7

16QAM 3/4 Single stream 2.6 6.4 10.7 21.5 43.0

16QAM 4/4 Single stream 3.4 8.6 14.3 28.7 57.3

64QAM 3/4 Single stream 3.9 9.7 16.1 32.2 64.5

64QAM 4/4 Single stream 5.1 12.9 21.5 43.0 86.0

64QAM 4/4 V-MIMO (cell) 10.3 25.8 43.0 86.0 172.0

Uplink Peak Bit Rate

• Single stream transmission• 16QAM

• Pilot symbols 1 out of 14

• 57 Mbps in 20 MHz and 28 Mbps in 10 MHz

For internal use

60 © Nokia Siemens Networks HH + AT/ 9th August 2007

2000 2005 20100,01

0,1

1

10

100

1.000

Year of user availability

   U  s  e  r   d  a   t  a  r  a   t  e   [   M   b  p  s   ]

 ADSL

1-3 Mbps

 ADSL

6-8 Mbps

 ADSL2+

16-20 Mbps

VDSL2

25-50 Mbps

GPON

100 Mbps

EDGE

0,236 Mbps

WCDMA

0,384 Mbps

HSDPA

3.6-7.2 Mbps

NG-PON

Wireline

Wireless

Wireless Can Provide Broadband Access – But Wireline will

 Always be Faster • Similar evolution track in wireline and wireless

• Wireline has and will have >30x higher peak rate while wireless is faster to deployand provides mobility

• Wireless can provide >1 Mbps broadband data rates in practice, which isgenerally enough for everything else except IP TV

HSDPA1.8 Mbps

WiMAX

HSPA+

LTE

Page 31: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 31/61

For internal use

61 © Nokia Siemens Networks HH + AT/ 9th August 2007

Transport Solution Must Support High Data Rates

= Very high data rate solutions beyond 100 Mbps

= High data rate solutions beyond 10 Mbps= Voice and low data rate solutions

Ethernet

E1

SHDSL.bis

 ADSL2+

LTE

Ethernet

GPON

DSM L3

VDSL2 LTE

Peak

Data rate Downstream / Downlink Upstream / Uplink

WiMAX

HSPA WiMAX

HSPA

WCDMA

GPON

10 G

1 G

100 M

10 M

1 M

0,1 M

WCDMA

EDGEevolution

EDGE

DSM L3

VDSL2

 ADSL2+

 ADSL

SHDSL.bis

E1

 ADSL

E1

EDGEEDGE

EDGEevolution

62 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

LTE Link Budgets

Page 32: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 32/61

For internal use

63 © Nokia Siemens Networks HH + AT/ 9th August 2007

Link Budgets – Uplink 64 kbps

UplinkData rate [kbps] 64

Transmitter - UE

a Max tx power [dBm] 24.0

 b Tx antenna gain [dBi] 0.0

c Body loss [dB] 0.0

d EIRP [dBm] 24.0 =a+b-c

Receiver - Node B

e Node B noise figure [dB] 2.0

f Thermal noise [dBm] -118.4 =k (Boltzmann)*T(290 K)*B(360kHz)

g Receiver noise floor [dBm] -116.4 =e+f  

h SINR [dB] -7.0 From simulations

i Receiver sensitivity [dBm] -123.4 =g+h

h Interference margin [dB] 2.0k Cable loss [dB] 2.0

l Rx antenna gain [dBi] 18.0

m MHA gain [dB] 2.0

Maximum path loss 163.4 =d-i-j-k+l-m

• At least similar link budget as HSPA 64 kbps or GSM voice

 – Differences in fast fade margin, macro diversity and interference margin• Clearly better link budget than WiMAX

24 dBm terminal

2 resource blocksfor 64 kbps

2 dB interference

margin

For internal use

64 © Nokia Siemens Networks HH + AT/ 9th August 2007

Link Budgets – Downlink 1 Mbps

DownlinkData rate [kbps] 1024

Transmitter - Node B

a HS-DSCH power [dBm] 46.0

 b Tx antenna gain [dBi ] 18.0

c Cable loss [dB] 2.0

d EIRP [dBm] 62.0 =a+b-c

Receiver - UE

e UE noise figure [dB] 7.0

f Thermal noise [dBm] -104.5 =k (Boltzmann)*T(290 K)*B(9.0MHz)

g Receiver noise floor [dBm] -97.5 =e+f  

h SINR [dB] -10.0 From simulationsi Receiver sensitivity [dBm] -107.5 =g+h

 j Interference margin [dB] 3.0

k Control channel overhead [dB] 1.0

l Rx antenna gain [dBi] 0.0

m Body loss [dB] 0.0

Maximum path loss 165.5 =d-i-j-k+l-m

• Downlink 1 Mbps link budget better than uplink 64 kbps

40 W BTS

2 dB cable loss(could be avoidedwith RF head)

10 MHz bandwidth

3 dB interferencemargin

Page 33: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 33/61

For internal use

65 © Nokia Siemens Networks HH + AT/ 9th August 2007

Uplink Link Budget Difference Between WiMAX andHSPA/LTE

HSPA/LTE FDD WiMAX TDD

(1) Mobile transmit power 24 dBm 23 dBm

(2) TDD structure Continuoustransmission

Duty cycle 18/49 =−4.2 dB

1.0 dB

4.2 dB

(3) Pilot overhead 14% = −0.7 dB 33%1 = −1.7 dB 1.0 dB

1PUSC assumed. AMC would reduce the overhead, but AMC + MIMO is not defined in WiMAXforum profiles 1-22Stronger 1/3 rate coding and incremental redundancy in HSUPA/LTE main reasons3Including macro diversity gain and interference margin in HSUPA for 64 kbps4One subchannel and 1 dB interference margin assumed5We typically assume HSPA/LTE 162-163 dB and WiMAX 154 dB

Total 8.6 dB5

(4) Other difference insensitivity2

−121 dBm(HSUPA3)

−113.4 dBm4-4.2-1.0 =−118.6 dBm

2.4 dB

For internal use

66 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE Cell Sizes

0.1

1.0

10.0

100.0

900 MHz 1800 MHz 2100 MHz 2500 MHz

km

Urban indoor 

Suburban indoor 

Rural outdoor 

Rural outdoor fixed 

Okumura-Hata parameters Urban indoor Suburban

in do or Rur al o utdo or  Rural outdoor

fixed

Base station antenna height [m] 30 50 80 80

Mobile antenna height [m] 1.5 1.5 1.5 5

Mobile antenna gain [dBi] 0.0 0.0 0.0 5.0Slow fad ing s tandard deviat ion [dB] 8 .0 8.0 8.0 8.0

Location probability 95 % 95 % 95 % 95 %

Correction factor [dB] 0 -5 -15 -15

Indoor loss [dB] 20 15 0 0

Slow fading margin [dB] 8.8 8.8 8.8 8.8

Page 34: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 34/61

67 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

Link Adaptation and Packet Scheduling

For internal use

68 © Nokia Siemens Networks HH + AT/ 9th August 2007

Fast Link adaptation in Downlink Based on CQI

• Modulation schemes: QPSK,16QAM, 64QAM

• Code rate: Turbo 1/6 − 5/6

• Fine adjustment of link adaptation isdone by using H-ARQ, which can beseen in the smoothening out of thespectral efficiency curve.

• Multi-stream MIMO is used to furtherboost the Peak-data-rate (not shownin this slide)

-10 -5 0 5 10 15 20 25 30 35 400

0.5

1

1.5

2

2.5

3

3.5

4

4.5

G-factor [dB]

   S  p  e  c   t  r  a   l  e   f   f   i  c   i  e  n  c  y   b   /  s   /   H  z

QPSK 1/6,no H-ARQ

QPSK 1/3,no H-ARQ

QPSK 1/2,no H-ARQ

QPSK 2/3,no H-ARQ

16QAM 1/2,no H-ARQ

16QAM 2/3,no H-ARQ

16QAM 3/4,no H-ARQ

64QAM 2/3,no H-ARQ

64QAM 4/5,no H-ARQ

LA no H-ARQLA with H-ARQ

G-Factor basically means SINR

Page 35: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 35/61

For internal use

69 © Nokia Siemens Networks HH + AT/ 9th August 2007

Fast Multiplexing in Time and Frequency domain

12-subcarriers

• A “resource block” consists of 12

consecutive sub-carriers ~ 180kHz fora number (N) consecutive OFDM

symbols within two Sub-frames.

1 radio frame = 10ms

1 sub-frame = 0.5ms (10ms/20)6 or 7 OFDM symbols

Subframe pair= 2 sub-frames

1 OFDM symbol ~ 71/83 usincl. CP (short/long)

User B

User C

User D

User A

User D

User A

F-D packet scheduler allocation

User #1

User #2

RB index 

Frequency

Use

r B

User C

User D

User A

User D

User A

Allocation

Information infirst 3 OFDM

symbols.

For internal use

70 © Nokia Siemens Networks HH + AT/ 9th August 2007

UE2

Channel qualityinfo (CQI)

Data

Data

UE1

Multi-user selection diversity (give shared channel to “the best” users) 

USER 1 Es/N0

USER 2 Es/N0

Scheduled user

Scheduling and allocationcan utilize information on the

instantaneous channelconditions of each user.

time

Time Domain Proport ional Fair Schedul ing

Channel qualityinfo (CQI)

Page 36: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 36/61

Page 37: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 37/61

Page 38: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 38/61

For internal use

75 © Nokia Siemens Networks HH + AT/ 9th August 2007

Localized vs. Distr ibuted Transmission (2)

Localized transmission

▲Supports Frequency domain packet scheduling▲High flexibility in RRM

▲Work well together with interference coordination

▼No frequency diversity (or frequency diversity by retransmission)

▼Performance is sensitive to high mobile speed

Distributed transmission

▲Maximize frequency diversity

▲Potentially less control signaling overhead

▲Potentially work better with interference averaging techniques

▲Performance is less sensitive to high mobile Speed

▼Does not support Frequency domain packet scheduling

▼Low flexibility in RRM

Localized transmission has theoretically higher performance potential thandistributed but is more complex to get optimal performance

For internal use

76 © Nokia Siemens Networks HH + AT/ 9th August 2007

Gain from Transmit Diversity / MIMO

The gain of 2-antenna BTStransmission with TxAA

• 1-rx UE: 28 %

• 2-rx UE: 17 %+17%

+28%

Page 39: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 39/61

For internal use

77 © Nokia Siemens Networks HH + AT/ 9th August 2007

Uplink spectral efficiency

0.00.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2 RX antennas 4 RX antennas

   b  p  s   /   H  z   /  c  e   l   l

Proportional fair 

Virtual MIMO

Uplink Virtual-MIMO Gains3GPP Case 1 with 20 UE/cell

V-MIMO gain<10% with 2-rx

BTS

V-MIMO gains arelarge with 4-rx. V-

MIMO is a must with 4-rx BTS

78 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

Spectral Efficiency

Page 40: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 40/61

For internal use

79 © Nokia Siemens Networks HH + AT/ 9th August 2007

Downlink Summary

0.0

0.5

1.0

1.5

2.0

2.5

UTRA baseline E-UTRA 2x2

   b  p  s   /   H  z   /  c  e   l   l

 Alcatel-Lucent

Ericsson

Huawei

InterDigital

Motorola

NEC

Nortel

Nokia-Siemens

Qualcomm

SamsungTexax Instruments

 Average

HSPA

0.6 bps

LTE 1.8

bps

• Downlink spectral efficiency shown to be 3 x HSPA R6 (=UTRA baseline), which

was the target of LTE

For internal use

80 © Nokia Siemens Networks HH + AT/ 9th August 2007

Uplink Summary

• Uplink spectral efficiency shown to be >2 x HSPA R6, which was the target ofLTE

0.0

0.2

0.4

0.6

0.8

1.0

1.2

UTRA baseline E-UTRA 1x2

   b  p  s   /   H  z   /  c  e   l   l

 Alcatel-Lucent

Ericsson

Huawei

InterDigital

Motorola

NEC

Nortel

Nokia-Siemens

Qualcomm

Samsung

Texax Instruments

 Average

HSPA 0.33

bps

LTE 0.75

bps

Page 41: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 41/61

For internal use

81 © Nokia Siemens Networks HH + AT/ 9th August 2007

Key Features for LTE Downlink Spectral EfficiencyCompared to HSPA R6

Inter-cell interference rejection combining orcancellation

MIMO = combined use of 2 tx and 2 rxantennas

Frequency domain packet scheduling

+10%

+20%

+40%

Total gain up to 3.1x

OFDM with frequency domain equalization +20..70%

Compared to single antenna BTStx and 2-rx terminal

Not feasible in HSPA due tocdma modulation

Possible also in HSPA but better performance in OFDM solution

Due to orthogonality

• 3GPP R7 brings equalizer and MIMO also to HSPA

82 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

Voice (VoIP) in LTE

Page 42: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 42/61

For internal use

83 © Nokia Siemens Networks HH + AT/ 9th August 2007

VoIP Considerations

• Voice codec selection: AMR, IETF (G.xxx, iLBC), Proprietary• IP header compression

• QoS

• Keep alive signals

• SIP signalling

• Resource allocation – Fully persistent allocation

 – Talk spurt based persistent allocation

 – Semi-persistent allocation (similar to HS-SCCH less HSDPA)

 – Dynamic scheduling

• Packet scheduling

• Mobility – Also to GSM and to UMTS

For internal use

84 © Nokia Siemens Networks HH + AT/ 9th August 2007

Downlink VoIP Capacity Results

Estimated Capacity for VoIP with Different Bandwidths

0

100

200

300

400

500

600

1.25 5 10

Bandwidth [MHz]

   C  a  p  a  c   i   t  y   [   U  s  e  r  s   /  c  e   l   l   ]

7.95 kbps AMR (estimated)

12.2 kbps AMR (estimated)

Baseline capacity figure for different bandwidths, 3 km/h (no real control channel limitations)

• 1.25 MHz ~ 60 users/cell @ 7.95 AMR ~ 50 users/cell @ 12.2 AMR (estimated)

• 5 MHz ~ 230 users/cell @ 7.95 AMR (estimated) ~ 190 users/cell @ 12.2 AMR

• 10 MHz ~ 550 users/cell @ 7.95 AMR ~ 440 users/cell @ 12.2 AMR (estimated)

Capacity difference of 7.95 kbps AMR and 12.2 kbps AMR: The 7.95 AMR gives roughly 10-20% bettercapacity (used when calculating the estimations above)

Page 43: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 43/61

For internal use

85 © Nokia Siemens Networks HH + AT/ 9th August 2007

0

10

20

30

40

50

60

GSMEFR

GSM AMR

GSMDFCA

WCDMACS voice

HSPA R7 LTE

   U  s  e  r  p  e  r   M   H  z

Voice Spectral Efficiency Evolution from GSM to LTE

• 20 x more users per MHz with 3GPP LTE than with GSM EFR!• VoIP is the way to go for future voice in mobile systems

CS voice VoIP

86 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

LTE Handovers

Page 44: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 44/61

For internal use

87 © Nokia Siemens Networks HH + AT/ 9th August 2007

Key Agreements so far in 3GPP Regarding Handovers

• Stage 2 work closed in June 2007 in TSG-RAN• Stage 3 work starting with detailed procedures, message naming, message

contents

• 3GPP LTE handover principles

 – Lossless

▪ Packets are forwarded from the source to the target

 – Network-controlled

▪ Target cell is selected by the network, not by the UE

▪  Active mode mobility (Handover control) in E-UTRAN, Evolved Packet Core involved only inHandover Completion after preparation and execution phases

 – UE-assisted

▪ Measurements are made and reported by the UE to the network

▪ The network may request the UE to prioritize some cells to measure

 – Late path switch

▪ Only once the handover is successful, EPC is involved

For internal use

88 © Nokia Siemens Networks HH + AT/ 9th August 2007

Inter eNB handover 

MME

UE

Serving

SAE GW

old eNB

MME

UE

Serving

SAE GW

new eNB

GTP tunnel

GTP signaling

Radio frames

X2 signaling

S1 signaling

MME

UE

Serving

SAE GW

old eNB old eNB

Before Handover  Handover preparation

and HO command After Hand over 

MME

UE

Serving

SAE GW

old eNBnew eNB

UE access to target, and

new S1 taken into use

Page 45: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 45/61

For internal use

89 © Nokia Siemens Networks HH + AT/ 9th August 2007

P r  e p ar  a t  i   on

Handover Preparation (1)

• The UE context within the source eNBcontains information regarding mobilityrestrictions (e.g. roaming)

 – source eNB knows where UE can go

• The source eNB configures the UEmeasurement procedures

 – UE continuously identifies and measuresneighbour cells

• UE is triggered to send MEASUREMENTREPORT to the source eNB

 – Event triggered or periodic

• Source eNB makes decision based onMEASUREMENT REPORT and RRMinformation to hand off UE

 – Channel conditions, load and serviceinformation included

Src: 3GPPTS 36.300 V8.0.0 (2007-03)

For internal use

90 © Nokia Siemens Networks HH + AT/ 9th August 2007

Handover Preparation (2)

P r  e p ar  a t  i   on

• The source eNB issues a HANDOVERREQUEST to the target eNB passingnecessary information to prepare the HOat the target side

• Target eNB performs admission controland configures the required resourcesaccording to the received SAE bearer QoSinformation

• Target eNB sends the HANDOVERREQUEST ACKNOWLEDGE to thesource eNB

• Target eNB is ready to welcome the UEand the source eNB can issue the HOcommand

Page 46: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 46/61

For internal use

91 © Nokia Siemens Networks HH + AT/ 9th August 2007

Handover Execution

• The source eNB generates the

HANDOVER COMMAND towards the UE• The UE receives the HANDOVER

COMMAND

• UE leaves the source cell and moves to thetarget cell

• UE performs the final DL synchronisation totarget eNB and then starts acquiring ULtiming advance

 – DL pre-synchronisation is obtained duringcell identification and measurements prior tomeasurement reporting

E x  e c  u t  i   on

Src: 3GPPTS 36.300 V8.0.0 (2007-03)

For internal use

92 © Nokia Siemens Networks HH + AT/ 9th August 2007

Handover Completion

• The EPC is informed by the target eNB thatthe UE has changed location with aHANDOVER COMPLETE message

• The UPE switches the downlink data path tothe target side and can release any U-planeand transport network resources towards thesource eNB

• The EPC confirms the HANDOVERCOMPLETE message with the HANDOVERCOMPLETE ACK message

• By sending RELEASE RESOURCE thetarget eNB informs success of HO to sourceeNB and triggers the release of resources

• Upon reception of the RELEASERESOURCE message, the source eNB canrelease radio and C-plane related resourcesassociated to the UE context

 C  om pl   e t  i   on

Src: 3GPPTS 36.300 V8.0.0 (2007-03)

Page 47: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 47/61

Page 48: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 48/61

95 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

Differences Between WiMAX Release 1 and LTE

For internal use

96 © Nokia Siemens Networks HH + AT/ 9th August 2007

Physical layer design – Basic parameters

Higher uplink coverage

LTE: CM = 1.0 dB

WiMAX: CM = 3.3 dB

Lower cyclic prefixoverhead

LTE: Overhead = 7 %

WiMAX: Overhead = 11 %

Item   LTE WiMAX

Downlink MA   •  OFDMA   •  OFDMA

•  SC-FDMA   •  OFDMA

•  Cubic metric = 1.0dB •  Cubic metric = 3.3 dB

Duplex   •  FDD, TDD   •  TDD

•  1.4 (FDD)   •  5, 10, 8.75 MHz (band class 1)

•  1.6 (TDD)   •  3.5, 5, 10 MHz (band class 2)

•  3.0 and/or 3.2 MHz   •  5, 10 MHz (band class 3)

•  5, 10, 15, 20 MHz   •  5, 7, 10 MHz (classes 4 and 5)

FFT sizes  •  128, 256, 512, 1024,

1536, 2048  •  512, 1024

•  10.9 kHz (5 & 10 MHz ch)

•  7.8 kHz (3.5 & 7 MHz ch)

•  9.8 kHz (8.75 MHz ch)

•  91 us (5 & 10 MHz ch)

•  128 us (3.5 & 7 MHz ch)

•  102 us (8.75 MHz ch)

•  4.7 us (normal CP)   •  11.4 us (5 & 10 MHz ch)

•  16.7 us (extended CP)   •  16.0 us (3.5 & 7 MHz ch)

•  12.8 us (8.75 MHz ch)

•  7 % (normal CP)

•  20 % (extended CP)•  11 %

Uplink MA

Channel

bandwidth

Subcarrier

spacing  •  15.0 kHz (unicast)

Useful symbol

length

  •  67 us

Cyclic prefix

length

Cyclic prefix

overhead

Higher maximum BW

LTE: Up to 2x20 MHz

WiMAX: Up to 1x10 MHz1

1Bandwidths up to 2x20 MHz, FDD, and variable CP are supported in 802.16e

Page 49: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 49/61

For internal use

97 © Nokia Siemens Networks HH + AT/ 9th August 2007

Physical layer design – Channel coding

CRC

Code blocksegmentation

Channel coding

Rate matching

Channel

interleaving

Code blockconcatenation

HARQ

Higher coding performancewithlong packets

LTE: Code block size < 6144 bits

WiMAX: Code block size < 480 bits

Higher turbo codingperformance

LTE: PCCC

WiMAX: Duo binary codes

Support for incrementalredundancy

LTE: Chase & IR supported

WiMAX: Only Chase supported

Finer granularity of code rates

LTE: Flexible rate-matching

WiMAX: Fixed set of code rates

For internal use

98 © Nokia Siemens Networks HH + AT/ 9th August 2007

Physical layer design – MIMO

OFDM

Mapper 

OFDM signal

generationLayer

Mapper 

Scrambling

Precoding

Modulation

Mapper 

Modulation

Mapper 

OFDM

Mapper 

OFDM signal

generationScrambling

code words layers antenna ports

Number of TXantennas

LTE: Max 4

WiMAX: Max 2

Support for closed-loop MIMO

LTE: Codebook-based linearprecoding with rank adaptation

WiMAX: Not supported

Support for multicodeword transmission

LTE: Max 2 codewords

WiMAX: Not supported

Supportfor DownlinkMU-MIMO

LTE: Supported

WiMAX: Not supported

Support for uplink TX diversity

LTE: Closed loop TX antennaselection

WiMAX: Not supported

NOTE: Most of the ”non supported” WiMAXMIMO features are supported in 802.16e

Page 50: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 50/61

For internal use

99 © Nokia Siemens Networks HH + AT/ 9th August 2007

Physical layer design – Reference signal overhead

ASSUMPTIONS: The DL overhead includes pilots + sync at 10 MHz

bandwidth. The UL overhead includes pilots only(no sounding).

Lower DL RS overhead

LTE: 10.2 % (2 TX)

WiMAX: 17.5 % (PUSC)

Lower UL RS overhead

LTE: 14.3 %

WiMAX: 33.3 % (PUSC)

Uplink PUSC

Lower UL RS overhead

LTE: 14.3 %

WiMAX: 11.1 % (AMC)

1 TX 2 TX PUSC AMC

Downlink 5.5 10.2 17.5 14.5

Uplink 14.3 - 33.3 11.1

LTE WiMAXLink

For internal use

100 © Nokia Siemens Networks HH + AT/ 9th August 2007

Radio link layer design – Protocol architecture

 

CRLC

MAC-uSAP

RRC SAP

PHYSAP

RLC-uSAP

NAS_SEC 

IP

RRC 

RLC

PHY

MAC

RLC-cSAP

MAC-cSAP

CPHY

NAS 

NAS_SEC-c SAP

PDCPSAP

CMAC

PDCP 

CPDCP

WiMAX LTE

More advancedspecification methodology

LTE: Clear logical model (SAPs), formal message definitions (ASN.1 tools), easy protocol extendibility

WiMAX: Logical model missing, message encodings manually specified, possible dead-ends in extendibility

Page 51: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 51/61

Page 52: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 52/61

For internal use

103 © Nokia Siemens Networks HH + AT/ 9th August 2007

Radio link layer design – User/control plane latency

LTE Wi MAX

User-plane latency

0 % HARQ3.5 ms 9.5 ms

User-plane latency

30 % HARQ5.0 ms 12.5 ms

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

BS <-> MME/ASN-GW del ay [m s]

   T  o   t  a   l   C  -  p   l  a  n  e   d  e   l  a  y   [  m  s   ]

LTE

WiMAX

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 1 1 1 2 13 14 15 16

BS <-> MME/ASN-GW del ay [m s]

   T  o   t  a   l   C  -  p   l  a  n  e   d  e   l  a  y   [  m  s   ]

LTE

WiMAX

Lower dependency to theBS<->MME delay

LTE: C-p delay = 50 - 80 ms

WiMAX: C-p delay = 50 - 140 ms

In case the BS<->ASN-GW delay is

kept low enough, the 3GPPrequirementsfor C-plane delay (100ms) arealso fulfilledin WiMAX,

Lower U-plane delay due toshorter radio frame

LTE: U-p delay = 3.5 – 5.0 ms

WiMAX: U-p delay = 5.0 – 12.5 ms

The evaluation methodologyis based on the

3GPP latencystudy

For internal use

104 © Nokia Siemens Networks HH + AT/ 9th August 2007

Conclusions (1/2)

Physical layer design

• Major differences

 – Higher maximum transmission bandwidth in LTE

 – Frequency division duplexing supported in LTE

 – More advanced MIMO support in LTE

 – More power efficient uplink multiple access in LTE

 – Lower reference signal overhead in LTE

• Minor differences

 – More flexible CP design in LTE

 – More advanced HARQ support in LTE

 – Larger maximum code block size in LTE – More advanced forward error correction scheme in WiMAX

 – More flexible adaptation of the resource allocation messages in WiMAX

Page 53: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 53/61

For internal use

105 © Nokia Siemens Networks HH + AT/ 9th August 2007

Conclusions (2/2)

Link layer design• Major differences

 – More optimized header structure for small payloads in LTE

 – Significantly lower resource allocation overhead for VoIP in LTE

• Minor differences

 – More advanced spefication methodology

Latencies

• Major differences

 – No major differences identified

• Minor differences

 – Lower user-plane latency due to shorter TTI in LTE

 – Less dependency on the transmission delay of the S1 interface in LTE

106 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

LTELive over the Air Presentation

Singapore, 2007

Page 54: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 54/61

For internal use

107 © Nokia Siemens Networks HH + AT/ 9th August 2007

HDTV video „ live over the air“ via LTE and HSDPA

HDTV video stream

LTE

HSDPA

A i  r I  n t   er f   a c  e

H

O

For internal use

108 © Nokia Siemens Networks HH + AT/ 9th August 2007

Core

NGMN demonstrator – Multiple standards, one mobility

management under one control

One Core

Video stream

(HDTV quali ty)

MIMO

IMS-client

(video

surveillance)

Gi

Gateway/

router 

IPv6

IPv6

IPv6

IPv6

IPv6

e-NBTerminal

screen

IuB

IPv6

First live NGMN air interface – with applications and interworking with

legacy 3G system: service continuity in one equipment

RRH

PBMM = Policy Based Mobility Management

RRH = Remote Radio Head

Services

Videoapplication

(IMS-controlled

video supervision)

Videoapplication

(Real time videostreaming – HDTV)

 Acc ess

RNC/SGSN/

GGSN

IMS

(Core nodes

and AS)

PBMM

Page 55: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 55/61

For internal use

109 © Nokia Siemens Networks HH + AT/ 9th August 2007

Ericsson Planned Frequency Variants

For internal use

110 © Nokia Siemens Networks HH + AT/ 9th August 2007

Huawei Schedule

LTE in

RAN12.0

Q1/2010

Page 56: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 56/61

111 © Nokia Siemens Networks HH + AT/ 9th August 2007

For internal use

Broadband Wireless Benchmarking

For internal use

112 © Nokia Siemens Networks HH + AT/ 9th August 2007

Link Level Performance Bounded by Shannon

• Link performance similar in HSPA, WiMAX and LTE in AWGN channel

• All three systems use similar modulation and Turbo encoding

• All cases approaching the Shannon limit

HSDPA vs. WIMAX vs . LTE in AWGN (1-tx BTS, 2-rx UE)

0

1

2

3

4

5

6

-10 -5 0 5 10 15 20

G-Factor [dB]

   S  p  e  c   t  r  a   l  e   f   f   i  c   i  e  n  c  y   [   b  p  s   /   H  z   ]

Shannon(0,83; 1,6)

Shannon(0,71; 1,6)

LTE

WiMAX

HSDPA

Page 57: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 57/61

For internal use

113 © Nokia Siemens Networks HH + AT/ 9th August 2007

LTE has Highest Bit Rates with Largest Bandwidth – HSPA R7/R8 and WiMAX have Similar Peak Bit Rates

HSPA R7 WiMAX TDD1 LTE FDD

11.5 Mbps

4.1 Mbps 7 Mbps

-

8.3 Mbps

29 Mbps- 16.6 Mbps

58 Mbps

1Downlink:uplink ratio 29:182Downlink with 64QAM3Uplink with 16QAM

Uplink3

HSPA R8 WiMAX TDD

1

LTE FDD

2x3.5 (1x7) MHz - 28 Mbps -

2x5 (1x10) MHz

-

40 Mbps 43 Mbps

2x10 (1x20) MHz - 80 Mbps 86 Mbps

Downlink 2x2MIMO

2

= typical bandwidth

2x2.5 (1x5) MHz

43 Mbps

20 Mbps 21 Mbps

- 5.5 Mbps -

2x20 MHz - - 173 Mbps

2x3.5 (1x7) MHz

2x5 (1x10) MHz

2x10 (1x20) MHz

2x2.5 (1x5) MHz

2x20 MHz

-

14 Mbps

-

HSPA R6

5.7 Mbps

-

-

HSPA R6

-

-

-

14 Mbps

-

-

-

For internal use

114 © Nokia Siemens Networks HH + AT/ 9th August 2007

Suburban indoor 

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

LTE900

LTE2100

LTE2500 FDD

WiMAX 2500 TDD

WiMAX 3400 TDD

km

Uplink

Downlink

Cell Range gets Shorter at Higher Frequency and wi th

TDD

Assumptions:• Suburban area• 50 m BTS antenna• 15 dB indoor loss

• 95% location probability• Correction factor -5 dB• 1.5 m terminal antenna height

• WiMAX has shorter cell range due to TDD duplexing and higher frequency

• Outdoor fixed antennas can be used to improve the link budget for fixed wirelesssolution

8 x more sites

required than withHSPA2100

Downlink: 1 MbpsUplink: 64 kbps

Page 58: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 58/61

Page 59: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 59/61

Page 60: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 60/61

For internal use

119 © Nokia Siemens Networks HH + AT/ 9th August 2007

HSPA, WiMAX and Flash-OFDM Offerings in Finland

Digita Flash-OFDMLocal phone

company WiMAX Elisa HSDPA

Max 1 Mbps

Max 1 Mbps

Max 2 Mbps

For internal use

120 © Nokia Siemens Networks HH + AT/ 9th August 2007

Spectrum Defines Technology Choices

Licenced FDD

band

Licenced FDD

band

Licenced TDD

band

Licenced TDD

band

Unlicenced

TDD band

Unlicenced

TDD band

HSPA + later

LTE FDD

HSPA + later

LTE FDD

WiMAX + later

LTE TDD

WiMAX + later

LTE TDD

WiFiWiFi

900180021002500

23002500 (mid band)

3500

24005400

FrequenciesSpectrum Maintechnology

• Combined WiMAX + UMTS provides access to more spectrum =more capacity = more subscribers

Page 61: LTE Internal Training Course (1)

8/10/2019 LTE Internal Training Course (1)

http://slidepdf.com/reader/full/lte-internal-training-course-1 61/61

For internal use

121 © Nokia Siemens Networks HH + AT/ 9th August 2007

Technology Choice is also Defined by Current Networkand Voice Strategy

GSM/WCDMAdeployed?

UMTS bandavailable?

Want CSvoice?

YesYes

WCDMA/HSPA/LTE

NoNo (VoIP)

No GSM bandrefarmingpossible?

Yes

WiMAX (later LTE TDD)

No

2.5 GHz or3.5 GHz

available?

Yes

No

Yes

Reference Material

WCDMA 3rd editionJuly 2004

HSPAApril 2006

WCDMA 4th editionSeptember 2007

100 new pages about

MBMS, HSPA evolution

and LTE