29
M. Gende , C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Improving Single Frequency Positioning Using SIRGAS Positioning Using SIRGAS Ionospheric Products Ionospheric Products

M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

Embed Size (px)

Citation preview

Page 1: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

M. Gende, C. BruniniUniversidad Nacional de La Plata, Argentina.

Improving Single Improving Single Frequency Positioning Frequency Positioning

Using SIRGAS Ionospheric Using SIRGAS Ionospheric ProductsProducts

Page 2: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

2

OutlookOutlook

Goal and motivationsWhy in South America?WorkflowResults for a test bedConclusions

Page 3: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

3

GoalGoal

Increase precise positioning accuracy for single frequency receivers.

Page 4: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

4

MotivationMotivation

A large part of the GNSS technology users in Latin American have access only to single frequency receivers.

These receivers can not eliminate the ionospheric bias by combining signals.

Page 5: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

5

Basic FactsBasic Facts

The ionosphere delay is the main error factor in positioning.This delay can be mitigated with a differencing technique.The technique lose effectiveness as the baseline increases.

Page 6: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

6

Context in South AmericaContext in South America

Because of the size of the continent, the GNSS continuously operating reference stations (CORS) are usually more than 300 kilometers from each other.Under this condition the relative positioning method is less effective.

Page 7: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

7

Page 8: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

8

Our proposalOur proposal

Use the CORS network already installed in order to produce ionospheric corrections for single frequency receivers.

Page 9: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

9

MethodologyMethodology

Determine the slant total electron content (STEC) from dual frequency CORS.Estimate STEC in the place the user is located.Correct the single frequency observations. Process the observations in a regular way.

Page 10: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

10

11stst step: calculate STEC step: calculate STEC using LPIMusing LPIM

Absolute STEC must be determined. Receiver calibration The estimation is done at the zero difference

level

We assume a thin shell model.

Page 11: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

11

22ndnd step: Estimate STEC step: Estimate STEC

Estimate STEC For each receiver – satellite observation For each epoch

Page 12: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

12

33rdrd step: Correct the step: Correct the observationsobservations

We can correct measurements Corrected C/A and Corrected L1

We can generate new measurements Simulated P2 and Simulated L2

The user has a new RINEX file with less ionospheric bias

Page 13: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

13

44rdrd step: Conventional step: Conventional processingprocessing

Positioning is performed using the software that the user usually uses.

We have extended the CORS – user’s distance.

Page 14: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

14

EvaluationEvaluation

In the position domain Code and phase Static and cinematic

Comparison Single frequency solution Corrected solution Ion free solution

Page 15: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

15

Test bedTest bed

10 days, 24 hours. Mid latitude. Non disturbed solar conditions. Distance between GPS receivers 200 to

300 Km.

Page 16: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

16

Page 17: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

Standalone positioningStandalone positioning

Page 18: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

18

HorizontalHorizontal coordinatescoordinates

C/A code

C/A code + corrections

Ion-free

Delt

a N

ort

h (

mete

rs)

Delta East (meters)

Page 19: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

19

Vertical componentVertical component

P1 Simulated ion-free Ion-free

Delt

a U

p (

mete

rs)

Local Time (hours)

Page 20: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

Differential positioning Differential positioning using codeusing code

Page 21: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

21

HorizontalHorizontal coordinatescoordinates

C/A code

C/A code + corrections

Delt

a N

ort

h (

mete

rs)

Delta East (meters)

C/A

C/A + corrections

Page 22: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

22

Vertical componentVertical component

C/A C/A corrected

Delt

a U

p (

mete

rs)

Local Time (hours)

Page 23: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

Differential positioning Differential positioning using carrier phaseusing carrier phase

Page 24: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

24

Local Time (hours)

Delta North (meters)

Delta East (meters)

C/A

C/A + corrections

C/A

C/A + corrections

HorizontalHorizontal coordinatescoordinates

Page 25: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

25

Vertical componentVertical component

Local Time (hours)

C/A

C/A + corrections

Page 26: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

26

ConclusionsConclusions It is possible to:

Mitigate the ionospheric effect on L1.Extend the separation between the user and a

CORS station. When corrections are applied:

The horizontal errors are reduced more than 40%. The vertical errors are reduced almost 60%.

95% of the time the corrected observations present errors below. 1 centimeter for the horizontal coordinates. 10 centimeters for the height.

Page 27: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

27

Extended utilityExtended utility

Page 28: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

28

Page 29: M. Gende, C. Brunini Universidad Nacional de La Plata, Argentina. Improving Single Frequency Positioning Using SIRGAS Ionospheric Products

4 September 2009. Buenos Aires, Argentina.

IAG Scientific Assembly: Geodesy For Planet Earth.

29