107
ޚʹج༉ѹγϣϕϧͷ ධՁͱධՁʹΔ ڀݚ(A Study on Evaluations of the Behavior and Operational Skills for an Excavator Based on the Control Engineering Approach) ౡେ ڀݚՊ γεςϜαΠόωςΟΫεઐ ߈D160613 ؠҪ Ұໜ 2018 3

M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

(A Study on Evaluations of the Behavior and Operational Skills

for an Excavator Based on the Control Engineering Approach)

D160613

2018 3

Page 2: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and
Page 3: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

1 1

1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

2 8

2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 . . . . . . . 22

2.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28

2.4.1 PQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 PQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.2 PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

2.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

344

3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

i

Page 4: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 . . . . . . . . . . . . . . . . . . . . 46

3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

3.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.3 L + T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

463

4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 CMAC-PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 CMAC-PID . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.3 CMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 CMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 90

94

98

100

102

ii

Page 5: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

1

1.1

2017 55

3 29 1 [1]

Fig.1.1

55 10

Fig. 1.1: Number of workers for constriction fields [1]

1

Page 6: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[2] [3] 2020

i-Construction

[4]

3D

ICT(Information and Communication Technolory

[5, 6]

i-Construction

3K

Society5.0

[7] ,

[8, 9]

2

Page 7: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

3 ICT [10, 11]

ICT

[12]

[13]-[16]

[17]

[18] [19]

3

Page 8: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

AI

(i)

(ii)

(iii)

1.2

James Watt

[20]-[22]

[23]

Fig.1.2

4

Page 9: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 1.2: Block diagram of block diagram

Fig. 1.3: Basic idea of study

[24]-[27]

Fig.1.3

Fig.1.4

5

Page 10: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 1.4: Hydraulic excavator

1.3

2

3

6

Page 11: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

4

PID

5

7

Page 12: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

2

2.1

[8, 9]

[28] PQ

PQ

8

Page 13: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

PID

[29]

PID

[30] [31].

(1)

(2)

(3)

(4)

(5)

9

Page 14: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[32]

PID

(GMVC:Generalized Minimum Variance Control)

[33] [34]

PQ PID

10

Page 15: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 2.1: Typical hydraulic circuit for excavator

2.2

T (t)

Qin(t)

Fig.2.1

11

Page 16: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 2.2: Schematic of a hydraulic system for a swing motion

2.2.1

(1)

0

Fig.2.2

TI(t) ω(t)

TI(t) = IΔω(t)

Ts(2.1)

12

Page 17: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Δ Δ = 1− z−1 TI(t) I

Ts ω(t)

I TI(t) Δω(t)

TI(t)

TI(t) T (t)

2.2.2

T (t) Q(t)

P(t) N η

T (t) = ηP(t)Q(t)

2πN(2.2)

T (t) = CPQP(t)Q(t) (2.3)

CPQ Q(t) Qin(t)

AQ(z−1)Q(t) = z−(k+1)BQ(z−1)Qin(t) + ξ(t) (2.4)

13

Page 18: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩AQ(z−1) := 1 + a1Qz−1

BQ(z−1) := b0Q + b1Qz−1 + · · · + bmQz−m

(2.5)

k z−1 m BQ(z) ξ(t) 0

σ2 aiQ biQ

2.2.3

Pr

Pr

P(t) = Pr (2.6)

(2.6) (2.3)

T (t) = CPQ · Pr · Q(t) (2.7)

(2.4) (2.7)

T (t) = CPQ · Prz−(k+1)BQ(z−1)Qin(t) + ξ(t)

AQ(z−1)(2.8)

14

Page 19: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

T (t) Qin(t)

AT (z−1)T (t) = z−(k+1)BT (z−1)Qin(t) + ξ(t) (2.9)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩AT (z−1) := 1 + a1T z−1

BT (z−1) := b0T + b1T z−1 + · · · + bmT z−m

(2.10)

aiT biT

2.2.4

Q(t) P(t) Q(t)

P(t)

Q(t) P(t)

ω(t) Qm(t)

Qm(t) =qm

2πω(t) (2.11)

qm P(t)

15

Page 20: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

TI(t)

TI(t) =qm

2πP(t) (2.12)

Q(t)

Q(t) Qm(t)

P(t) =Ts

Δκ(Q(t) − Qm(t)) (2.13)

κ P(t)

Q(t) (2.1) (2.11) (2.12)

Qm(t) =1

Δ

(qm

)2 Ts

IP(t) (2.14)

(2.14) (2.13)

P(t) =1

ΔTsκQ(t) − 1

Δ2κ(qm

)2 T 2s

IP(t)) (2.15)

P(t) Q(t)

(K1 + Δ2)P(t) = K2ΔQ(t) (2.16)

K1 = κ(qm

)2 Ts2

I(2.17)

K2 = κTs (2.18)

16

Page 21: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Q(t) P(t)

P(t) =K2

K1 + Δ2ΔQ(t) (2.19)

2.2.5

P(t) Pr

(2.19) P(t) Q(t)

(2.19) (2.4)

P(t) =K2

K1 + Δ2Δ

(z−(k+1)BQ(z−1)

AQ(z−1)Qin(t) +

ξ(t)AQ(z−1)

)(2.20)

(2.3) (2.4)

T (t) = CPQP(t)(z−(k+1)BQ(z−1)

AQ(z−1)Qin(t) +

ξ(t)AQ(z−1)

)(2.21)

(2.21) (2.20)

AT (z−1)T (t) = Δ(z−(k+1)BT (z−1)Qin(t) + ξ(t)

)2(2.22)

AT (z−1) = A2Q(z−1)(K1 + Δ

2) (2.23)

BT (z−1) = (CPQK2)12 BQ(z−1) (2.24)

Qin(t) Qin ΔQin(t)

17

Page 22: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

AT (z−1)T (t) = Δz−(k+1)BT (z−1)ΔQin(t) + ξ(t) (2.25)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩AT (z−1) := 1 + a′1T z−1 + · · · + a′nT z−n

BT (z−1) := b′0T + b′1T z−1 + · · · + b′mT z−m

(2.26)

n AT (z) a′iT b′iT

Qmax

Qmax

T (t)

ΔQ(t) = ΔQin(t) = 0 (2.27)

P(t)

0 (2.6) (2.19)

18

Page 23: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 2.3: Block diagram of an event-driven controller

2.3

[30]

(2.9) (2.25)

[32]

Fig.2.3

PID

19

Page 24: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

x(t)

P(t) u(t) Qin(t)

y(t) T (t)

2.3.1

(2.9)

PID

Δu(t) = KI(t)e(t) − KP(t)Δy(t) − KD(t)Δ2y(t) (2.28)

e(t) := r(t) − y(t) (2.29)

e(t) r(t)

(2.25)

PID

20

Page 25: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

PID

Δ2u(t) = KI(t)Δe(t) + KII(t)e(t) − KP(t)Δ2y(t) − KD(t)Δ3y(t) (2.30)

KP(t),KI(t),KII(t),KD(t)

(2.27)

Δu(t) = 0 (2.31)

(2.30)

u(t)

(2.31)

21

Page 26: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

2.3.2

ET

P(t)

ET1

ET2 P(t) 100% P1

ET3 P(t) 100% P2

ET4 P(t) 100% P3

P1 P2

(2.25) P3

P1

P(t) 100%

2.3.3

ET

PID ET P(t)

22

Page 27: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

KP(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KP1(if ET1 ∼ ET2)

KP2− KP1

P2 − P1

(P(t) − P1) + KP1(if ET2 ∼ ET3)

KP2(if ET3 ∼ ET4)

0 (otherwise)

(2.32)

KI(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KI1(if ET1 ∼ ET2)

KI2− KI1

P2 − P1

(P(t) − P1) + KI1(if ET2 ∼ ET3)

KI2(if ET3 ∼ ET4)

0 (otherwise)

(2.33)

KII(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KII2

P2 − P1

(P(t) − P1) (if ET2 ∼ ET3)

KII2(if ET3 ∼ ET4)

0 (otherwise)

(2.34)

KD(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KD1(if ET1 ∼ ET2)

KD2− KD1

P2 − P1

(P(t) − P1) + KD1(if ET2 ∼ ET3)

KD2(if ET3 ∼ ET4)

0 (otherwise)

(2.35)

KP1,KI1,KD1

KP2,KI2,KII2,KD2

23

Page 28: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

2.3.4

KP1KI1

KD1KP2

KI2KII2

KD2

KP1KI1

KD1KP2

KI2KII2

KD2

GMVC

PID [34]

GMVC PID

GMVC PID

A(z−1)y(t) = Δid z−(k+1)B(z−1)u(t) +ξ(t)Δ

(2.36)

A(z−1) := 1 + a1z−1 + a2z−2

B(z−1) := b0 + b1z−1 + · · · + bmz−m

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭(2.37)

(2.37) ai bi id 0 1

id = 0 id = 1

J

J := E[φ2(t + k + 1)] (2.38)

24

Page 29: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

φ2(t + k + 1)

φ(t + k + 1) := P(z−1)y(t + k + 1) + λΔ(id+1)u(t) − P(1)r(t) (2.39)

λ

Diophantine

P(z−1) = Δ(id+1)E(z−1)A(z−1) + z−(k+1)F(z−1) (2.40)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩E(z−1) := 1 + e1z−1 + · · · + ekz−k

F(z−1) := f0 + f1z−1 + f2z2 + f3z3 · id

(2.41)

E(z−1) F(z−1) Δ(id+1)A(z−1) P(z−1)

P(z−1)

[36]

Pl(z−1) = 1 + p1z−1 + p2z−2 (2.42)

p1 = −2 exp(− ρ

)cos

( √4μ−1

2μρ

)

p2 = exp(ρ

μ

)

ρ = Tsσ

μ = 0.25(1 − δ) + 0.51δ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.43)

σ δ

σ 60

δ 0 ≤ δ ≤ 2.0

25

Page 30: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

δ = 0 Binomial δ = 1.0 Butterworth

(2.36) (2.39) (2.40) t k + 1

φ(t + k + 1|t) := F(z−1)y(t) +(E(z−1)B(z−1) + λ

)Δ(id+1)u(t) − P(1)r(t) + E(z−1)ξ(t + k + 1) (2.44)

t

φ̂(t + k + 1|t) := F(z−1)y(t) +(G(z−1) + λ

)Δ(id+1)u(t) − P(1)r(t) (2.45)

G(z−1)

G(z−1) := E(z−1)B(z−1) (2.46)

= g0 + g1z−1 + + · · · + gngz−ng (2.47)

(ng = m + k)

ng G(z−1) (2.44) (2.45)

φ(t + k + 1|t) = φ̂(t + k + 1|t) + E(z−1)ξ(t + k + 1) (2.48)

φ̂(t + k + 1|t) = 0 (2.49)

(2.38)

26

Page 31: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

(2.45) (2.49) GMVC

Δ(id+1)u(t) =Pl(1)

G(z−1) + λr(t) − F(z−1)

G(z−1) + λy(t) (2.50)

u(t) y(t) (2.50)

fi gi

(2.50) id = 0 (2.28)

KP1= − f1 + 2 f2

G(1) + λ(2.51)

KI1=

f0 + f1 + f2

G(1) + λ(2.52)

KD1=

f2

G(1) + λ(2.53)

(2.50) id = 1 (2.30)

KP2=

f2 + 3 f3

G(1) + λ(2.54)

KI2= − f1 + 2 f2 + 3 f3

G(1) + λ(2.55)

KII2=

f0 + f1 + f2 + f3

G(1) + λ(2.56)

KD2= − f3

G(1) + λ(2.57)

27

Page 32: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

2.4

2.4.1 PQ

100%

PQ Fig.2.4 Fig.2.5

2.4.2 PID

PID Fig.2.6

PID

KP = 3.00 × 10−6, KI = 1.10 × 10−7, KD = 1.00 × 10−7 (2.58)

PID

28

Page 33: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 2 4 6 8 100

100

200

T(t)

[%] T(t)

r(t)

0 2 4 6 8 100

50

100

Q(t)

[%]

0 2 4 6 8 100

50

100

P(t)

[%]

Fig. 2.4: Control result of PQ controller with ordinary

29

Page 34: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 2 4 6 8 100

100

200

T(t)

[%] T(t)

r(t)

0 2 4 6 8 100

50

100

Q(t)

[%]

0 2 4 6 8 100

50

100

P(t)

[%]

Fig. 2.5: Control result of PQ controller with cold condition

30

Page 35: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 2 4 6 8 100

50

100

150

T(t)

[%] T(t)

r(t)

0 2 4 6 8 100

50

100

Q(t)

[%]

0 2 4 6 8 100

50

100

P(t)

[%]

Fig. 2.6: Control result of PID controller with cold condition

31

Page 36: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Table 2.1: PID gains for event-driven controller

Gain RV ON RV OFF

KP 1.97 × 10−6 1.95 × 10−6

KI 3.68 × 10−7 1.10 × 10−7

KII 0 3.89 × 10−10

KD 1.61 × 10−6 2.93 × 10−7

2.4.3

PID GMVC PID

(2.6) (2.9)

–(2.10) PID

2.2[s] 3.8[s]

0.1[s]

PID

Table 2.1

(2.19) ΔQ(t)

P(t) (2.25) –(2.26) 3.9[s] 4.3[s]

1[s]

PID Table 2.1

λ = 0.01

Pr 100% Fig.2.6 P1 P2 P3 97% 70% 40%

Fig.2.7 ET

32

Page 37: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig.2.8

PID

PID

33

Page 38: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 2 4 6 8 100

50

100

150

T(t)

[%] T(t)

r(t)

0 2 4 6 8 100

50

100

Q(t)

[%]

0 2 4 6 8 100

50

100

150

P(t)

[%] P1

P3

P2

ET1 ET2

ET4ET3

Fig. 2.7: Control result of event-driven controller with cold condition

34

Page 39: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 2 4 6 8 101.9

1.95

2

0 2 4 6 8 100

0.2

0.4

0 2 4 6 8 100

2

410-4

0 2 4 6 8 100

1

2

Fig. 2.8: Control parameter trajectories corresponding to Fig.2.7

35

Page 40: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

2.5

2.5.1 PQ

Fig.1.4 20t SK200-9

PQ Fig.2.9

1

2.5.2 PID

PID Fig.2.10

PID

KP = 5.00 × 10−2, KI = 2.50 × 10−3, KD = 6.00 × 10−3 (2.59)

PID

36

Page 41: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 1 2 3 4 5 6 7 8 9t [s]

0

100

200

T(t)

[%]

T(t)r(t)

0 1 2 3 4 5 6 7 8 9t [s]

0

50

100

Q(t)

[%]

0 1 2 3 4 5 6 7 8 9t [s]

0

50

100

150

P(t)

[%]

Fig. 2.9: Control result using a PQ controller

37

Page 42: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

PID

Fig.2.6 PQ

2.5.3

PID

(2.6) (2.26)

P(t)

(2.6)

Pr

PID

0.8[s] 1.2[s]

0.1[s]

λ = 1

(2.19) ΔQ(t)

P(t) 3.9[s]

6.5[s]

1[s] λ = 0.01

PID

38

Page 43: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 1 2 3 4 5 6 7 8 9t [s]

0

50

100

150

T(t)

[%]

T(t)r(t)

0 1 2 3 4 5 6 7 8 9t [s]

0

50

100

Q(t)

[%]

0 1 2 3 4 5 6 7 8 9t [s]

0

50

100

150

P(t)

[%]

Fig. 2.10: Control result using a PID controller

39

Page 44: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Table 2.2: PID gains included in the event-driven controller

Gain RV ON RV OFF

KP 5.10 × 10−2 0

KI 2.40 × 10−3 1.90 × 10−3

KII 0 2.00 × 10−6

KD 1.60 × 10−2 3.00 × 10−3

Table 2.2 KP2

Pr 100%

Fig.2.10 P1 P2 P3 83% 60% 40%

Fig.2.11 , Fig.2.12 Fig.2.11

ET

Qmax PID

0.5s

40

Page 45: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 2 4 6 8t[s]

0

50

100

150

T(t)

[%]

T(t)r(t)

0 2 4 6 8t[s]

0

50

100

Q(t)

[%]

0 2 4 6 8t[s]

0

50

100

150

P(t)

[%]

ET1 ET2

ET3 ET4

P2P1

P3

Fig. 2.11: Control result using the event-driven torque controller

41

Page 46: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 2 4 6 80

0.05

0.1

0 2 4 6 8

t[s]

0

2

4 10-3

0 2 4 6 80

2

4 10-6

0 2 4 6 80

0.01

0.02

Fig. 2.12: Control parameter trajectories corresponding to Fig.2.11

42

Page 47: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

2.6

GMVC

PQ

PID

43

Page 48: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

3

3.1

44

Page 49: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[37, 38, 39]

[40, 41]

[42]

[43]

(1)

(2)

(3)

(4)

[44, 45]

3 4 [46, 47]

45

Page 50: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

+

+

[48]

+

3.2

3.2.1

(i)

Fig.1.4 20t SK200-9

360

46

Page 51: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

3

3

(ii)

[51] PID

PID Ziegler and Nichols

47

Page 52: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[52] Chien, Hrones and Reswick [53]

T L K

G(s) =K

1 + T se−Ls (3.1)

L T

L/T 1

[54, 55]

Fig.3.1

[46]

[47]

48

Page 53: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 3.1: Scheme of operability evaluation

3.2.2

Fig. 3.2

Fig. 3.3

Fig. 3.4

(3.1) +

Fig. 3.5

Fig. 3.3

49

Page 54: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 3.2: View of Bucket Motion from Cabin

Fig. 3.3: Block diagram of evaluation for motion of hydraulic excavator

50

Page 55: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 3.4: Simulator of bucket motion

Fig. 3.5: Block diagram of evaluation for simulation

51

Page 56: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 3.6: Flow chart of GA

3.3

3.3.1

GA

GA (2) (6)

GA Fig.3.6

(1)

(2)

(3)

(4)

(5)

(6)

GA

••

52

Page 57: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 3.7: Block diagram of system parameter estimation by GA

Fig. 3.7

(1)

N

T K L

(2)

1 0

J :=1

1 +

n∑t=0

ω(t) {ym(t) − y(t)}2(3.2)

ym(t) y(t)

GA n

53

Page 58: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 0.5 1 1.5 2 2.5 3 3.5t [s]

0

20

40

60

80

100

120y m

, y [%

]

ymy

63.2%

10%

Fig. 3.8: Weight coefficients of criteria for GA

ω(t)

ω(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (ym(t) > 63.2%)

3 (63.2 ≥ ym(t) ≥ 10%)

5 (ym(t) < 10%)

(3.3)

GA

Fig. 3.8 ym(t)

63.2%

Fig. 3.8 100%

(3)

α%

54

Page 59: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

(4)

(3) 2 β%

[49, 50]

Pc = Jmax(Pm, Pn) + |Pm−Pn |4

Pd = Jmax(Pm, Pn) − |Pm−Pn |4

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭(3.4)

Pc Pd Pm Pn

Jmax(Pm, Pn) Pm, Pn

(5)

γ%

(6)

(2) (5) G

K,T, L

3.3.2

(i) L T

(ii) L T 10

10

55

Page 60: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

L–T L + T

(iii) 3 1 5

(iv) GA

3.4

3.4.1

7 Table 3.1

7 T L

Fig. 3.9

3

L T L T

0.4 0.7

56

Page 61: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Table 3.1: Evaluation results of the simulation

No. L T L + T responsiveness

Criterion 0.2 0.25 0.45 3.0

1 0.2 2.0 2.2 2.0

2 0.2 0.1 0.3 4.1

3 0.4 0.5 0.9 2.6

4 0.1 0.5 0.6 3.1

5 0.4 2.0 2.4 1.4

6 0.4 0.2 0.6 3.1

7 0.1 0.125 0.225 4.6

8 0.3 0.15 0.45 3.4

9 0.1 1.0 1.1 2.1

10 0.3 1.5 1.8 1.8

0 0.5 1 1.5 2 2.5 3T [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L [s

]

2.0

2.6 1.4

4.6

3.4

2.1

1.8

3.0 4.1

3.1

3.1

Evaluation pointCriterionconstant L+T

Fig. 3.9: Simulation result of the responsiveness evaluation on the L-T map

57

Page 62: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

3.4.2

5 GA

Table 3.2

5 T L

Fig. 3.10

3

3.4.3 L + T

L T

L T L + T

Fig. 3.11

L + T

S R

S = a log(R) + b (3.5)

S log(R) r Table 3.3

R S

L + T L

T

S

58

Page 63: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Table 3.2: Evaluation results of the excavator operation

No. Estimated Parameters responsiveness

L T L + T

1 0.13 0.14 0.27 4.6

2 0.03 2.60 2.63 1.6

3 0.17 0.58 0.75 2.4

4 0.20 0.27 0.47 3.8

5 0.21 0.18 0.39 4.0

6 0.69 0.27 0.96 1.4

7 0.23 0.32 0.55 3.2

8 0.21 0.27 0.48 3.4

9 0.17 0.21 0.38 4.0

10 0.15 0.17 0.32 4.2

0 0.5 1 1.5 2 2.5 3T [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L [s

]

4.6

1.6

2.4 3.8

4.0

1.4

3.2 3.4

4.2 3.0

Evaluation pointCriterionconstant L+T

Fig. 3.10: Excavator result of the responsiveness evaluation on the L-T map

59

Page 64: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

R Fig. 3.11

[56] S R

60

Page 65: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 0.5 1 1.5 2 2.5 3L+T [s]

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Res

pons

ivin

ess

SimulationExcavatorCriterionSimulation WF

a = -2.72b = 2.51

Fig. 3.11: Result of the responsiveness evaluation on the L+T axis

Table 3.3: Correlation coefficients and P-values of evaluations

Simulation Excavator

r P[%] r P[%]

L 0.39 24.0 0.006 98.5

T -0.93 2.9 × 10−3 -0.72 0.80

L + T -0.97 9.1 × 10−5 -0.88 0.02

61

Page 66: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

3.5

GA

62

Page 67: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

4

4.1

i-construction [58]

ICT 3

[59] [10, 11]

[60]

63

Page 68: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[61, 62]

PID

CMAC [64, 65, 66]

[67, 68]

CMAC CMAC PID

PID

CMAC

PID

64

Page 69: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

4.2 CMAC-PID

CMAC-PID

CMAC-PID

CMAC

CMAC-PID

4.2.1

[63]

Albus [64, 65, 66]

Cerebellar Model Articulation Controller

CMAC

(i) CMAC

CMAC Fig.4.1 CMAC

S →M→A→ P (4.1)

65

Page 70: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 4.1: Structure of cerebellum and CMAC

S M A P

S M

M A P

(4.2)

P = H(S) (4.2)

CMAC

(ii)

[Step1 ] CMAC P̂

[Step2 ] S1 CMAC P1 CMAC

[Step3 ] S1 P̂1

66

Page 71: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[Step4 ]

Wnewh ← Wold

h + gP̂1 − P1

K(4.3)

Woldh Wnew

h K S1

g

g = 1

[Step ] Step2 Step4

(iii) 2 CMAC

Fig.4.2 2 CMAC 2 CMAC CMAC

CMAC 3 4

S (7, 4) M {C,H,K} {b, g, j}

4 3 1 8

4 CMAC 4

8 3 −4/3

(iv) CMAC

CMAC

67

Page 72: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 4.2: Example of 2 dimensional CMAC model

(1)

(2)

(3)

(4)

CMAC

(1)

BP

BP

CMAC

68

Page 73: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

(2)

CMAC

CMAC

CMAC

CMAC

Fig.4.2 S (7, 4) {C,H,K} {b, g, j}

(7, 4) (6, 4) {C,G,K} {b, g, j}

H G

(3)

CMAC

Fig.4.2 S (7, 4) {C,H,K} {b, g, j}

S (7, 4) (6, 4) {C,G,K} {b, g, j}

H G

S (4, 7)

69

Page 74: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 4.3: Block diagram of skill based CMAC-PID controller

(4)

CMAC

1

1 1

Fig.4.2 1 1

100

CMAC

48

4.2.2 CMAC-PID

CMAC-PID Fig.4.3

u∗(t)

y∗(t) PID CMAC

70

Page 75: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

PID

Δu(t) = KI(t)e(t) − KP(t)Δy∗(t) − KD(t)Δ2y∗(t) (4.4)

e(t) := r(t) − y∗(t) (4.5)

KP(t) KI(t) KD(t) PID e∗(t) Δ

Δ = 1 − z−1

PID CMAC WPID,h(t)

KP(t) =K∑

h=1

WP,h(t)

KI(t) =K∑

h=1

WI,h(t) (4.6)

KD(t) =K∑

h=1

WD,h(t)

K CMAC CMAC 3

CMAC e(t), y∗(t) Δy∗(t) WP,h(t)

WI,h(t) WI,h(t)

4.2.3 CMAC

CMAC Fig.4.4

y∗(t) u(t)

71

Page 76: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 4.4: Human skill leaning by CMAC-PID

u∗(t) u(t) u∗(t)

WnewP,h (t) = Wold

P,h (t) − g(t) ∂J(t)∂KP(t)

1

K

WnewI,h (t) = Wold

I,h (t) − g(t) ∂J(t)∂KI(t)

1

K(4.7)

WnewD,h (t) = Wold

D,h(t) − g(t) ∂J(t)∂KD(t)

1

K

g(t) J(t)

g(t) =1

c + a · exp(−b|u∗(t) − u(t)|) (4.8)

J(t) :=1

2ε(t)2 (4.9)

ε(t) = u∗(t) − u(t) (4.10)

(4.8) a b c

a u∗(t) u(t) c u∗(t)

72

Page 77: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

u(t) b u∗(t) u(t)

a (4.7)

∂J(t)∂KP(t)

=∂J(t)∂ε(t)

∂ε(t)∂u(t)

∂u(t)∂KP(t)

= ε(t)Δy∗(t)

∂J(t)∂KI(t)

=∂J(t)∂ε(t)

∂ε(t)∂u(t)

∂u(t)∂KI(t)

= −ε(t)e(t) (4.11)

∂J(t)∂KD(t)

=∂J(t)∂ε(t)

∂ε(t)∂u(t)

∂u(t)∂KD(t)

= ε(t)Δ2y∗(t)

73

Page 78: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig. 4.5: Experimental method

4.3

CAMC-PID

4.3.1

Fig.4.5

SK200-9

90◦ 10

0◦ 90◦

y∗(t) u∗(t)

Ts 200ms

74

Page 79: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 20 40 60 80 100 120 140-1

0

1

u* (t)

0 20 40 60 80 100 120 140t[s]

0

0.5

1

y* (t)

y*

r

Fig. 4.6: Data of novice operation

0 20 40 60 80 100 120 140-1

-0.5

0

0.5

1

u* (t)

0 20 40 60 80 100 120 140t[s]

0

0.5

1

y* (t)

y*

r

Fig. 4.7: Data of professional operation

75

Page 80: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

4.3.2 CMAC

y∗(t) u∗(t)

2 2

1 Fig.4.6 Fig.4.7

y∗(t) 1 u∗(t) 1

y∗(t) u∗(t) (4.4) PID

CMAC

(4.7) -(4.11) CMAC

10 10 CMAC Fig.4.8 Fig.4.9 Fig.4.8

Fig.4.9

76

Page 81: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 20 40 60 80 100 120 140-1

0

1u(

t)u*(t)u(t)

0 20 40 60 80 100 120 1400

0.5

1

y(t)

y*(t)r(t)

0 20 40 60 80 100 120 1402

2.2

2.4

KP(t)

LearningInitial

0 20 40 60 80 100 120 1400

0.20.40.60.8

KI(t)

0 20 40 60 80 100 120 140t[s]

2.3

2.32

2.34

KD

(t)

Fig. 4.8: Learning result for novice operation

77

Page 82: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

0 20 40 60 80 100 120 140-1

0

1u(

t)u*(t)u(t)

0 20 40 60 80 100 120 1400

0.5

1

y(t)

y*(t)r(t)

0 20 40 60 80 100 120 1402

2.2

2.4

KP(t)

LearningInitial

0 20 40 60 80 100 120 1400

0.20.40.60.8

KI(t)

0 20 40 60 80 100 120 140t[s]

4.36

4.38

4.4

KD

(t)

Fig. 4.9: Learning result for professional operation

78

Page 83: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

4.4

4.4.1

PID Fig.4.8 Fig.4.9

Fig.4.10 Fig.4.11

71 77 52 58

6

PID

[69] PID

PID PID

u(t) = KPe(t) + KI

∫ t

0

e(τ)dτ + KDde(t)

dt(4.12)

(4.12) P e(t)

I

PID KP

KP

KI

KI

KP KD

KD

KD

PID

79

Page 84: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

52 53 54 55 56 57 580

0.5

1

u(t)

u*(t)u(t)

52 53 54 55 56 57 58

0

0.5

1

y(t)

y*(t)r(t)

52 53 54 55 56 57 582

2.2

2.4

KP(t)

LearningInitial

52 53 54 55 56 57 580

0.20.40.60.8

KI(t)

52 53 54 55 56 57 58t[s]

2.3

2.32

2.34

KD

(t)

Fig. 4.10: Extracted data of Novice operation

80

Page 85: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

71 72 73 74 75 76 770

0.5

1

u(t)

u*(t)u(t)

71 72 73 74 75 76 77

0

0.5

1

y(t)

y*(t)r(t)

71 72 73 74 75 76 772

2.2

2.4

KP(t)

LearningInitial

71 72 73 74 75 76 770

0.20.40.60.8

KI(t)

71 72 73 74 75 76 77t[s]

4.36

4.38

4.4

KD

(t)

Fig. 4.11: Extracted data of professional operation

81

Page 86: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Table 4.1: Behavior of each action of PID controller

(P) (I) (D)

PID

Table 4.1

Fig.4.11

Fig.4.10

PID

PID

56.5

0

0

0 ON/OFF

82

Page 87: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Fig.4.10

4.4.2

Fig.4.10 Fig.4.11 ΔKP(t) ΔKI(t) ΔKD(t)

Fig.4.12 Fig.4.13

Fig.4.14

Fig.4.15

Table 4.2

83

Page 88: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

Table 4.2: Standard deviation of ΔKP, ΔKI & ΔKD

Operator Professional 1 Professional 2 Novice 1 Novice 2

ΔKP 0.017 0.019 0.032 0.041

ΔKI 0.051 0.060 0.063 0.075

ΔKD 0.003 0.006 0.009 0.009

84

Page 89: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

P

0

10

20

30

40

50

Num

ber P

-0.4 -0.2 0 0.2 0.4

I

0

10

20

30

40

Num

ber I

-0.05 0 0.05

D

0

10

20

30

Num

ber D

Fig. 4.12: Distribution chart of ΔKP, ΔKI & ΔKD for professional 1

85

Page 90: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

P

0

10

20

30

40

50

Num

ber P

-0.4 -0.2 0 0.2 0.4

I

0

10

20

30

40

Num

ber I

-0.05 0 0.05

D

0

10

20

30

Num

ber D

Fig. 4.13: Distribution chart of ΔKP, ΔKI & ΔKD for novice 1

86

Page 91: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

P

0

10

20

30

40

50

Num

ber P

-0.4 -0.2 0 0.2 0.4

I

0

10

20

30

40

Num

ber I

-0.05 0 0.05

D

0

10

20

30

Num

ber D

Fig. 4.14: Distribution chart of ΔKP, ΔKI & ΔKD for professional 2

87

Page 92: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

P

0

10

20

30

40

50

Num

ber P

-0.4 -0.2 0 0.2 0.4

I

0

10

20

30

40

Num

ber I

-0.05 0 0.05

D

0

10

20

30

Num

ber D

Fig. 4.15: Distribution chart of ΔKP, ΔKI & ΔKD for novice 2

88

Page 93: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

4.5

CMAC-PID

PID

PID PID

PID

PID

89

Page 94: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

5

90

Page 95: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

2

PID

3

91

Page 96: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

4

CMAC-PID

CMAC-PID CMAC

PID

CMAC

PID

ON/OFF

92

Page 97: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

93

Page 98: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[1] 28 3 2 ,

http://www.mlit.go.jp/common/001121700.pdf, (2017 12 13

[2] , (2012)

[3] , , 2009

10 , pp. 78–95 (2009)

[4] i-Construction ICT

http://www.mlit.go.jp/common/001118343.pdf, (2017 12 13

[5] i-Construction : i-Construction (

) , , Vol.68, No.5, pp. 11–15(2016)

[6] i-Construction ( (1)) , , Vol.53,

No.1, pp. 1–7 (2017)

[7] i-Construction ,

http://www.mlit.go.jp/common/001206546.pdf ,(2017 12 13

[8] CMI :

Vol.68, No.7, pp.86–90 (2017)

[9] ( ) ,

, Vol.67, No.1, pp.10–14 (2015)

[10] ICT ,

, Vol.47, No.2, pp.74–77 (2016)

[11] ICT ICT Vol.55, No.6,

pp.523–526 2016

[12] ICT

( ) , Vol.67, No.12,

pp.16–20 2015

[13] ,

Vol.102, No.965, pp.233-234 (1999)

[14] : ,

. , Vol.36, pp.245–250 (2006)

[15] , ( :

) , R&D , Vol.57, No.1, pp.62–65 (2007)

[16] , ,

, , Vol. 48, No. 12, pp.34–39 (2012)

94

Page 99: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[17] Y.Sakaida, D.Chugo, H.Yamamot, H.Asama: ”The Analysis of Excavator Operation by Skill-

ful Operator”, Proc. of SICE Annual Conference, tokyo, pp.538–542 (2008)

[18] , , : ( 1 ,

) C , Vol.67, No.653, pp.201–208 (2001)

[19] , , : ( 2 ,

) C ,

Vol.68, No.666, pp.547–554 (2002)

[20] S. Bennett ”A history of control engineering”, Inst of Engineering & Technology (1986)

[21] , , (1998)

[22] , (1988)

[23] MATLAB/Simulink ,

(2001)

[24] , Vol. 3, No. 4, pp. 266–274 (1967)

[25] , (1987)

[26] , (2005)

[27] , , , , Vol.

47 No. 1, pp.36–40 (2001)

[28] , , (1999)

[29] , , , ,

PID , 14

USB , pp.82–85 (2015)

[30] T.Yamamoto, K.Takao and T.Yamada, ”Design of a Data-Driven PID Controller”, IEEE Trans.

on Control System Technology, Vol.17, No.1, pp.29–39 (2009)

[31] T.Kinoshita, Y.Oshima, K.Koiwai, T.Yamamoto, T.Nanjo, Y.Yamazaki and

Y.Fujimoto ”Design of a Data-Driven Control System for a Hydraulic Excavator”,

Proceedings of The 2016 International Conference on Artificial Life and Robotics, Okinawa,

pp.393–396 (2016)

[32] , , -

-

CVIM 2006(51(2006-CVIM-154)) pp.159–166 (2006)

[33] D. W. Clarke and P. J. Gawthrop: ”Self-Tuning Control”, Proc. IEE, 126D-6,pp.633–640

(1979)

[34] , , PID ,

C, Vol.132, No.6, pp.873–878 (2012)

[35] , , (1996)

[36] , PID

, , Vol.11, No.1, pp.1–9 (1998)

95

Page 100: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[37] , ,

Vol.61, No.7, pp. 97–103 (2007)

[38] Y.K.Chang, J.R. Hwang: ”A new approach to improve the vehicle ride comfort by electroen-

cephalogram data”, International Journal of Vehicle Design, Vol.57, Issue2-3, pp. 106–123

(2011)

[39]

Vol. 32 No. 10 p. 851–854 (2014)

[40] T.Wang, Q.Wang, T.Lin: ”Improvement of boom control performance for hybrid hydraulic

excavator with potential energy recovery”, Automation in Construction , Vol.30, pp. 161–169

(2013)

[41] A.Nishiyama, M.Moteki, K.Fujino, T.Hashimoto: ”Operation analysis of hydraulic excavator

with different operation system”, Proc. 33rd International Symposium on Automation and

Robotics in Construction, Auburn, pp. 487–495 (2016)

[42] H.Stone, R.Bleibaum, H.A.Thomas: ”Sensory Evaluation Practices”, Academic Press (2004)

[43] M.C.Meilgaard, B.T.Carr G.V.Civille: ”Sensory Evaluation Techniques, Fourth Edition”,

CRC Press. (2006)

[44] , , :

Vol. 79 No. 806 pp. 3327–3334 (2013)

[45] , , , 3

Vol. 34 No. 1 p.

41–52 (2010)

[46] : , , Vol.32, No.1 pp.7–14

(2012)

[47] :

, NHK (2013)

[48] D.E.Goldberg: ”Genetic Algorithms in search, optimization, and machine learning”, Addison-

Wesley Publishing Company (1989)

[49] GA PD

D Vol.123, No.10, pp.1097–1103

(2003)

[50] PID

C Vol.131, No.4, pp.794–799 (2011)

[51] PID , (1992)

[52] J.G.Ziegler and N.B.Nichols: ”Optimum Settings for Automatic Controllers”, Trans. of

ASME, Vol. 64 pp. 759–768 (1942)

[53] K.L.Chien, J.A.Hrones and J.B.Reswick: ”On the Automatic Control of Generalized Passive

Systems”, Trans. ASME, Vol. 74 pp. 175–185 (1952)

96

Page 101: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[54]

- C Vol.134, No.10, pp.1537–1542

(2014)

[55] -

C Vol.135, No.1, pp.66–72 (2015)

[56] Fechner, G.T ”Elements of Psychophysics ”, New York: Holt, Rinehart and Winston (1966)

[57] IT RT –

Vol.52, No.1, pp.16–19 2010

[58] ICT

Vol.55, No.6, pp.470–476 2016

[59]

Vol.55, No.6, pp.511–514 2016

[60] :

:

, 29 , Vol.29

, pp. 217-222 (2002)

[61] M.Kato, T.Yamamoto and S.Fujisawa : ”A Skill-Based PID Controller Using Artificial Neu-

ral Networks”, Proc. of Int. Conf. on Computational Intelligence for Modeling, Control and

Automation, pp.702-705 (2005)

[62] T.Yamamoto, S.Mori and A.Sakaguchi : ”Data-Driven Skill-Based PID Control of a Pilot-

Scale Helicopter Model”, Int. J. of Innovative Computing Information and Control, Vol.4,

No.12, pp.3349–3358 (2008)

[63] , (2015)

[64] J.S.Albus : ”A New Approach to Manipulator Control Cerebellar Articulation Control

(CMAC)”, Trans. on ASME, J. of Dynamics Systems, Measurement, and Control, Vol.97,

No.9, 220-227 (1975)

[65] J.S.Albus : ”Data Storage in The Control Cerebellar Articulation Control (CMAC)”, Trans. on

ASME, J. of Dynamics Systems, Measurement, and Control, Vol.97, No.9, 228-233 (1975)

[66] J.S.Albus : ”Brains, Behavior and Robotics”, McGraw-Hill, (1981)

[67] T.Yamamoto, R.Kurozumi and S.Fujisawa : ”A Design of CMAC Based Intelligent PID Con-

trollers”, Artificial Neural Networks and Neural Information Processing, Lecture Notes in

Computer Science, Vol.2714, pp.471-478 (2003)

[68] K.Koiwai, K.Kawada and T.Yamamoto : ”Design and Experimental Evaluation of an Intel-

ligent PID Controller using CMAC”, Proc. of IEEE Int. Conf. on Networking, Sensing and

Control, pp. 740-745 (2009)

[69] Vol.42, No.4,

pp.330-334 2003

97

Page 102: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

A.

[1] Kazushige Koiwai, Liao Yuntao, Toru Yamamoto, Takao Nanjo, Yoichiro Yamazaki, Yoshi-

aki Fujimoto Feature Extraction for Excavator Operation skill using CMAC Journal ofRobotics and Mechatronics Vol.28 No.5 pp. 715-721 2016

[2] Yasuhito Oshima, Takuya Kinoshita, Kazushige Koiwai, Toru Yamamoto, Takao Nanjo, Yoichiro

Yamazaki, Yoshiaki Fujimoto Data-Driven Torque Controller for a Hydraulic Excavator

Journal of Robotics and Mechatronics Vol.28 No.5 pp. 752-758 2016

[3]

Vol.54 No.2, pp. 261-268 2018

[4]

Vol.138 No.5 (2018 5

B.[1] Kazushige Koiwai, Yuntao Liao, Toru Yamamoto, Takao Nanjo, Yoichiro Yamazaki, Yoshiaki

Fujimoto : A Consideration on Feature Extraction for Operation Skill Based on Control

Engineering Approach , Proceedings of the 2016 International Conference on Artificial Lifeand Robotics, pp.389-392, Okinawa, January 2016

[2] Takuya Kinoshita, Yasuhito Oshima, Kazushige Koiwai, Toru Yamamoto, Takao Nanjo, Yoichiro

Yamazaki, Yoshiaki Fujimoto : Design of a Data-Driven Control System for a Hydraulic Ex-

cavator , Proceedings of the 2016 International Conference on Artificial Life and Robotics,

pp.393-396, Okinawa, January 2016

[3] Kazushige Koiwai, Liao Yuntao, Toru Yamamoto, Takao Nanjo, Yoichiro Yamazaki, Yoshiaki

Fujimoto : Human Skill Evaluation Based on Control Engineering Approach , Proceedings

98

Page 103: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

of the 13th IFAC/IFIP/IFORS/IEA Symposium on Analysis, Design, and Evaluation of Human-Machine Systems, FriITrack4.2., Kyoto, September 2016

[4] Kazushige Koiwai, Ryunosuke Miyazaki, Toru Yamamoto, Koji Ueda, Yoichiro Yamazaki:

A Consideration on Quantitative Evaluation of Machine Responsiveness Based on Control

Engineering Approach , Proceedings of The SICE Annual Conference 2017, pp.531- 534,

Kanazawa, September 2017

[5] Kazushige Koiwai, Ryunosuke Miyazaki, Toru Yamamoto, Koji Ueda, Yoichiro Yamazaki: A

Consideration on Responsiveness Evaluation for an Excavator Based on Control Engineering

Approach , Proceedings of IEEE International Conference on Systems, Man, and Cybernetics2017, pp. 467- 470, Banff, October 2017

99

Page 104: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

C.

[1] , PID C

Vol.136 No.5 pp.730–73 (2016)

[2] Design of a Data-Oriented Control System

for Walking Support C Vol.136 No.7

pp. 1013-101 (2016)

[3] Design of a Data-Oriented Evolutionary Controller

C Vol.137 No.7 pp. 914–91 (2017)

[4] Yuntao Liao, Takuya Kinoshita, Kazushige Koiwai, Toru Yamamoto Design of a Performance-

Driven CMAC PID Controller The IEICE Transactions on Fundamentals Vol.E100-A,

No.12, pp. 2963–2970 (2017)

[5] Kazushige Koiwai, Toru Yamamoto, Koji Ueda, Yoichiro Yamazaki Feature Extraction for

Digging Operation of Excavator Based on Data-Driven Skill-Based PID Controller Journal

of Robotics, Networking and Artificial Life Vol. 4, No. 3, pp. 191-194 (2018)

[6] Hiromu Imaji, Kazushige Koiwai, Toru Yamamoto, Koji Ueda, Yoichiro Yamazaki Human

Skill Quantification for Excavator Operation using Random Forest Journal of Robotics,

Networking and Artificial Life Vol. 4, No. 3, pp. 195-200 (2018)

[7] Yuntao Liao, Kazushige Koiwai, Toru Yamamoto Design and Implementation of a Hierarchical-

Clustering CMAC PID Controller Asian Journal of Control (To appear)

D.[1] Kazushige Koiwai, Toru Yamamoto, Takao Nanjo, Yoichiro Yamazaki, Yoshiaki Fujimoto:

Data-Driven Human Skill Evaluation for Excavator Operation , Proc. of 2016 IEEE In-ternational Conference on Advanced Intelligent Mechatronics, pp. 482- 487, Banff, July 2016

100

Page 105: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

[2] Kazushige Koiwai, Toru Yamamoto, Koji Ueda, Yoichiro Yamazaki: Feature Extraction for

Digging Operation of Excavator , Proc. of the 2017 International Conference on Artificial Lifeand Robotics, pp.425- 428,, Miyazaki, January 2017

[3] Hiromu Imaji, Kazushige Koiwai, Toru Yamamoto, Koji Ueda, Yoichiro Yamazaki: Human

Skill Quantification for Excavator Operation using Random Forest , Proc. of the 2017 Inter-national Conference on Artificial Life and Robotics, pp.437- 440, Miyazaki, January 2017

[4] Yuntao Liao, Kazushige Koiwai, Toru Yamamoto: Design of a Hierarchical-Clustering CMAC-

PID Controller , Proc. of the 2017 International Joint Conference on Neural Networks,

pp.1333-1338, Anchorage, May 2017

[5] Qiuhao Fu, Kazushige Koiwai, Toru Yamamoto: Design of a Data-Oriented Evolutionary

Controller for a Nonlinear System , Proc. of the 6th International Symposium on AdvancedControl of Industrial Processes, pp.406-411, Taipei, May 2017

[6] Yuntao Liao, Takuya Kinoshita, Kazushige Koiwai, Toru Yamamoto: Design of a Performance-

Driven PID Controller for a Nonlinear System , Proc. of the 6th International Symposium onAdvanced Control of Industrial Processes, pp. 529-534, Taipei, May 2017

[7] Yuntao Liao, Takuya Kinoshita, Kazushige Koiwai, Toru Yamamoto: Design of a Performance-

Driven PID Controller Using Hierarchical-Clustering Based CMAC , Proc. of the 49th ISCIEInternational Symposium on Stochastic Systems Theory and Its Applications, pp.56-57, Hi-

roshima, November 2017

[8] Ryota Sekizuka, Kazushige Koiwai, Seiji Saiki, Yoichiro Yamazaki, Toshio Tsuji, and Yuichi

Kurita: A Virtual Training System of a Hydraulic Excavator Using a Remote Controlled

Excavator with Augmented Reality , Proc. of the 2017 IEEE/SICE International Symposiumon System Integration, Taiwan, December 2017

101

Page 106: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

102

Page 107: M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A qâ ^ U ° A t b Z · y M » ¶ $ ¹ : t , n X y ³ ã Õ ç w ^ ° A q â ^ U ° A t b Z (A Study on Evaluations of the Behavior and

103