Machines Formulas

Embed Size (px)

Citation preview

  • 8/20/2019 Machines Formulas

    1/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    1No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    DC MACHINES : -

    Lap Winding Wave Winding

    (1) Coil Span :

     =

     

     =

     

    (2) Back Pitch  =    =  (3) Commutator Pitch  = 1for Progressive winding  = -1for Retrogressive winding

     =  for Progressive winding = -  for Restrogressive winding

    (Must be integer)(4) Front Pitch       = +2

    for Progressive winding

          =

     -2

    for Retrogressive winding

          =  -  

    (5) Parallel Paths A = P A = 2

    (6) Conductor Current  =    =  (7) No of brushes No of brushes = A = P No of brushes = 2

      S = No of commutator segments

      P = No of poles

      U = No of coil sides / No of poles =    C = No of coils on the rotor  A = No of armature parallel paths

       = Armature current  Distribution factor ( ) =                     =   =    Pitch factor (  ) =  *100% 

       

      Armature mmf/Pole (Peak) , A =    AT (Compensating Winding) =  *  

  • 8/20/2019 Machines Formulas

    2/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    2No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      AT(Inter pole) = A +   Where = Flux density in inter pole airgap

     = length of inter pole airgap ,

     

      No of turns in each interpole ,  =    The no of compensating conductor per pole, /pole =  (  )  The Mechanical power that is converted is given by   =  

    Where T = Induced torque

     = Angular speed of the machines rotor

      The resulting electric power produced   =    The power balance equation of the DC Machine is  =    The induced emf in the armature is  =    Torque developed in Dc machine ,  =    

    Where  = Flux\pole , Z = No of armature conductors , P = No of poles , N = Speed in rpm ,A = No of armature parallel paths,

    rmature current

      The terminal voltage of the DC generator is given by  =  -    The terminal voltage of the DC motor is given by  =  +    Speed regulation of dc machine is given by ,SR =

    * 100 % =  * 100 %  Voltage regulation , VR =

     * 100 %Shunt Generator : 

      For a shunt generator with armature induced voltage Ea, armature current Ia and

    armature resistance Ra, the terminal voltage V is:V = Ea - IaRa 

      The field current I f  for a field resistance R f  is:I f  = V / R f  

  • 8/20/2019 Machines Formulas

    3/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    3No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      The armature induced voltage Ea and torque T with magnetic flux  at angularspeed  are:Ea = k f  = km T = k f Ia = kmIa where k f  and km are design coefficients of the machine.

    Note that for a shunt generator:- induced voltage is proportional to speed,- torque is proportional to armature current.

      The airgap power Pe for a shunt generator is:Pe = T = EaIa = km Ia 

    Series Generator: 

      For a series generator with armature induced voltage Ea, armature current Ia,armature resistance Ra and field resistance R f , the terminal voltage V is:V = Ea - ( IaRa + IaR f  )= Ea - Ia(Ra + R f )The field current is equal to the armature current.

      The armature induced voltage Ea and torque T with magnetic flux  at angular

    speed  are:

    Ea = k f  Ia = km Ia 

    T = k f Ia2 = kmIa

    where k f  and km are design coefficients of the machine.

    Note that for a series generator:- induced voltage is proportional to both speed and armature current,- torque is proportional to the square of armature current,- armature current is inversely proportional to speed for a constant Ea 

      The airgap power Pe for a series generator is:Pe = T = EaIa = km Ia

      Cumulatively compounded DC generator : - ( long shunt)

    (a)  =       +  (b)  =  -  (  +  )(c)  =      = shunt field current(d) The equivalent effective shunt field current for this machine is given by

  • 8/20/2019 Machines Formulas

    4/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    4No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    = +       - (      )Where

    = No of series field turns

    = No of shunt field turns  Differentially compounded DC generator : - ( long shunt)(a)  =       +  (b)  =  -  (  +  )(c)  =      = shunt field current(d)  The equivalent effective shunt field current for this machine is given by

    = -       - (      )Where = No of series field turns = No of shunt field turns

    Shunt Motor:

      For a shunt motor with armature induced voltage Ea, armature current Ia andarmature resistance Ra, the terminal voltage V is:V = Ea + IaRa The field current I f  for a field resistance R f  is:I f  = V / R f  

      The armature induced voltage Ea and torque T with magnetic flux  at angularspeed  are:Ea = k f  = km T = k f Ia = kmIa where k f  and km are design coefficients of the machine.

    Note that for a shunt motor:- induced voltage is proportional to speed,- torque is proportional to armature current.

      The airgap power Pe for a shunt motor is:

    Pe = T = EaIa = km Ia  The speed of the shunt motor ,  =  - T

  • 8/20/2019 Machines Formulas

    5/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    5No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    Where K = 

    Series Motor  :

      For a series motor with armature induced voltage Ea, armature current Ia,armature resistance Ra and field resistance R f , the terminal voltage V is:V = Ea + IaRa + IaR f  = Ea + Ia(Ra + R f )The field current is equal to the armature current.

      The armature induced voltage Ea and torque T with magnetic flux  at angular

    speed  are:

    Ea = k f  Ia = km Ia 

    T = k f Ia2 = kmIa

    where k f  and km are design coefficients of the machine.

    Note that for a series motor:- induced voltage is proportional to both speed and armature current,- torque is proportional to the square of armature current,

    - armature current is inversely proportional to speed for a constant Ea 

      The airgap power Pe for a series motor is:Pe = T = EaIa = km Ia

    Losses: 

      constant losses (P k) = Pw f  + Pi o

    Where,  = No of load core loss        = Windage & friction loss  Variable losses () =  +  +  

    where = Copper losses =       = Stray load loss = α  

     = Brush Contact drop =  , Where  = Brush voltage drop  The total machine losses ,  =  + +    Efficiency

  • 8/20/2019 Machines Formulas

    6/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    6No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      The per-unit efficiency  of an electrical machine with input power Pin, outputpower Pout and power loss Ploss is: 

     = Pout / Pin = Pout / (Pout + Ploss) = (Pin - Ploss) / Pin

      Rearranging the efficiency equations:

    Pin = Pout + Ploss = Pout /  = Ploss / (1 - )

    Pout = Pin - Ploss = Pin = Ploss / (1 - )

    Ploss = Pin - Pout = (1 - )Pin = (1 - )Pout /

    Temperature Rise:

      The resistance of copper and aluminium windings increases with temperature,and the relationship is quite linear over the normal range of operatingtemperatures. For a linear relationship, if the winding resistance is R1 at

    temperature 1 and R2 at temperature 2, then: 

    R1 / (1 - 0) = R2 / (2 - 0) = (R2 - R1) / (2 - 1)where 0 is the extrapolated temperature for zero resistance.

      The ratio of resistances R2 and R1 is:

    R2 / R1 = (2 - 0) / (1 - 0)

      The average temperature rise  of a winding under load may be estimated frommeasured values of the cold winding resistance R1 at temperature 1 (usuallyambient temperature) and the hot winding resistance R2 at temperature 2, using: = 2 - 1 = (1 - 0) (R2 - R1) / R1 

      Rearranging for per-unit change in resistance Rpu relative to R1:Rpu = (R2 - R1) / R1 = (2 - 1) / (1 - 0) =  / (1 - 0)

    .Copper Windings:

      The value of 0 for copper is - 234.5 °C, so that: = 2 - 1 = (1 + 234.5) (R2 - R1) / R1 

  • 8/20/2019 Machines Formulas

    7/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    7No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      If 1 is 20 °C and  is 1 degC:Rpu = (R2 - R1) / R1 =  / (1 - 0) = 1 / 254.5 = 0.00393

      The temperature coefficient of resistance of copper at 20 °C is 0.00393 perdegC.

    Aluminium Windings:

      The value of 0 for aluminium is - 228 °C, so that: = 2 - 1 = (1 + 228) (R2 - R1) / R1 

      If 1 is 20 °C and  is 1 degC:Rpu = (R2 - R1) / R1 =  / (1 - 0) = 1 / 248 = 0.00403

      The temperature coefficient of resistance of aluminium at 20 °C is 0.00403 perdegC.

    Dielectric Dissipation Factor:

      If an alternating voltage V of frequency f is applied across an insulation systemcomprising capacitance C and equivalent series loss resistance RS, then thevoltage VR across RS and the voltage VC across C due to the resultingcurrent I are:VR = IRS VC = IXC 

    V = (VR2

     + VC2

    )

    ½

     

      The dielectric dissipation factor of the insulation system is the tangent of thedielectric loss angle  between VC and V:tan = VR / VC = RS / XC = 2fCRS RS = XCtan = tan / 2fC

      The dielectric power loss P is related to the capacitive reactive power QC by:P = I

    2RS = I

    2XCtan = QCtan 

      The power factor of the insulation system is the cosine of the phase

    angle  between VR and V:cos = VR / Vso that  and  are related by: +  = 90°

  • 8/20/2019 Machines Formulas

    8/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    8No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      tan and cos are related by:tan = 1 / tan = cos / sin = cos / (1 - cos2)½ so that when cos is close to zero, tan  cos 

    TRANSFORMERS:

      Gross cross sectional area = Area occupied by magnetic material + Insulationmaterial.

      Net cross sectional area = Area occupied by only magnetic material excluding areaof insulation material.

      Hence for all calculations, net cross sectional area is taken since   (flux) majorlyflows in magnetic material.

     

      Specific weight of t/f =                              

      Stacking/iron factor :- ( ) =     is always less than 1  Gross c.s Area =

     = length × breadth

      Net c.s Area =  =     Utilization factor of transformer core =  U.F of cruciform core = 0.8 to0.85

      Flux =  =  

      According to faradays second law      

      Transformer emf equations :- = 4.44                (1) = 4.44                (2)

    Instantaneous value

    of emf in primary    

  • 8/20/2019 Machines Formulas

    9/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    9No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      Emf per turn in  =  = 4.44         Emf per turn in

     = 4.44

     

            

    ⟹ Emf per turn on both sides of the transformer is same  ⟹  Transformation ratio = K =  

    Turns ratio =  

      For an ideal two-winding transformer with primary voltage V1 applied

    across N1 primary turns and secondary voltage V2 appearing across N2 secondaryturns:V1 / V2 = N1 / N2 

      The primary current I1 and secondary current I2 are related by:I1 / I2 = N2 / N1 = V2 / V1 

      For an ideal step-down auto-transformer with primary voltage V1 appliedacross (N1 + N2) primary turns and secondary voltage V2 appearingacross N2 secondary turns:V1 / V2 = (N1 + N2) / N2 

      The primary (input) current I1 and secondary (output) current I2 are related by:I1 / I2 = N2 / (N1 + N2) = V2 / V1. 

      For a single-phase transformer with rated primary voltage V1, rated primarycurrent I1, rated secondary voltage V2 and rated secondary current I2, the voltampererating S is:S = V1I1 = V2I2 

      For a balanced m-phase transformer with rated primary phase voltage V1, ratedprimary current I1, rated secondary phase voltage V2 and rated secondary current I2,the voltampere rating S is:S = mV1I1 = mV2I2 

      The primary circuit impedance Z1 referred to the secondary circuit for an idealtransformer with N1 primary turns and N2 secondary turns is:Z12 = Z1(N2 / N1)

  • 8/20/2019 Machines Formulas

    10/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    10No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      During operation of transformer :-

     

          

          

    ⟹       = constantEquivalent ckt of t/f under N.L condition :- 

       No load current =           No load power =  Iron losses.

     

      ⟹

     

    Transferring from  to :-

                   =

     

    ∴ 

     

     

    From  to  :-     

       

     No load /shunt branch.

       

         

           

  • 8/20/2019 Machines Formulas

    11/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    11No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

               Total resistance ref to primary =     /    Total resistance ref to secondary =        Total Cu loss =  

    Or     Per unit resistance drops :-

      P.U primary resistance drop =

     

      P.U secondary resistance drop =      Total P.U resistance drop ref to  =    Total P.U resistance drop ref to  =      The P.U resistance drops on both sides of the t/f is same    Losses present in transformer :-

    1.  Cu losses in t/f:

    Total Cu loss =      =

     

    =        Rated current on            Similarly current on  =            

      Cu losses    or   . Hence there are called as variable losses.

    1.  Copper losses

    2.  Iron losses

    3.  Stray load losses

    4.  Dielectric losses

    major losses

    minor losses

    t/f windings

    t/f corecu parts

    Iron parts

    insulating materials.

  • 8/20/2019 Machines Formulas

    12/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    12No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      P.U Full load Cu loss =           

    =   

      If VA rating of t/f is taken as base then P.U Cu loss

       as remaining terms are constant.

      P.U Cu loss at x of FL =  FL Cu loss   

       =

       ∴ P.U Resistance drop = P.U FL cu loss% FL Cu loss = % R = % Resistance dr op.

    Iron (or) Core losses in t/f :-

    1.  Hysteresis loss :

    Steinmetz formula :-

    Where = stienmetz coefficient  = max. flux density in transformer core.f = frequency of magnetic reversal = supply freq.

    v = volume of core material

    x = Hysteresis coeff (or) stienmetz exponent

    = 1.6 (Si or CRGo steel)

    2. Eddycurrent loss:

    Eddy current loss ,(      As area decreases in laminated core resistance increases as a result conductivity decreases.

               Constant

    Supply freq

    thickness of laminations.

    it is a function of  

    Area under one hysteresis loop. 

        . f . v 

     

     

  • 8/20/2019 Machines Formulas

    13/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    13No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    During operation of transformer :-         Case (i) :-

         

     = constant,

     = const.

    Case (ii) :-

            constant,

       const.

                                      

    P.U iron loss :-

      P.U iron loss =             As VA rating is choosen as base then the P.U iron loss are also constant at all load conditions.

    To find out constant losses :-

       = Losses in t/f under no load condition= Iron losses + Dielectric loss + no load primary loss (    )

      Constant losses =

     

     

    Where ,  = LV winding resistance.To find out variable losses :-   = Loss in t/f under S.C condition

                   Const.

    ∴                 When  = const.

  • 8/20/2019 Machines Formulas

    14/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    14No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    = F.L Cu loss + stray load losses (Cu and Iron) + Iron losses in both wdgs

      Variable losses = Iron losses corresponding to  O.C test :-

     rated   S.C test :-                    

    ∴ Variable losses =

     

     

      Under the assumption that small amount of iron losses corresponds to   and stray loadlosses are neglected the wattmeter reading in S.C test can be approximately taken as F.LCu losses in the transformer .

        F.L Cu loss           Efficiency :-

       =  =

                   

              

    O.C testS.C test

  • 8/20/2019 Machines Formulas

    15/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    15No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      Transformer efficiency =    

      Efficiency =  =          

         

      Total losses in transformer =

     output  Condition for maximum effieciency is, Cu losses = Iron losses  Total losses at  = 2   %load at which maximum efficiency occurs % x =          *100 %=     *100 %  KVA corresponding to  = F.L KVA           Voltage drop in t/f at a Specific load p.f =    % Voltage regulation =

             100=               

    P.U resistance P.U reactance

    % Regulation =  × 100Condition for max. regulation :-

    % regulation = (% R) cos    = 0Tan    lagging

     At maximum regulation  

  • 8/20/2019 Machines Formulas

    16/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    16No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    =    Value of maximum regulation :-

    % Regulation = (% R) cos   At max. regulation cos  

    Sin  max. % regulation = (% R)

       =

       =

     max. % regn = % Z

    = % of rated voltage required to produce rated short ckt current

    .

    Condition for zero regulation :-

      If the voltage regulation in the t/f is zero, the t/f voltages are maintained at their nominalvalues even under load condition

    % Regn = (% R) cos  For zero regulation  occurs at leading p.f’s

    (% R) cos  sin  = 0Tan

     

       leading.  At zero regulation condition :      Regulation at x of FL = x [% R cos  X sin ]

    = x × F.L regn

    Regulation at U.P.F:-Regulation at UPF = % R

    = % F.L Cu loss

  • 8/20/2019 Machines Formulas

    17/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    17No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    Scott Connection:

     = 0.866          = 0.577   = 0.866  0.577  = 0.289    = 0.577 0.289  = 2 : 1

      If a neutral pt is located on 3 side, such that, voltage between any terminal to that neutralpoint is 0.577  then such neutral point divides the primary of teaser transformer in the ratioof 2 : 1

      Location of neutral point from top = 0.866    Location of neutral point from bottom = 0.866  Operation of Scott Connection with 2 balanced load at UPF :-Teaser t/f :-

         Let

     

     Main t/f  

     

    86.6%

    0.289

    2

    1

    M

     N

    0.866  0.577  A

    B

    C

           

      

     

      

           

     

  • 8/20/2019 Machines Formulas

    18/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    18No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

       Let  

     

         Capacity of Scott Connection :-            ↙  ↓   Vol. rating of 1 –  t/f Current rating of 1 –  t/f                          Utilization factor =

     

    =        = 0.866  Utilization factor of Scott connection with 2 identical 1 –  t/f’s is 86.6% 

    AUTO TRANSFORMER:

     Primary applied voltage,  = Secondary voltage  referred to primary + primary leakage impedancedrop + secondary leakage impedance drop ref. to primary.    

      K of auto transformer =      I/P KVA =    

       = 1 –  

     = 1 –  K

    ∴  (KVA) induction = (1 –  K) i/p KVA

    (KVA) conduction = I/p KVA –     I/p KVA

  • 8/20/2019 Machines Formulas

    19/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    19No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      Wt. of conductor in section AB of auto t/f        Wt of conductor in section BC of auto t/f

     

     

    ∴ Total wt. of conductor in auto t/f is        Total wt. of conductor in 2 wdg transformer       

                         = 1 –  

     = 1

    – K

    Wt. of conductor in auto t/f = (1 –  K) (wt. of conductor in 2 wdg t/f)

      Thus saving of conductor material if auto –  t/f is used} = K × {conductor wt in 2 wdg transformer.

                                                   .SYNCHRONOUS MACHINES:

      Principle of operation :-

    Whenever a conductor cuts the magnetic flux, an emf is induced in that conductor”

       Faraday’s law of electromagnetic induction.

      Coil span () :- It is the distance between two sides of the coil. It is expressed in terms ofdegrees, pole pitch, no. of slots / pole etc

      Pole pitch :- It is the distance between two identical points on two adjacent poles.Pole pitch is always 180° e = slots / pole.

           Slot pitch or slot angle :- (T)Slot angle is the angle for each slot.

      For a machine with ‘P’ poles and ‘s’ no. of slots, the slot angle = γ =    γ =  

  • 8/20/2019 Machines Formulas

    20/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    20No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      Pitch factor or coil span factor or chording factor :- ( )

     =

    =  

       Pitch factor for  harmonic i.e,  chording angle to eliminate  harmonics (α)=    coil spam to eliminate  harmonics ,() = 180    Distribution factor | spread factor | belt factor | breadth factor(kd) :-

     =    =  Kd =

    γ

    γ   The distribution factor for uniformly distributed winding is

    For  harmonic,  = γ γ    To eliminate  harmonics ,phase spread (mγ) =

       Generally, KVA rating, power output  kd and (induce emf)     .∴       =    = 1.15

     = cos /2  =   

     =    

  • 8/20/2019 Machines Formulas

    21/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    21No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

       = 1.06

     

     

       = 1.5   1.414  Speed of space harmonics of order (6k ± 1) is

     where  = synchronous speed =            The order of slot harmonics is

       

    where S = no. of slots , P = no. of poles

      Slot harmonics can be eliminated by skewing the armature slots and fractional slot winding.

    The angle of skew =  = γ (slot angle) = 2 harmonic pole pitches

    = 1 slot pitch.

      Distribution factor for slot harmonics,    Is

    γ γ  i.e., same that of fundamental  Pith factor for slot harmonics,  =  

      The synchronous speed Ns and synchronous angular speed s of a machine with p polepairs running on a supply of frequency f s are:

    s = 2f s / p

      Slip S =  Where            = synchronous speed 

      The magnitude of voltage induced in a given stator phase is =                  

  • 8/20/2019 Machines Formulas

    22/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    22No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    Where K = constant

      The output power Pm for a load torque Tm is:

    Pm = sTm 

      The rated load torque TM for a rated output power PM is:

    TM = PM / s = PM p/ 2f s = 120PM / 2Ns

    Synchronous Generator :

      For a synchronous generator with stator induced voltage Es, stator current Is andsynchronous impedance Zs, the terminal voltage V is:

    V = E - IsZs = Es - Is(Rs + jXs)

    where Rs is the stator resistance and Xs is the synchronous reactance 

    E =          +  lag p.f  leading p.f.

    Synchronous Motor:

      For a synchronous motor with stator induced voltage Es, stator current Is and synchronousimpedance Zs, the terminal voltage V is:

    V = Es + IsZs = Es + Is(Rs + jXs)where Rs is the stator resistance and Xs is the synchronous reactance

    Voltage regulation :

      % regulation =   100E – V =  ∴ % regulation =  

  • 8/20/2019 Machines Formulas

    23/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    23No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    =      100∴ regulation   

    ∴ As

     increases, voltages regulation increases.

      Condition for zero | min. voltage regulation is, Cos (θ + ) =      Condition for max. Voltage regulation is,  = θ   Short circuit ratio (SCR) =

                SCR      Voltage regulation  Armature reaction∴

      SCR

     

     

    ∴ Small value of SCR represent poor r egulation.            But reluctance  Air gap∴                 

     Armature reaction      ∴ SCR      Airgap length

    ∴ machine size

     SCR.

    Cost

     SCR

    Power =   P      SCR

    Air gap length  SCR

  • 8/20/2019 Machines Formulas

    24/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    24No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    ∴ Large value of SCR represent more power output.  Synchronizing power coefficient or stability factor

     is given as

     =    =

      is a measure of stability∴ stability   But       SCR

    Stability

     SCR

     Air gap length

      When the stator mmf is aligned with the d – axis of field poles then flux  perpole is set upand the effective reactance offered by the alternator is .        = Direct axis reactance

      When the stator mmf is aligned with the q – axis of field poles then flux

     per pole is set up

    and the effective reactance offered by the alternator is .   =          = Quadrature axis reactance  Cylindrical rotor Synchronous machine ,

    The per phase power delivered to the infinite bus is given by P =       sin δ 

      Salient pole synchronous machine ,

    The per phase power delivered to the infinite bus is given by

    P =      δ     δ 

    Power  SCR

    ∴ Stability  SCR  

    ∴ Stability  Air gap length

  • 8/20/2019 Machines Formulas

    25/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    25No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    Condition for max. power:-

      For cylindrical rotor machine :-

     At constant

     and

         , the condition for max. power is obtained by putting

     = 0

    ∴         = 0Cos δ = 0 

    δ = 90 

    Hence maximum power occurs at δ = 90 

      For salient – pole synchronous machine :- = 0

                = 0

    Cos δ =                    The value of load angle is seed to be less than 90°.∴  max. power occurs at δ < 90   Synchronizing power = . ∆ δ. 

    =  .

      Synchronizing torque =

    .

    Power flow in Alternator :-

      Complex power = S = P + jQ = V  Where Active power flow (P) =

     ;Reactive power flow (Q) =

     ;  Condition for max. power output :-

    P =  

     = 0 for max power condition

    ie – δ = 0 

    θ =  

  • 8/20/2019 Machines Formulas

    26/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    26No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    If  = 0; = δ = 90 ; then max power is given by

    SYNCHRONOUS MOTORS:

      Speed regulation =    

    =    = 0%

     Slip S =  = 0%

              

      The speed can be controlled by varying the f requency

         ratio control is preferred for rated torque operationPower flow in synchronous motor is given by

    complex power i/p s = p + jQ = V  where P = Resl power flow , Q = Reactive power flow

    :

    :

     If  = 0 ;      Condition for max power :-  

     = 0  0 +

     

    Sin ( + δ) = 0 = sin 180 

     =

     

     

     cos θ 

     = Q =    

    8  0

    P =

      Q =

     

  • 8/20/2019 Machines Formulas

    27/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    27No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    Expression for mechanical power developed :-

     Mechanical power developed =  = active component +     

      Condition for max. mechanical power developed :- δ δ = 0Sin ( – δ) = 0 = sin 0 

    δ =

    This is the expression for the mechanical power developed interms of load angle and the

    internal machine angle , for constant voltage  and constant E i.e., excitation  Gross Torque =

     =

        synchronous speed in r.p.m

    ∴ Tg =

     

     

      Condition for excitation when motor develops  :-For max power developed is  = 0    

      Condition for excitation when motor develops  is  The corresponding value of max. power is

     =  Power flow in synchronous motors :-

     

     

     

    Tg =  

  • 8/20/2019 Machines Formulas

    28/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    28No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      For leading p.f

    tan δ =      

      The mechanical power developed per phase is given by,s δ   δ 

    INDUCTION MACHINES:

      The power flow diagram of 3 –   induction motor is

    The slip of induction machine is (S) =  

    Mechanical power

    developed,   Rotor i/p power= airgap powerPower i/p to stator

    from mains

    Power of

    rotor shaft

    Windage

    loss

    Friction loss

    at bearings

    and sliprings

    of (if any)

    Rotor core loss

    (negligible for

    small slips)

    Rotor

    R

    loss

    Stator

    core

    loss

    Stator

    R

    loss

               (input)

    Stator

    copper loss

    3      Mechanical power

    developed in armature = 3  .  cos( ± )+ ve lead–ve for lag

     = 2 π Ns 

    60.  output

    Friction

    and Iron

    losses

     =  2π Ns 

    60

  • 8/20/2019 Machines Formulas

    29/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    29No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    =  

    Where  is synchronous speed in rpm

     is synchronous speed in rps

          = S  ∴  Rotor frequency,             For an induction machine with rotor resistance Rr  and locked rotor leakage reactance Xr , therotor impedance Zr  at slip s is:Zr  = Rr  + jsXr  The stator circuit equivalent impedance Zrf  for a rotor / stator frequency ratio s is:Zrf  = Rrs / s + jXrs 

    For an induction motor with synchronous angular speed s running at angular speed m andslip s, the airgap transfer power Pt, rotor copper loss Pr  and gross output power Pm for a

    gross output torque Tm are related by:Pt = sTm = Pr  / s = Pm / (1 - s)Pr  = sPt = sPm / (1 - s)

    Pm = mTm = (1 - s)Pt The power ratios are:Pt : Pr  : Pm = 1 : s : (1 - s)

    The gross motor efficiency m (neglecting stator and mechanical losses) is:m = Pm / Pt = 1 - s

    Rotor emf, Current Power :- At stand still, the relative speed between rotating magnetic field and rotor conductors is

    synchronous speed ; under this condition let the per phase generated emf in rotor circuitbe .∴   = 4.44                  = 4.44                = Rotor winding factor  But during running conditions the frequency of the rotor becomes, running with speed  

     S

          

    ∴              ∴  Emf under running conditions isE =                    

    = S 

  • 8/20/2019 Machines Formulas

    30/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    30No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

      Rotor leakage reactance = 2 (Rotor frequency) (Rotor leakage Inductance)

    ∴ Rotor leakage reactance at stand still = 2        =     Rotor leakage reactance at any slips = 2          Rotor leakage impedance at stand still

    =         At any slip s, rotor

      Per phase rotor current at stand still

    =      

      Per phase rotor current at any slip s is given by

                   The rotor current  lags the rotor voltage  by rotor power factor angle  given by

         Per phase power input to rotor is    

     

    =      

    = s    

    =        

  • 8/20/2019 Machines Formulas

    31/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    31No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    ∴           `

    =

           

     

    =         is the power transferred from stator to rotor across the air gap. There f ore  is called air

    gap power      =            

     = (Rotor ohmic loss) + Internal mechanical power developed in rotor (

    )

    = S

     

    ∴     =        Rotor ohmic loss =    = S 

      Internal (or gross) torque developed per phase is given by

     

      Electromagnetic torque  can also be expressed as          ∴     

      Power available at the shaft can be obtained from  as follows.Output or shaft power, Mechanical losses  Mechanical losses implies frication and windage losses

     

  • 8/20/2019 Machines Formulas

    32/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    32No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    Rotor ohmic loss – Friction and windage losses= Net mechanical power output or net power output

    Output or shaft torque

     

     

      If the stator input is known. Then air gap power  is given by stator power input – stator   loss – stator core loss.  Ratio of Rotor input power, rotor copper losses and gross mechanical output is     :    :      

     ∴ Rotor copper losses = S × Rotor inputGross mechanical output =(1 – S) × Rotor input.

    Rotor copper losses = (Gross Mechanical output) ×  Efficiency of the rotor is approximatelyEqual to  

    =    

    = 1 – S

    = 1    =

     

    Total torque is          m is the number of stator phases.

    Torque equation can be written as        

       rotor input per phase.

    Thus the slip  at which maximum torque occurs is given by       Substituting the value of maximum slip in the torque equation, gives maximum torque

    1 : S : (1 –  S)

     

     

  • 8/20/2019 Machines Formulas

    33/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    33No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    If stator parameters are neglected then applying maximum transfer theorem to

     then

     

    =  Slip corresponding to maximum torque is

    (Breakdown slip)

          

     is the stalling speed at the maximum torque

    Starting torque:- At starting, slip S = 1.00, starting torque is given by

    Test =  

       Motor torque in terms of :  The torque expression of an induction motor can also be expressed in terms of maximum

    torque   and dimension less ratio . In order to get a simple and approximateexpression, stator resistance , or the stator equivalent resistance , is neglected.∴            

      Since r 1 or Re is neglected      The slip at which maximum torque occurs is   ∴   

    ∴ 

     

       

     

         

                 

     

     

  • 8/20/2019 Machines Formulas

    34/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    34No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    Power slip characteristics :-

      The total internal mechanical power developed is                  Maximum power transfer theorem is invoked again to obtain maximum value of internal

    mechanical power developed. Since  per phase is the power delivered to   , internalmechanical power developed is maximum, when      

         

    In order to get maximum power ,substitute , in place of    in power equation        In order to get maximum power output from an induction generator, the rotor must be deiven

    at a speed given by      

    Losses and efficiency :-There are three cases in iron losses.

    Case (i) : If the ratio of voltage to frequency is constant and flux is also constant then

    Iron loss = Hysteresis loss + eddy current loss                Given

           is constant. As           is constant

    ∴  and

    Case (ii) : If the ratio of voltage to frequency is not constant and flux is also not constant

               ≠ const                  

            

            

  • 8/20/2019 Machines Formulas

    35/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    35No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    ∴ Case (iii) : If frequency is constant and voltage is variable then

                 =         

      Short circuit current with normal voltage applied to stator is

    I = short circuit current with normal voltage

     = short circuit current with voltage .  Power factor on short circuit is found from           

      As  is approximately equal to full load copper losses

    The blocked rotor impedance is

    ∴ Blocked rotor reactance =          Efficiency of Induction machines :-

    Generally efficiency =  ∴ Efficiency of Induction motor =  

    ∴ Efficiency of Induction generator =  Squirrel cage rotor:

    Stator Cu loss = 3           

                  

             

    I =    

    Cos  =          

         

  • 8/20/2019 Machines Formulas

    36/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    36No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    Ph: 0 99003 99699/ 0 97419 00225 / 080-32552008 Email : [email protected] 

    Site: www.onlineIES.com  Google+: www.gplus.to/onlineies FB: www.facebook.com/onlineies 

    ∴ Rotor Cu loss =      ∴           Wound rotor            Direct  – on line (across the line) starting :-

      The relation between starting torque and full load torque is      ∴           =

       

    The above equation valids of rotor resistance remains constant.

    Where      

      Per phase short – circuit current at stand still (or at starting) is,

    Where

     

    Here shunt branch parameters of equivalent circuit are neglected.  Therefore, for direct switching,

    ∴         .Stator resistor (or reactor) starting :-

    Since per phase voltage is reduced to xv, the per phase starting current  is given by

     

     As be fore    =    

      In an induction motor, torque   

       

     

     

  • 8/20/2019 Machines Formulas

    37/37

    Institute of Engineering Studies (IES,Bangalore)   Electrical Machines Formula Sheet 

    37No.1 Training center for GATE/IES/JTO/PSUs in Bangalore @ Malleshwaram & Jayanagar of Bangalore:

    ∴ 

    Auto transformer starting :-

      Per phase starting current from the supply mains is      

         Star –  delta method of starting :

       =

           ∴

     star delta starter also reduces the starting torque to one  –  third of that produced by direct switching

    in delta.

      With star –  delta starter, a motor behaves as if it were started by an auto transformer starter with x =      = 0.58 i.e with 58% tapping. 

     =                     =