macroevolutionsystematics 2013

Embed Size (px)

Citation preview

  • 8/13/2019 macroevolutionsystematics 2013

    1/101

    Bio 2Plant and Animal Biology

  • 8/13/2019 macroevolutionsystematics 2013

    2/101

    Evolution

    Evolution as the

    explanation

    for lifes unityand diversity

  • 8/13/2019 macroevolutionsystematics 2013

    3/101

    Darwinian Revolution

    Two main Points

    Descent with

    Modification

    Natural Selection

  • 8/13/2019 macroevolutionsystematics 2013

    4/101

    Biological Species

    A group of populations whose

    members have the potential to

    interbreed in nature and produce viable,fertile offspring

  • 8/13/2019 macroevolutionsystematics 2013

    5/101

    Two Patterns ofEvolutionary Change

    Anagenesis

    Cladogenesis

  • 8/13/2019 macroevolutionsystematics 2013

    6/101

  • 8/13/2019 macroevolutionsystematics 2013

    7/101

    Allopatric Speciation

  • 8/13/2019 macroevolutionsystematics 2013

    8/101

    Evidence of

    Allopatric Speciation

  • 8/13/2019 macroevolutionsystematics 2013

    9/101

    Allopatric Speciation

  • 8/13/2019 macroevolutionsystematics 2013

    10/101

    Allopatric Speciation

    1. Small Population

    2. Isolation

    3. DifferentEnvironmental

    Conditions

  • 8/13/2019 macroevolutionsystematics 2013

    11/101

    Sympatric

    Speciation Autopolyploidy Examples:

    Maidenhair

    FernBufo pewzowi

    Cell

    divisionerror2n=6 Tetraploid Cell

    4n=12

    2n

    2n

    New Species

    (4n)Gametes produced

    by Tetraploid

  • 8/13/2019 macroevolutionsystematics 2013

    12/101

    Sympatric Speciation

    Allopolyploidy

    Examples:

    Triticumaestivum

    Gray Treefrog

  • 8/13/2019 macroevolutionsystematics 2013

    13/101

    Hybrid Zone

  • 8/13/2019 macroevolutionsystematics 2013

    14/101

    Hybrid Zone

  • 8/13/2019 macroevolutionsystematics 2013

    15/101

    Hybrid Zone

    Over time

    Reinforcement

    Strengthening of reproductive barriers Fusion

    Weakening of reproductive barriers

    Stability

    Continued production of hybrid

    individuals

  • 8/13/2019 macroevolutionsystematics 2013

    16/101

    Adaptive Radiation

    The emergence of

    numerous species

    from a common

    ancestor introducedinto an environment,

    presenting a

    diversity of new

    opportunities and

    problems

  • 8/13/2019 macroevolutionsystematics 2013

    17/101

    Adaptive Radiation(Silversword Alliance - Tarweed)

  • 8/13/2019 macroevolutionsystematics 2013

    18/101

    Macroevolution:Evolutionary Change on a

    Grand ScalePunctuated

    Equilibrium

    Gradualism

    Time

  • 8/13/2019 macroevolutionsystematics 2013

    19/101

    Gradualism

    Also calledNeodarwinism

    Small changes

    over time

    Supporter: Ernst

    Mayr

  • 8/13/2019 macroevolutionsystematics 2013

    20/101

    Gradualism

    Populational - new traits becomeestablished in a population by

    increasing their frequency from a small

    fraction of the population to themajority

  • 8/13/2019 macroevolutionsystematics 2013

    21/101

    Gradualism Phenotypic

    New traits, even

    those that are

    strikingly

    different from

    ancestral ones

    are produced in

    small increments

  • 8/13/2019 macroevolutionsystematics 2013

    22/101

    Gradualism

    Phyletic - On a

    geological time

    scale, there are

    intermediate formsconnecting the

    phenotypes of

    ancestors and

    descendents

  • 8/13/2019 macroevolutionsystematics 2013

    23/101

    Punctuated Equilibrium Supporters: Niles

    Eldredge & StephenJ. Gould

    Speciation occurs in

    episodic eventslarge periods of timewith little changeand short periods of

    time with largechanges

    http://www.artscienceresearchlab.org/gould.htm
  • 8/13/2019 macroevolutionsystematics 2013

    24/101

    Macroevolution through manySpeciation Events

  • 8/13/2019 macroevolutionsystematics 2013

    25/101

    Macroevolution through manySpeciation Events

    Evolutionary Novelties

    Evolution of Genes that control

    development Changes in Spatial Pattern

    Changes in Rate and Timing

  • 8/13/2019 macroevolutionsystematics 2013

    26/101

    Origin of Evolutionary

    NoveltyMost novelties

    are modified

    versions of olderstructures

    Exaptation -

    preadaptation

  • 8/13/2019 macroevolutionsystematics 2013

    27/101

    Evolution of Genes that ControlDevelopment

    Julian Huxley - Modern

    Synthesis

    Gradual evolution canbe explained by small

    genetic changes that

    produce variation

    which is acted uponby natural selection

  • 8/13/2019 macroevolutionsystematics 2013

    28/101

    Evolution of Genes that ControlDevelopment

    Julian Huxley - Modern

    Synthesis

    The evolution athigher taxonomic

    levels and of greater

    magnitude can be

    explained by longperiods of time

  • 8/13/2019 macroevolutionsystematics 2013

    29/101

    Evolution of Genes that controlDevelopment

    Forms change

    Natural Selection is

    the force driving

    change

    How did it occur?

  • 8/13/2019 macroevolutionsystematics 2013

    30/101

    Evolution of Genes that controlDevelopment

    Evo-devo How

    does it occur?

  • 8/13/2019 macroevolutionsystematics 2013

    31/101

    Evolution of Genes that controlDevelopment

    Evo-devo - Tool-kit

    of master genes

  • 8/13/2019 macroevolutionsystematics 2013

    32/101

    Changes in Spatial Pattern

    Homeotic Genes

    (Hox Genes)

    position information

  • 8/13/2019 macroevolutionsystematics 2013

    33/101

    Changes in Spatial Pattern

  • 8/13/2019 macroevolutionsystematics 2013

    34/101

    Changes in Spatial Pattern

    Homeobox

  • 8/13/2019 macroevolutionsystematics 2013

    35/101

    Changes in Spatial Pattern

    Changes in

    expression

    patterns of

    four Hoxgenes over

    time

  • 8/13/2019 macroevolutionsystematics 2013

    36/101

    Changes in Rateand Timing

    Allometric Growth

    the variation inthe relative rates of

    growth of various

    parts of the body

  • 8/13/2019 macroevolutionsystematics 2013

    37/101

    Heterochrony - evolutionary change in thetiming or rate of development

    Changes in rate and timing

  • 8/13/2019 macroevolutionsystematics 2013

    38/101

    Changes in rate and timing

    Paedeomorphosis - retention of juvenile

    features in an adult

  • 8/13/2019 macroevolutionsystematics 2013

    39/101

    Changes in rate and timing

    Paedeogenesis - sexual maturity in a larval

    form

  • 8/13/2019 macroevolutionsystematics 2013

    40/101

    Evolutionary Trends

    Evolutionary

    trends are

    not goal

    oriented

  • 8/13/2019 macroevolutionsystematics 2013

    41/101

    The Tree of Life

    Biological Diversity

  • 8/13/2019 macroevolutionsystematics 2013

    42/101

    The Fossil Record

  • 8/13/2019 macroevolutionsystematics 2013

    43/101

    The Fossil Record

  • 8/13/2019 macroevolutionsystematics 2013

    44/101

    The Fossil Record

    Sedimentary Rocks Hard Parts

  • 8/13/2019 macroevolutionsystematics 2013

    45/101

    The Fossil Record

    Minerals replacing

    organic material

    Organic Material

  • 8/13/2019 macroevolutionsystematics 2013

    46/101

    The Fossil Record

    Casts Trace Fossils

  • 8/13/2019 macroevolutionsystematics 2013

    47/101

    The Fossil Record

    Entire Organisms

  • 8/13/2019 macroevolutionsystematics 2013

    48/101

    Dating Fossils

    Absolute Dating (half-life)

  • 8/13/2019 macroevolutionsystematics 2013

    49/101

    Relative

    DatingPrecambrian

    (Archaean)

    Origin of Earth(4.6 bya)

    Oldest known

    rocks on

    Earths surface(3.8 bya)

  • 8/13/2019 macroevolutionsystematics 2013

    50/101

    History of the Earth

    Precambrian

    (Archaean)

    OldestProkaryotes (3.5

    bya)

  • 8/13/2019 macroevolutionsystematics 2013

    51/101

    History of the Earth

    Precambrian

    (Archaean)

    Oxygen (2.7bya)

  • 8/13/2019 macroevolutionsystematics 2013

    52/101

    Precambrian(Proterozoic) Oldest

    Eukaryotes

    (2.1 bya)

    Diversificationof Multicellular

    Eukaryotes

    (542-635 mya)

  • 8/13/2019 macroevolutionsystematics 2013

    53/101

    Paleozoic Era - Cambrian Period(488 542 mya)

    Cambrian

    Explosion

    - Origin of

    mostmodern

    animal

    phyla

    Paleozoic Era - Origin of

  • 8/13/2019 macroevolutionsystematics 2013

    54/101

    Paleozoic Era Ordovician Period

    (488 444 mya)

    Origin of

    land plants

    First

    arthropods

    on land

    First

    jawless fish First Fungi

    Paleozoic Era -

  • 8/13/2019 macroevolutionsystematics 2013

    55/101

    Paleozoic Era Silurian Period

    (444 416) First jawed fish

    First vascular plants

    Diversity of early vascular plants

    Paleozoic Era -

  • 8/13/2019 macroevolutionsystematics 2013

    56/101

    Paleozoic Era Devonian Period

    (416 359 mya) Age of Fishes

    First Amphibians

    First Insects

    http://d/Unit_4/Chapter_25/Instructor%20Resources/Image%20Library/1.htm
  • 8/13/2019 macroevolutionsystematics 2013

    57/101

    Paleozoic Era -Carboniferous Period

    (359 299 mya)

    Vascular Forests

    First Seed Plants Amphibians

    Abundant

    First Reptiles

    Paleozoic Era -

  • 8/13/2019 macroevolutionsystematics 2013

    58/101

    Paleozoic Era Permian Period

    (299 251 mya) Radiation of

    Reptiles

    Origin of mammal-like Reptiles

    Most modern orders

    of insects

    Largest Extinction

    Mesozoic Era

  • 8/13/2019 macroevolutionsystematics 2013

    59/101

    Gymnosperms

    dominant

    Radiation ofDinosaurs

    First Mammals

    and Birds

    Mesozoic Era -Triassic Period

    (251 199.6 mya)

    Mesozoic Era -

  • 8/13/2019 macroevolutionsystematics 2013

    60/101

    Dinosaurs Dominate

    Gymnosperms Dominate

    Mesozoic Era Jurassic Period

    (199.6 145.5 mya)

    M i E

  • 8/13/2019 macroevolutionsystematics 2013

    61/101

    Flowering

    PlantsAppear

    Dinosaurs

    Disappear

    at End of

    Period

    Mesozoic Era -Cretaceous Period(145.5 65.5 mya)

  • 8/13/2019 macroevolutionsystematics 2013

    62/101

    Cenozoic Era

    (Age of Mammals) Quaternary Period (2.6 myaPresent)

    Neogene Period (232.6 mya) Paleogene Period (65.5 - 23 mya)

    Paleogene

  • 8/13/2019 macroevolutionsystematics 2013

    63/101

    AdaptiveRadiation of

    Mammals,

    Birds, and

    Insects

    PaleogenePeriod -

    PaleoceneEpoch

    A i

  • 8/13/2019 macroevolutionsystematics 2013

    64/101

    Angiosperm

    Dominance

    Most ModernMammal Orders

    Paleogene Period

    - Eocene Epoch

  • 8/13/2019 macroevolutionsystematics 2013

    65/101

    First PrimatesPaleogenePeriod -

    OligoceneEpoch

    N P i d Mi

  • 8/13/2019 macroevolutionsystematics 2013

    66/101

    Neogene Period - MioceneEpoch

    Continued Radiation

    of Mammals and

    Flowering Plants Earliest direct

    human ancestors

  • 8/13/2019 macroevolutionsystematics 2013

    67/101

    Bipedal human

    ancestors appear

    Neogene Period- PlioceneEpoch

    Qu t rn r P ri d

  • 8/13/2019 macroevolutionsystematics 2013

    68/101

    Ice Ages

    Homo genus

    appears

    Quaternary Period Pleistocene Epoch

  • 8/13/2019 macroevolutionsystematics 2013

    69/101

  • 8/13/2019 macroevolutionsystematics 2013

    70/101

    ContinentalDrift andPlate

    Tectonics

  • 8/13/2019 macroevolutionsystematics 2013

    71/101

    Plate Tectonics

  • 8/13/2019 macroevolutionsystematics 2013

    72/101

    PlateTectonics

  • 8/13/2019 macroevolutionsystematics 2013

    73/101

    Earths History

    Pangaea (245 mya)

    Pangaea began to

    break up (180 mya)

    Laurasia

    Gondwana

    Mass

  • 8/13/2019 macroevolutionsystematics 2013

    74/101

    MassExtinctions Ordovician

    (440)

    Devonian (365)

    Permian (245) Triassic (210)

    Cretaceous

    (65)

  • 8/13/2019 macroevolutionsystematics 2013

    75/101

    K-TBoundary

    Chicxulub Crater -

    Caribbean Sea near

    the YucatanPeninsula of Mexico

    T f Lif

  • 8/13/2019 macroevolutionsystematics 2013

    76/101

    Tree of Life

    S t ti

  • 8/13/2019 macroevolutionsystematics 2013

    77/101

    Systematics

    The study of

    biological

    diversity in anevolutionary

    context

    Systematic

  • 8/13/2019 macroevolutionsystematics 2013

    78/101

    SystematicTools

    Molecular Comparisons

    usually (rRNA or

    mtDNA)

    DNA-DNA

    Hybridization

    Restriction maps

    DNA Sequence

    analysis

  • 8/13/2019 macroevolutionsystematics 2013

    79/101

    Phylogenetic Groupings

    Monophyletic

    ancestor and all its descendants

  • 8/13/2019 macroevolutionsystematics 2013

    80/101

    Phylogenetic Groupings

    Paraphyletic

    ancestor with some but not all its

    descendants

  • 8/13/2019 macroevolutionsystematics 2013

    81/101

    Phylogenetic Groupings

    Polyphyletic

    two different ancestors

  • 8/13/2019 macroevolutionsystematics 2013

    82/101

    Phylogenetic Groupings

  • 8/13/2019 macroevolutionsystematics 2013

    83/101

    Similarities

    Homology

    likeness attributed

    to shared

    ancestry

  • 8/13/2019 macroevolutionsystematics 2013

    84/101

    Similarities

    Analogy

    likeness due to

    similar ecological

    roles and naturalselection due to

    convergent

    evolution

  • 8/13/2019 macroevolutionsystematics 2013

    85/101

    Molecular Homoplasy

    Analogous species that have similar

    DNA sequences that evolved

    independently in two species

    Ontogeny Recapitulates

  • 8/13/2019 macroevolutionsystematics 2013

    86/101

    Ontogeny RecapitulatesPhylogeny (Ernst Haeckel)

    Ontogenyindividual

    development

    Recapitulatesrepeats

    Phylogeny

    evolutionary descent

  • 8/13/2019 macroevolutionsystematics 2013

    87/101

    Classical Evolutionary

  • 8/13/2019 macroevolutionsystematics 2013

    88/101

    Classical EvolutionarySystematics

    George Gaylord Simpson

    The Science of Phylogenetic

  • 8/13/2019 macroevolutionsystematics 2013

    89/101

    The Science of PhylogeneticSystematics

    Classical Evolutionary Systematics

    most commonly used up until recently

    based on shared homologousstructures

    takes into account the amount of

    adaptive evolutionary change(novelties)

    Monophyletic and paraphyletic

    groupings

  • 8/13/2019 macroevolutionsystematics 2013

    90/101

    The Science of Systematics

    Cladistics(PhylogeneticSystematics)

    based on sharedhomologousstructures

    only monophyletic

    groupings Will Hennig

    The Science of Phylogenetic

  • 8/13/2019 macroevolutionsystematics 2013

    91/101

    The Science of PhylogeneticSystematics

    Cladistic Assumptions

    1. Monophyletic

    2. Descent follows a bifurcatingpattern

    3. Changes in characteristics occur

    in lineages over time

    Cl d

  • 8/13/2019 macroevolutionsystematics 2013

    92/101

    Cladistics

    Synapomorphies:Shared ancestral

    characters

    Plesiomorphies:

    Shared Primitivecharacters

    Apomorphies:

    Shared derived

    characters

  • 8/13/2019 macroevolutionsystematics 2013

    93/101

    Phylograms

  • 8/13/2019 macroevolutionsystematics 2013

    94/101

    Ultrametric

    Trees

  • 8/13/2019 macroevolutionsystematics 2013

    95/101

    Cl di i

  • 8/13/2019 macroevolutionsystematics 2013

    96/101

    Cladistics

    Cl di i

  • 8/13/2019 macroevolutionsystematics 2013

    97/101

    Cladistics

  • 8/13/2019 macroevolutionsystematics 2013

    98/101

  • 8/13/2019 macroevolutionsystematics 2013

    99/101

  • 8/13/2019 macroevolutionsystematics 2013

    100/101

  • 8/13/2019 macroevolutionsystematics 2013

    101/101

    MolecularClock