1
Deforma(on Constraints Galápagos volcanoes undergo 3phases of evolu(onary change, corresponding to juvenile, mature, and dying stages as the Nazca Plate carries them away from the hotspot. In the juvenile stage, a diverse suite of picritetobasalt is erupted, because each batch of ascending magma undergoes a different thermal experience. In the mature stage, the magmas pass through a system that is in a thermochemical steadystate, due to crystalliquid reac(on and residence in a shallow, wellmixed sill. A monotonous suite of low Mg basalt is produced. Most of the volume of the plumbing system is crystalline mush. As the volcano dies, the mush column cools and solidifies, which can create fairly large volumes of crystalpoor rhyolite. An Evolu(onary Model of Galápagos Magma Chambers Dennis Geist Petrologic Constraints Petrographic Constraints Trace Element Constraints A Dying System: Alcedo 3 Stage Evolu-on: 1. Juvenile Transient 2. Mature Steady State 3. Dying Transient Fernandina Mg# 50 ± 3 Mature Steady Roca Redonda Mg# 64 ± 10 Juvenile Transient Ecuador Mg# 51 ± 5 Juvenile Transient Cerro Azul Mg# 58 ± 6 Juvenile Transient Wolf Mg# 49 ± 4 Mature Steady Darwin Mg# 47 ± 3 End of Mature Alcedo Mg# 38± 11 Dying Transient Sierra Negra Mg# 42 ± 4 End of Mature Some volcanoes at the leading edge of the Galápagos hotspot erupt picrites as well as basalts (Cerro Azul, Roca Redonda, and Volcan Ecuador). Fernandina, Sierra Negra, and Wolf volcanoes erupt lavas with a very small composi(onal range and generally lower Mg#. Some of the “downstream volcanoes” erupt lavas with low and variable Mg# (extending to rhyolite). Alcedo is the best example. Terry Naumann has recently discovered young icelandites on Darwin volcano. Geode(c measurements indicate a systema(c difference between the 3 types of volcanoes. The steady systems have very shallow, flattopped magma bodies. This example, from Sierra Negra, is best modeled as a 1.9 km deep sill (note the lack of mo(on of GV01, which could only be because of a shallow chamber). Fernandina and Wolf show similar deforma(on behavior. Cerro Azul, a juvenile system, has a notably deeper magma body (Amelung et al., 2000; Naumann et al., 1999). Ecuador displays no evidence of a long lived shallow magma body. Subaerial Fernandina Submarine Fernandina I didn’t crystallize from this black part. Me neither Actually, none of us did We subaerial plag “phenocrysts” are exo(c too. There are 2 remarkable observa(ons to be made about the phenocrysts in western Galápagos basalt. First, it can be demonstrated that most did not crystallize from their matrix, i.e. these are “antecrysts”, crystallized from older magmas but not yet consolidated into rock. Second, the crystals are density segregated, with plagioclase only at the top of the system, and abundant olivine and pyroxene lower in the system. My interpreta(on is that these crystals come from disaggregated mush. Light plagioclase mush accumula(ng at the top of the system and denser mafic mush below. This is a GPS (me series showing the infla(on of Sierra Negra’s caldera floor since the 2005 erup(on. The overall trend is decelera(on, but there are notable signs of waxing and waning over ~ 6 month cycles. The important point, however, is that the shallow magma chamber has been con(nuously refilled and growing since the erup(on. There are not episodic replenishments: the magma has been trickling in steadily. t res = 3000 to 18000 years Eruption rate = 0.0002 km 3 /y Chamber volume = 0.6 to 3.6 km 3 20 to 200 m thick sill t res = C 2 in C 2 res R in R res dR / dt Changes in conserva(ve trace element ra(os with (me can be used to es(mate the volume of the well mixed part of the chamber, through the calcula(on of residence (mes. Applica(on of even extreme es(mates of the governing parameters means that the volume of the wellmixed magma chamber is small. For example, it cannot be a sphere with the same radius as the caldera. We have developed a geothermometer based on the composi(ons of lavas and a thermodynamic model. Note that the steadystate mature systems have been thermally buffered: lavas have erupted at nearly the same (and rela(vely cool) temperature for thousands of years at the mature volcanoes. Thus, both composi(on and temperature are buffered in the mature stage. Juvenile volcanoes erupt hoier and more variable magma. Dying volcanoes erupt cool evolved magma. Rb Th U Ta K La Ce Nd Sr Sm Hf Zr Ti Eu Gd Tb Y Yb Lu 0.1 1 10 20 Rock/Olivine Tholeiite Tholeiite Icelandite Dacite Rhyolite Model Conclusions The Conceptual Model Alcedo has erupted lavas ranging from basalt to rhyolite. The rhyolites are due to frac(onal crystalliza(on, as this trace element modeling effort demonstrates.

Magma Chamber Poster - University of Idahodgeist/Chapman/GeistMagmaChambe…Conclusions The*Conceptual*Model* Alcedo*has*erupted*lavas*ranging*from*basaltto*rhyolite.The* ... Magma

Embed Size (px)

Citation preview

Page 1: Magma Chamber Poster - University of Idahodgeist/Chapman/GeistMagmaChambe…Conclusions The*Conceptual*Model* Alcedo*has*erupted*lavas*ranging*from*basaltto*rhyolite.The* ... Magma

Deforma(on  Constraints  

•   Galápagos  volcanoes  undergo  3-­‐phases  of  evolu(onary  change,  corresponding  to  juvenile,  mature,  and  dying  stages  as  the  Nazca  Plate  carries  them  away  from  the  hotspot.  •   In  the  juvenile  stage,  a  diverse  suite  of  picrite-­‐to-­‐basalt  is  erupted,  because  each  batch  of  ascending  magma  undergoes  a  different  thermal  experience.  •   In  the  mature  stage,  the  magmas  pass  through  a  system  that  is  in  a  thermochemical  steady-­‐state,  due  to  crystal-­‐liquid  reac(on  and  residence  in  a  shallow,  well-­‐mixed  sill.  A  monotonous  suite  of  low-­‐Mg  basalt  is  produced.    Most  of  the  volume  of  the  plumbing  system  is  crystalline  mush.  •   As  the  volcano  dies,  the  mush  column  cools  and  solidifies,  which  can  create  fairly  large  volumes  of  crystal-­‐poor  rhyolite.  

An  Evolu(onary  Model  of  Galápagos  Magma  Chambers  Dennis  Geist  

Petrologic  Constraints  

Petrographic  Constraints  

Trace  Element  Constraints  

A  Dying  System:  Alcedo  

3  Stage  Evolu-on:  1.    Juvenile  Transient  2.    Mature  Steady  State  3.    Dying  Transient   Fernandina  

Mg#  50  ±  3  Mature  Steady  

Roca  Redonda  Mg#  64  ±  10  Juvenile  Transient  

Ecuador  Mg#  51  ±  5  Juvenile  Transient  

Cerro  Azul  Mg#  58  ±  6  Juvenile  Transient  

Wolf  Mg#  49  ±  4  Mature  Steady  

Darwin  Mg#  47  ±  3  End  of  Mature  

Alcedo  Mg#  38±  11  Dying  Transient  

Sierra  Negra  Mg#  42  ±  4  End  of  Mature  

Some  volcanoes  at  the  leading  edge  of  the  Galápagos  hotspot  erupt  picrites  as  well  as  basalts  (Cerro  Azul,  Roca  Redonda,  and  Volcan  Ecuador).  

Fernandina,  Sierra  Negra,  and  Wolf  volcanoes  erupt  lavas  with  a  very  small  composi(onal  range  and  generally  lower  Mg#.  

Some  of  the  “downstream  volcanoes”  erupt  lavas  with  low  and  variable  Mg#  (extending  to  rhyolite).  Alcedo  is  the  best  example.    Terry  Naumann  has  recently  discovered  young  icelandites  on  Darwin  volcano.  

Geode(c  measurements  indicate  a  systema(c  difference  between  the  3  types  of  volcanoes.    The  steady  systems  have  very  shallow,  flat-­‐topped  magma  bodies.  This  example,  from  Sierra  Negra,  is  best  modeled  as  a  1.9  km  deep  sill  (note  the  lack  of  mo(on  of  GV01,  which  could  only  be  because  of  a  shallow  chamber).    Fernandina  and  Wolf  show  similar  deforma(on  behavior.  

Cerro  Azul,  a  juvenile  system,  has  a  notably  deeper  magma  body  (Amelung  et  al.,  2000;  Naumann  et  al.,  1999).    Ecuador  displays  no  evidence  of  a  long-­‐lived  shallow  magma  body.  

Subaerial  Fernandina  

Submarine  Fernandina  I  didn’t  

crystallize  from  this  black  part.  

Me  neither  

Actually,  none  of  us  did  

We  subaerial  plag  

“phenocrysts”  are  exo(c  too.  

There  are  2  remarkable  observa(ons  to  be  made  about  the  phenocrysts  in  western  Galápagos  basalt.  First,  it  can  be  demonstrated  that  most  did  not  crystallize  from  their  matrix,  i.e.  these  are  “antecrysts”,  crystallized  from  older  magmas  but  not  yet  consolidated  into  rock.  

Second,  the  crystals  are  density  segregated,  with  plagioclase  only  at  the  top  of  the  system,  and  abundant  olivine  and  pyroxene  lower  in  the  system.  

My  interpreta(on  is  that  these  crystals  come  from  disaggregated  mush.  Light  plagioclase  mush  accumula(ng  at  the  top  of  the  system  and  denser  mafic  mush  below.  

This  is  a  GPS  (me  series  showing  the  infla(on  of  Sierra  Negra’s  caldera  floor  since  the  2005  erup(on.    The  overall  trend  is  decelera(on,  but  there  are  notable  signs  of  waxing  and  waning  over  ~  6  month  cycles.  

The  important  point,  however,  is  that  the  shallow  magma  chamber  has  been  con(nuously  refilled  and  growing  since  the  erup(on.  There  are  not  episodic  replenishments:  the  magma  has  been  trickling  in  steadily.  

tres = 3000 to 18000 years

Eruption rate = 0.0002 km3/y

Chamber volume = 0.6 to 3.6 km3

20 to 200 m thick sill

tres =C2in

C2resRin − Rres

dR /dt

Changes  in  conserva(ve  trace  element  ra(os  with  (me  can  be  used  to  es(mate  the  volume  of  the  well-­‐mixed  part  of  the  chamber,  through  the  calcula(on  of  residence  (mes.    Applica(on  of  even  extreme  es(mates  of  the  governing  parameters  means  that  the  volume  of  the  well-­‐mixed  magma  chamber  is  small.  For  example,  it  cannot  be  a  sphere  with  the  same  radius  as  the  caldera.  

We  have  developed  a  geothermometer  based  on  the  composi(ons  of  lavas  and  a  thermodynamic  model.  Note  that  the  steady-­‐state  mature  systems  have  been  thermally  buffered:  lavas  have  erupted  at  nearly  the  same  (and  rela(vely  cool)  temperature  for  thousands  of  years  at  the  mature  volcanoes.  Thus,  both  composi(on  and  temperature  are  buffered  in  the  mature  stage.  Juvenile  volcanoes  erupt  hoier  and  more  variable  magma.  Dying  volcanoes  erupt  cool  evolved  magma.  

.

Rb Th U Ta K La Ce Nd Sr Sm Hf Zr Ti Eu Gd Tb Y Yb Lu0.1

1

10

20

Roc

k/O

livin

e Th

olei

ite

Tholeiite

IcelanditeDaciteRhyolite

Model

Conclusions   The  Conceptual  Model  

Alcedo  has  erupted  lavas  ranging  from  basalt  to  rhyolite.  The  rhyolites  are  due  to  frac(onal  crystalliza(on,  as  this  trace  element  modeling  effort  demonstrates.