43
Magnetic Neutron Scattering Collin Broholm *Supported by U.S. DoE, Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544

Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Magnetic Neutron Scattering

Collin Broholm

*Supported by U.S. DoE, Basic Energy Sciences, Materials Sciences & Engineering DE-FG02-08ER46544

Page 2: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Neutron spin meets electron spin

Structure : Magnetic diffraction

Excitations: Inelastic magnetic scattering

Tomorrow : Entangled Magnetism

Overview

Page 3: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Magnetic properties of the neutron

m

meBn

The neutron has a dipole moment

n is 960 times smaller than the electron moment

960913.1

1836

en

e

m

m

A dipole in a magnetic field has potential energy

rBr

VCorrespondingly the field exerts a torque and a force

B

BF

driving the neutron parallel to high field regions

Page 4: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Magnetic Neutron Optics The combined nuclear and magnetic potential for neutron

V =

2p 2

mrb ± r0M ×s( )

The index of refraction is

n = 1-

V

E= 1-

l 2

prb ± r0M ×s( )

Critical angle for total external reflection:

qc = l

rb ± r0M ×s

p

M

Polarized beam!

Q

k ¢k

Page 5: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Structure of vortex matter: CeCoIn5

Bianchi et al., Science (2008)

Page 6: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

The transition matrix element The dipole moment of unfilled shells yield inhomog. B-field

2

ˆ

4 R

g B RSB 0

The magnetic neutron senses the field

2

20ˆ

4 Rm

mgV B

em

RSrBr

The transition matrix element in Fermi’s golden rule

m

2p 2¢k ¢s ¢l V

mksl = -r

0

g

2F q( ) ¢s ¢l s ×S

^lsl exp iq ×r

l( )Magnetic scattering length ~ nuclear scattering lengths

r0 = gm0

4p

e2

me

= 0.54 ´10-12 cm

It is sensitive to atomic dipole moment perp. to q

S

^ l= S

l- S

l×q̂( )q̂

Page 7: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

The magnetic scattering cross section

exp dF s i q r q r r

Spin density spread out scattering decreases at high q

The magnetic neutron scattering cross section

d2s

dWd ¢Es® ¢s

=¢k

k

m

2p 2

æ

èçö

ø÷

2

pl

l ¢l

å ¢k ¢s ¢l Vm

ksl2

d El

- E¢l- w( )

=¢k

kr

0

2 g

2F q( )

2

e-2W k( ) 1

2pdt e- iw t

ò eiq× R

l-R

¢l( )

l ¢l

å

´ s s ×S^ l

0( ) ¢s ¢s s ×S^ ¢l

t( ) s

For unspecified incident & final neutron spin states

Edd

d

Edd

d 2

21

2

Page 8: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Un-polarized magnetic scattering

Spin correlation function

Squared form factor Polarization factor

Fourier transform

DW factor

d2s

dWd ¢E=

¢k

kr

0

2 g

2F q( )

2

e-2W q( )

dab

- q̂aq̂

b( )ab

å

´1

2pdt e- iwt e

iq× rl-r

¢l( )S

l

a 0( )S¢l

b t( )l ¢l

åò

Page 9: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Online lectures accessible at:

http://www.sns.gov/education/qcmp/

Page 10: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Magnetic neutron diffraction Time independent spin correlations elastic scattering

ds

dW= r

0

2 g

2F q( )

2

e-2W q( ) d

ab- q̂

aq̂

b( )ab

å eiq× r

l-r

¢l( )S

l

a S¢l

b

l ¢l

å

Periodic magnetic structures Magnetic Bragg peaks

The magnetic vector structure factor is

Magnetic primitive unit cell greater than chemical P.U.C. Magnetic Brillouin zone smaller than chemical B.Z.

Page 11: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Diffraction from Ferromagnet

Nuclear & magnetic scattering interferes. Effective scatt. length:

b +s r0S^

The structure factor for reciprocal lattice vector, t

Fs

2= bd +s r0S^d( )eit ×d

då2

= bdeit ×d

då2

+ s r0S^deit ×d

då2

+ 2s bdr0S^deit × d- ¢d( )

d ¢dåNuclear Magnetic Nuclear-magnetic

The last term vanishes for un-polarized neutrons ( average). A welcome consequence is that the diffracted beam is polarized!

s

bd » r0S^d Þ F±

4 bd

2 for s = 1

0 for s = -1

ì

íï

îï

Page 12: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Simple cubic antiferromagnet

zS ˆB

smg

ab

*a

*b

ma

mb

*

ma

*

mb

ds

dW= N r

0

ms

2mB

æ

èç

ö

ø÷

2

e-2W q( )

F q( )2

1- q̂z

2( )2p( )

3

vd q -t

m( )t

m

å ‘

No magnetic diffraction for q S

qS

S

Page 13: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in
Page 14: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Not so simple Heli-magnet : MnO2

ˆ ˆexp cos sinl l m l m l

S i S w R x Q R y Q R

Insert into diffraction cross section to obtain

ds

dW= N r

0S( )

2

e-2W q( ) g

2F q( )

2

1+ q̂z

2( )2p( )

3

v

´ d q + w - Qm

-t( ) +d q + w + Qm

-t( ){ }t

å

111w and 27

00m

Q characterize structure

*a

*c

a b c

Page 15: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Diffuse Magnetic Scattering in FeTe0.6Se0.4 K

(r

.l.u

.)

L (

r.l.

u.)

Thampy et al PRL(2012)

Page 16: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Hypothesis: Ising spins?

Page 17: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Polarized neutrons:

isotropic static spin correlations

Page 18: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Diffuse Magnetic Scattering in FeTe0.6Se0.4 K

(r

.l.u

.)

L (

r.l.

u.)

Thampy et al PRL(2012)

Page 19: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Interstitial Iron in Fe1+yTe1-xSex

Page 20: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Extract Local Spin Structure

Model by coupling itinerant spin to 5-band model through

Kang & Tesanovic

Page 21: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Nakatsuji et al. Science (2005)

Unusually weak interlayer coupling

Dominant 3rd neighbor interactions

Exact triangular lattice

Weak easy plane anisotropy

J3 : AFM

Page 22: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Elastic neutron scattering from NiGa2S4 powder

2 * 22

2

0 22 2

/ˆ 1 2 cos2

d g Ar F Q N

d

q q

τ

m Q m Q c

Q τ q

2 Surprises:

12 120oQ Q

1 25(3) Å

Nakatsuji et al. (2005) ds

dW powder

=dWQ

4pòds

dW xtal

Page 23: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Multi crystal assembly of high quality NiGa2S4

19 NiGa2S4 crystals Grown by Yusuke Nambu co-aligned by Chris Stock

Y. Nambu et al., PRB (2009).

Page 24: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

NiGa2S4: Elastic Magnetic Scattering

1.5 meV

Page 25: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Short range magnetic ordering

C. Stock et al. PRL (2010)

Page 26: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Summary: Diffraction

• The neutron has a small dipole moment causing scattering from electrons

• Magnetic scattering is similar in magnitude to nuclear scattering

• Elastic magnetic scattering probes static magnetic structure

• Spin direction gleaned from polarization factor (see spin perpendicular to Q)

• Periodic structure determined through Bragg intensities

• Generally probe magnetic structure on 1-104 Å scale:

– flux line lattice

– short range order

− powder, single crystals, thin films

Page 27: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Features of the cross section

The dynamic correlation function

Fluctuation Dissipation theorem

Sum-rules

Examples

Summary

Inelastic Magnetic Neutron Scattering

Page 28: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Understanding Inelastic Magnetic Scattering:

Isolate the “interesting part” of the cross section

The dynamic correlation function (“scattering law”) :

In thermodynamic equilibrium (detailed balance):

Page 29: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Useful exact sum-rules:

Total moment sum-rule (general result from Fourier analysis)

Correlations in space & time rearrange intensity in space leaving the total scattering scattering unaffected

Q-w

Definition of the equal time correlation function:

The wave vector dependence of the energy-integrated intensity probe a snap-shot of the fluctuating spin configuration

Page 30: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Fluctuation Dissipation Theorem

FQ t( ) =

iSQ t( ),S-Qéë ùû

Define the following t-dependent “response” function:

c Qw( ) = - gmB( )2

lime®0+

dte-i w-ie( )t

0

¥

ò FQ t( )

The generalized susceptibility can be expressed as:

The “scattering law” can be expressed as:

From which, the “fluctuation-dissipation” theorem:

Page 31: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

First Moment Sum-rule Fourier transform of expression for scattering law:

Equating these leads to the first moment sum-rule:

Time derivative of left side evaluated for t=0:

Time derivative of right side evaluated at t=0:

Page 32: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

2

1

,2

1,

0totS

1totS

, ,

,

Weakly Interacting spin-1/2 pairs in Cu-nitrate

Page 33: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Sum rules and the single mode approximation When a coherent mode dominates the spectrum:

Sum-rules link and :

0.4

0.5

0 2 4 0 2 4 6

Exp. data Single mode model

e(Q)

Q p( )

Page 34: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Spin waves in a ferromagnet

ACNS 6/29/10

Magnon creation Magnon destruction

n w( ) =

1

eb w -1

Dispersion relation

Occupation number

Gadolinium

Page 35: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Spin waves in an antiferromagnet

ACNS 6/29/10

S^ Q,w( ) =S

2

J 1- 1z eiQ×d

då( )e Q( )

´ d e Q( ) - w( ) n w( ) +1( ) +d e Q( ) + w( )n w( ){ }

Dispersion relation

Page 36: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

J = 4.38 meV ¢J = 0.15 meV D = 0.107 meV

Page 37: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Probing matter through scattering

fp

ip

Single Particle Process

Multi Particle Process

fi

fi

EE

21

21

QQ

ppQQ

1Q

2Q fi

fi

EE

Q

ppQ

Q

Q

ћ

Intensity

Intensity

Q

ћ

Page 38: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Disintegration of a spin flip in 1D

Spinon Spinon

Page 39: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

From spinon band-structure

to bounded continuum

2

2, QSGQS

Q (p )q (p )

e/J

w

/J

Page 40: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Quantum critical spin-1/2 chain

Hammar et al. (1999)

Cu(C4H4N2)(NO3)2

Page 41: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Copper Pyrazine dinitrate

Page 42: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in
Page 43: Magnetic Neutron Scattering - ORNL · sl e xp i q × r (l) ... pp 2 1, Stot 0 Stot 1,,, nn np pn pp ... 0.4 0.5 0 2 4 0 2 4 6 Exp. data Single mode model e(Q ) Q (p) Spin waves in

Summary

• Inelastic Magnetic scattering probes dynamic spin

correlation function:

• Exact results are critical to interpret data

• The full dynamic correlation function as opposed

to just the dispersion relation tells the story

– Intensity gives equal time correlation function

– Energy width in resonant excitations probes life time

– Broad continuum reveals multiparticle excitations

• Know your sum-rules and happy scattering!