87
19 October 2005 C. Vettier Institut Laue Langevin 1 Magnetic X-ray Scattering Introduction What does theory tell us ? Experimental problems Non-resonant scattering experiments Resonant scattering experiments Summary

Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin1

Magnetic X-ray Scattering

Introduction

What does theory tell us ?

Experimental problems

Non-resonant scattering experiments

Resonant scattering experiments

Summary

Page 2: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin2

introduction

J.D. Jackson Classical Electrodynamics (1962) page 681

coupling between magnetism and photons was predicted long ago

parallel developments

technology/theory

F.E. Low, Phys. Rev. 96, 1428 (1954)

M. Gell-Mann and M.L. Goldberger, Phys. Rev. 96, 1433 (1954)

P. Platzman and N. Tzoar, Phys. Rev. B2, 3556 (1970)

F. De Bergevin and M. Brunel, Acta Cryst. A37, 314 (1981)

M. Blume, J. Appl. Phys. 57, 3615 (1985)

Page 3: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin3

introduction

F. de Bergevin M. Brunel Acta Cryst.1981

X-ray beam interacting with a single electron

Thomson scattering

spin-only scattering

momentum-only scattering

relativistic effects

rather weak effects :

no effect at Q = 0

mc

h= 2.59 A 1

hQ

mc2S 10 3

Page 4: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin4

introduction

X-ray beam interacting with bound electrons

discrete electronic levels

possible transitions to excited states :

core hole + electron in valence band

magnetic sensitivity

photon in - photon out

selectivity :

chemical species,

electronic shells

Page 5: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin5

introduction

what can be observed and measured ?

non-resonant scattering :

weak but simple scattering amplitude spin/orbital momentum

resonant scattering :

large scattered intensities

chemical and electronic selectivity

x-ray spectroscopy

imaging

importance of x-ray polarisation effects

links with magneto-optics (optical index, polarisation of light)

Page 6: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin6

x-ray scattering

back to interactions photons-electrons

• write Hamiltonian to describe charges (electrons+nuclei) and photons

• exploit Fermi’s Golden rule to calculate scattering cross-section

• distinguish different regimes (resonant and non resonant)

Hamiltonian

M. Blume J.App.Phys. 57, 3615 (1985)

M. Altarelli 2004 lecture - X-ray magnetic scattering : theoretical introduction.

radiation field

kinetic energy

potential energy

spin-orbit

Page 7: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin7

x-ray scattering

radiation field E,B scalar and vector potential and A

approximations

perturbation theory : first order linear in Hint

second order quadratic in Hint

scattering expts : conservation of number of photons

first order : quadratic terms in A(r,t)

second order : linear terms in A(r,t)

Page 8: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin8

x-ray scattering

approximations

Hamiltonian for interacting electrons and photons

expansion of

contains terms of :

degree 0,2 in A(r,t) perturbation 1st order

degree 1 in A(r,t) perturbation 2nd order

Page 9: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin9

x-ray scattering

H’1

H’2

H’3

H’4

quadratic in A

linear in A

linear in A

quadratic in AH’4

linear term in A reduced by 1/c2 w.r.t. H’2 and H’3 - to be neglected -

Page 10: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin10

x-ray scattering

calculations rather tedious - follow review articles

M. Blume J. Appl. Phys. 57, 3615 (1985)

M. Altarelli , Lectures 2004

M. Blume, in Resonant Anomalous X-ray Scattering Elsevier (1994) p. 496

Eds: G. Materlik, C.J. Sparks and K. Fischer

eigenstate states defined by Hel and Hrad -

transitions induced by Hint

Fermi’s Golden Rule

intermediate states |n>

Page 11: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin11

x-ray scattering

how to relate transition probabilities to scattering ?

two different contributions

terms with no denominator : valid over all photon energies

terms with denominators: resonance/non-resonance

H’1

polarisation dependenceunits :

Page 12: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin12

x-ray scattering

H’4

electron spin-dependent term with different polarisation dependence

same units (r0) but reduced by and phase lag

real magnetic term !

are there other magnetic terms in a non-resonant regime ?

yes !

Page 13: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin13

x-ray scattering

second order terms :

ground state with 1 photon

intermediate states

a - with either 0 photon

b - or 2 photons

tricks with denominators :

case a : possible resonance - damping

case b : no divergence

Page 14: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin14

non-resonant scattering

away from resonance (edge)

denominators are simplified

case a

case b : exchange operators

finally with

Page 15: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin15

non-resonant scattering

more algebra ! but at the end :

same units (r0) and reduced by and phase lag

electron spin AND momentum appear in matrix elements

Page 16: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin16

non-resonant scattering

working out the x-ray cross-section in the non-resonant regime

Page 17: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin17

non-resonant scattering

L 1

2Bohr magneton eh/2mc

operator relates to orbital momentum (see neutron case)

density of orbital magnetisation

Page 18: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin18

non-resonant scattering

non-resonant scattering cross-section for x-rays :

Thomson scattering

magnetic scattering

orbital

magnetization

spin magnetization

differentiation through polarisation dependence

Page 19: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin19

non-resonant scattering

use linear polarisation vectors as basis for matrix representation

fncharge(

r Q ) = n (

r Q ) ˆ . ˆ ' = n (

r Q )

1 0

0 cos 2

(2)

Use Didier’s expression

use scattering amplitudes

d

d= r0

2 tr '( ) ' = M M+ M = Mc ih

mc 2 Mm

Page 20: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin20

non-resonant scattering

fnnon res (

r Q ,

r k ,

r k ' ) = i

hQ

mc2S

cos ˆ S 2(Q) sin cos ( ˆ S 1(Q)L1(Q)

S) + sin ˆ S 3(Q)

sin cos ( ˆ S 1(Q) +L1(Q)

S) + sin ˆ S 3(Q)

cos ( ˆ S 2(Q) + 2 sin2 L2(Q)

S)

non-resonant amplitude depends on Q !

no effect at Q=0 - no effect on absorption - no dichroism !

possibility to separate L(Q) and S(Q) polarisation effects

high energy photons : spin-only magnetic scattering

scaling factor : difficult to observe w/o synchrotron !

hQ

mc10 3

h

mc 2 sin =hQ

mc c=

2

Page 21: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin21

non-resonant scattering

F. De Bergevin and M. Brunel, Acta Cryst. A37, 314 (1981)

first experiments NiO

Magnetic Bragg peak

sealed x-ray tube

0

5 0 0 0

10000

15000

20000

25000

29.2 29.3 29.4 29.5 29.6 29.7

counts/sec

Theta (deg)

NiO T=300 K (3/2 3/2 3/2)

V. Fernandez et al. Phys. Rev. B 57, 7870 (1998)

experiments NiO

ESRF with same crystal

below

and

above

Tn

Page 22: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin22

non-resonant scattering experiments

applications

determination of magnetic structures ?

details of magnetic structures ?

magnetism at surfaces ?

L(Q)/S(Q) determination ?

experimental details

clean x-ray beams

use of polarised x-rays - linear polarisation

tunability (polarisation and energy - resonance)

Page 23: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin23

experimental details

magnetic scattering amplitude very weak

spurious peaks arising from impurities defects

harmonics in the beam ( /2, /3, ….)

clean beams and clean samples

Page 24: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin24

experimental details

ki

kf

experimental set-up

ID beamline ESRF

Page 25: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin25

experimental details

x-ray polarisation

production of polarised x-rays :

insertion devices : linear, circular, elliptical

crystal optics - phase plate crystals

Page 26: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin26

experimental details

x-ray polarisation analysis

Azimuthal

SxSy

Q (001+ )

linear polarisation : use charge scattering by analyser crystal

circular polarisation : phase plates but difficult !

Page 27: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin27

experimental details

linear polarisation : charge scattering !

Page 28: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin28

experimental details

analyzer crystals examples

• select crystal for reflectivity

• go for large mosaic

• beware of resolution effects : width of analyzer/divergences

Element edge E (keV) analyser crystal d-spacing 2 cos2(2 )

Dy L3 7.790 quartz(3 1 -4 3) 1.1802 84.80 0.00822

Al (2 2 2) 1.16913 85.79 0.00538

Graphite (0 0 6) 1.11931 90.63 0.00012

quartz(3 0 -3 3) 1.11467 91.11 0.00038

quartz(2 0 -2 0) 1.0615 97.13 0.01540

Element edge E (keV) analyser crystal d-spacing 2 cos2(2 )

Nd L3 6.208 Al (2 2 0) 1.43189 88.44 0.00074

LiF (2 2 0) 1.42376 89.08 0.00026

quartz(2 0 -2 3) 1.3745 93.19 0.00310

Al2O3 (0 3 0) 1.374 93.23 0.00318

Page 29: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin29

basic experimental problems

• sample

quality mosaic spread similar to beam divergence

to reduce spread in Q of scattered intensity

typical values around 0.05-0.01 deg.

absorption

x-rays do not propagate deep in bulk samples

except at high energy but high quality crystals required

no resonance

at resonance strong effects due to varying absorption

surface orientation and preparation

Page 30: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin30

basic experimental problems

sample environment

again absorption by windows

cryostats

vibrations

heat load (mW range)

cryomagnets limitations:angular access

stray fields

high pressure: high energy only (>8-10 keV)

Page 31: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin31

experiments : non-resonant scattering

non resonant scattering experiments

essentially antiferromagnets: NiO Ho UAs Cr

L/S and interfacial/surface magnetism

only a few ferromagnets

more difficult to observe (flipping ratio)

Page 32: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin32

non resonant scattering NiO

• NiO simple antiferromagnet

crystal structure NaCl fcc

Ni2+ ions 3d8 configuration 2 holes in 3d band

Hund’s rules maximise S and then mL

crystalline electrical field cubic symmetry t2g full (6)

orbital singlet eg (2) half full

L=O

however spin-orbit exists, g=2.2 in paramagnetic phase

magnetic anisotropy in AF phase TN=523 K

neutron data unable to measure <L>

x-rays can help

Page 33: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin33

non resonant scattering NiO

• pioneering experiment by de Bergevin and Brunel

search for antiferromagnetic peaks with x-rays

AF structure known from neutron data: type-II

ferromagnetic [111] planes are piled up antiferromagnetically

propagation vector (1/2,1/2,1/2) moments along [11-2] directions

magnetic domains 4 propagation directions and 3 moment directionsfor each

important details

unpolarised beam

sealed x-ray tube

low power to high energy flux

not from x-ray lines

signal/noise ratio

Page 34: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin34

non resonant scattering NiO

experiments at ESRF

samples: flat [111] face

azimuthal scans : easy for specular reflections (hhh)

explored 1 T-domain (1/2,1/2,1/2) but 3 S-domains

• experimental conditions

linear undulator

Si(111) optics and mirrors: beam size 0.3x0.2 mm2 incident power

sample at room temperature. mounted on 4-circle diffractometer

polarisation analysis PG(006) peak reflectivity 12%

measure in direct beam and reflected beam incident polarisation

(P1=0.995±0.005 P2=0.0±0.005 Punp or P3<0.01±0.01)

2.0 1012 ph/ s 2.5mW

V. Fernandez et al. Phys. Rev. B 57, 7870 (1998)

Page 35: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin35

non resonant scattering NiO

sample quality rocking curve

no polarisation analysis

how to put intensities on absolute scale?

integrate charge peak intensities

to be compared with known structure factors

extinction effects to be taken into account when

comparing charge and magnetic intensities

I(Q) = I0

3r02

2µva2

F(Q)2

sin2I(Q) = I0

8

3

2r0

va

F(Q)

sin2

E=7.84 keV E=17.41 keV

Bragg Structure reflecting Structure reflecting Structure

peak factor calc. power factor obs. power factor obs.

(111) 14.2 (2.7±0.2)10-4

9.8 (1.35±0.1)10-4

15.7

(222) 14.8 (9.5±0.6)10-5

7.2 (7.6±0.3)10-5

16.1

temperature factors BNi = 0.37 BO = 0.26

0

5 0 0 0

10000

15000

20000

25000

29.2 29.3 29.4 29.5 29.6 29.7

counts/sec

Theta (deg)

NiO T=300 K (3/2 3/2 3/2)

mosaic crystal perfect crystal

Page 36: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin36

non resonant scattering NiO

• magnetic domains measure 3 magnetic peaks (h/2,h/2,h/2)

h=1,3,5

not possible to control domains

population (even by applying field)

average over orientation with

respect to incident polarisation

(azimuthal scans)

magnetic peaks show rotated

polarisation component

0 100

1 10-3

2 10-3

3 10-3

4 10-3

5 10-3

6 10-3

28.6 29.0 29.4 29.8

theta (deg)

(5/2,5/2,5/2)

0 100

1 10-4

2 10-4

3 10-4

4 10-4

5 10-4

6 10-4

7 10-4

8 10-4

-17.5 -16.5 -15.5

theta (deg)

(1/2,1/2,1/2)

0 100

5 10-3

1 10-2

2 10-2

2 10-2

3 10-2

-17.5 -16.5 -15.5

theta (deg)

Intensit

y (

counts/m

onit

or)

(1/2,1/2,1/2)

0 100

1 10-3

2 10-3

3 10-3

4 10-3

5 10-3

28.6 29.0 29.4 29.8

theta (deg)

Intensit

y (

counts/m

onit

or)

(5/2,5/2,5/2)

Page 37: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin37

magnetic domains in NiO

• weak reflections from domains with different propagation vectors

sample almost single T-domain near surface

• rotation about [111] shows S-domains

offset between L and S no S3

polarised intensities are shifted in

Offset=0

can obtain domain fractions in volume

probed by beam:

1=0.26±0.03 2=0.23±0.03 3=0.50±0.02

translations indicate domains size 300 m

averaged intensities

M = sin(2 ) sin S(Q)

M = sin(2 ) sin( ) cos S(Q) + cos( + 0 )L(Q)( )

3.50 10-4

4.00 10-4

4.50 10-4

5.00 10-4

5.50 10-4

6.00 10-4

Itotal

NiO T = 300 K (3/2 3/2 3/2) E=7.84 keV

2.00 10-5

2.50 10-5

3.00 10-5

3.50 10-5

4.00 10-5

4.50 10-5

5.00 10-5

I

1.00 10-5

1.50 10-5

2.00 10-5

2.50 10-5

3.00 10-5

- 3 0 0 - 2 4 0 -180 -120 -60 0 6 0I

angle (deg)

Page 38: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin38

magnetic form factors in NiO

• polarised intensities corrected for width of rocking curve of analyser

note: change in resolution function (better use crystals with wide band)

required to obtain fully integrated intensities

• comparison with unpolarised intensities (no analyser) gives analyser

reflectivity

• experimental -averaged intensities

• extract L(Q)/2S(Q) ratio as a function of Q

I (sin2 )21

2S2(Q)

I (sin2 )2 (sin )21

2S(Q) + L(Q)( )2

(h,k,l) I I Itotal

(1/2,1/2,1/2) (2.8±0.1) 10-5 (1.32±0.08) 10-6 (2.35±0.2) 10-4

(3/2,3/2,3/2) (3.45±0.1) 10-5 (1.7±0.05) 10-5 (4.5±0.3) 10-4

(5/2,5/2,5/2) (3.5±0.1) 10-6 (6.2±0.2) 10-6 (7.7±0.4) 10-5

Page 39: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin39

magnetic form factors in NiO

• large contribution (17±3%) from orbital moment exists

• increase at large Q indicates broader spatial extent of spin

density

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 0.1 0.2 0.3 0.4 0.5 0.6

L(Q

) / 2

S(Q

)

Q/4 = sin /

NiO

T = 300 K

Electrons with same spins tend to be further apart !

Page 40: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin40

magnetic form factors in NiO

• comparison of magnetic intensities to charge intensities and

extinction corr.

• polarised intensities on absolute scale

in electron units

extract S(Q) and L(Q) in real numbers

S(O)=0.95±0.1 and L(O)=0.32±0.05

magnetic moment at 300K 2.2±0.2 B

(h,k,l) F2 F2 F2total

(1/2,1/2,1/2) (8.4±0.9) 10-6 (4.0±0.5) 10-7 (9±1) 10-6

(3/2,3/2,3/2) (3.2±0.4) 10-5 (1.6±0.2) 10-5 (4.8±0.5) 10-5

(5/2,5/2,5/2) (4.2±0.5) 10-6 (7.5±0.9) 10-6 (1.1±0.2) 10-5

0.00

0.20

0.40

0.60

0.80

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

S(Q)

L(Q)

spin

and o

rbit

al m

om

entum

form

factors

Q/4 = sin /

NiO T = 300 K

Page 41: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin41

magnetic form factors in NiO

neutrons :

pb: neutrons would tell L/S through a fit of data with electronic wave

functions

not really known in NiO; atomic wave functions not adequate.

comparison with other methods

g-factor =2.2 indicates spin-orbit/10Dq 0.1 which leads to L 0.3

Page 42: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin42

magnetic form factors

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6

L(Q

)/S

(Q)

Q/4 =sin /

CoO

NiO

CuO

MnO

through the whole series MnO, CoO, CuO

related to resonant effects

to be discussed later

existence of E2 resonance at K-edge linked to finite <L>

better knowledge of electronic properties of 3d oxides

W. Neubeck at al. J. Phys Chem Sol., 62, 2173 (2000)

Page 43: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin43

magnetism at surfaces

NiOnon-resonant scatteringgrazing incidence scattering

A. Barbier et al. PRL 93, 25708 (2004)

depth sensitivesurface orderingwell-defined 2D order

melting of S-domains

Page 44: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin44

non-resonant scattering from ferromagnet

Principle : measurement of flipping ratios

like in neutron diffraction

If we can flip fmagnetic by applying H or rotating polarisation

we define

ftotal = fcharge + fmagnetic with fmagnetic << fcharge

R =

I+ I

I+ + II+/- = |fcharge +/- f magnetic|

2

in the case of non-resonant scattering fmagnetic is linear in S and L.applying a field can change the sign of fmagnetic with different incidentpolarisations.

R is given by the interference between charge and magnetic scattering.Since Thomson scattering does not rotate polarisation, interferencearises in and channels only (linear polarisation)

in case of general incident polarisation, the full formalism has to be used.

Page 45: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin45

non resonant scattering - ferromagnets

• density matrix

• scattered intensity

• scattered polarisation

• charge scattering back to equations

• pure magnetic terms complex in the case of general polarisation

interference between spin and orbital momentum

beyond this lecture

M. Blume et al. PRB 37, 1779 (1988)

=

1

2

1 + P1 P2 i P3

P2 + i P3 1 P1

P = tr( ) Poincare vector

d

d= r0

2 tr '( ) ' = M M+

P' =

tr '( )

tr '( )

d

d c= r0

2 (Q) 2 1

21 + cos22 + P1 (1 cos22 )[ ]

Page 46: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin46

non resonant scattering - ferromagnets

• purely magnetic scattering

• linear polarisation P1 centrosymmetric structure real structure

factors

• circular polarisation P3

d

d m=

1

2r02 hQ

mc

2

(1 + P1)cos2 S

22 + sin2 (L1 + S1 )2[ ] + sin4 S

32

+ sin2 sin2 (L1 + S1)S3

(1 P1)cos2 (2 sin2 L2 + S2)2 + sin2 (L1 + S1 )2[ ] + sin4 S

32

sin2 sin2 (L1 + S1 )S3

d

d m= r0

2 hQ

mc

2

cos2 1

2(S

22 + (2 sin2 L2 + S2 )2 ) + sin2 (L1 + S1 )2

+ sin4 S

32

P3 sin2 cos(L1' + S1') sin2 L2'' + S2''[ ] (L1'' + S1'') sin2 L2' + S2'[ ]sin3 (S3'L2''- S3''L2')

Page 47: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin47

non resonant scattering - ferromagnets

• interference terms

• linear polarisation P1 centrosymmetric structure

note that if crystal and magnetic structures are

centrosymmetric

interference occurs through imaginary part of atomic scattering

factors

• circular polarisation P3

d

d I= - r0

2 hQ

mc

cos (1 + P1 ) ''(Q)S2

+cos cos2 (1 P1 ) ''(Q) 2sin2 L2 + S2{ }

d

d I= - r0

2 hQ

mc

cos( '(Q)S''2 ''(Q)S'2 ) +

cos2 '(Q)(2sin2 L''2 + S''2 ) - ''(Q)(2sin2 L'2 + S'2 )[ ]

P31

2

(1 + cos2 )sin2 '(Q)( L'1 + S'1 ) - ''(Q)( L''1 + S''1 )[ ]

(1 cos2 )2 '(Q)S'3 ''(Q)S''2[ ]

Page 48: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin48

non resonant scattering - ferromagnets

• assume fully linearly polarised radiation P1=±1

incident polarisation P1=1

incident polarisation P1=-1

in principle it is possible to measure L and S by changingpolarisation

R =hQ

mc

2 cos ''(Q)S2

(Q) 2 +hQ

mc

2magnetic contribution

hQ

mc

2 cos ''(Q)S2

(Q) 2

R =hQ

mc

2 cos ''(Q) 2sin2 L2 + S2{ }

cos2 (Q) 2 +hQ

mc

2magnetic contribution

hQ

mc

2 cos ''(Q) 2sin2 L2 + S2{ }cos2 (Q) 2

Page 49: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin49

non resonant scattering - ferromagnets

• assume circularly polarised radiation P1=P2=0

scattering geometry: field (S and L) in scattering plane butperpendicular to Q

only S1 and L1 components

we can flip magnetisation or polarisation

if 2 =90°

if magnetic field perpendicular to scattering plane S1=L1=0

not very efficient

R =hQ

mcP3

(1 + cos2 ) sin2 '(Q)( L'1 + S'1 ) - ''(Q)( L''1 + S''1 )[ ]

(1 + cos22 ) (Q) 2

R

hQ

mcP3

( L1 + S1 )

(Q)

R =hQ

mc2

cos( '(Q)S''2 ''(Q)S'2 )+

cos2 '(Q)(2sin2 L''2 + S''2 ) - ''(Q)(2sin2 L'2 + S'2 )[ ]

P3

2(1 cos2 )2 ''(Q)S''2

(1 + cos22 ) (Q) 2

Page 50: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin50

flipping ratios from ferromagnetic materials

• application to determination of polarisation of synchrotron beams

known magnetic substance ; in general L=0 and centrosymmetric

field in scattering plane: only S1 and S3 components

ideal if H// kicos +kf but S2=S3=0 is ok

assume P2=0 but with P1 and P3 finite

neglect imaginary parts f’ and f’’

Acta Cryst A39, 84-88 (1983) M.Brunel et al.

d

d I= r0

2 hQ

mc

P3

1

2(1 + cos2 )sin2 '(Q)( L'1 + S'1 ) - ''(Q)( L''1 + S''1 )[ ]{ }

R = 8hQ

mc

P3

S(Q)

(Q)

sin cos3

1 + cos2 2 + P1 (1 cos2 2 )

Page 51: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin51

flipping ratios from ferromagnetic materials

• circular polarisation

2 types applications

Bragg scattering to increase sensitivity

coupling to real part of (Q)

field perpendicular to Q but in scattering plane 2 =90°

white beam technique; fixed 2 =90° value; energy sensitive

detector

D.Laundy et al., J.Phys. Condens Matter 3, 369-372 (1992)

magnetic Compton scattering

signal proportional to P3.

field in scattering plane q.cos + q’

Physica Scripta T35, 103-106 (1991)

R

hQ

mcP3

( L1 + S1 )

(Q)

Page 52: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin52

non-resonant scattering - summary

what does non-resonant magnetic scattering bring about ?

possibility to use highly collimated beams for magnetism

surface magnetism

polarization analysis

separation of orbital and spin magnetism

however, “weak” intensities

“good” samples (single crystals) are needed

Page 53: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin53

resonant scattering

as a reminder, probability of transition

at the resonance, the leading term is given by

absorption and creation of photon - case a

Page 54: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin54

resonant scattering

for such process, the leading term is :

we can distinguish 3 terms :

and denominator !

D. Wermeille PhD Thesis Ecole Polytechnique de Lausanne (1998)

Page 55: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin55

resonant scattering

the leading term !

J.P. Hannon et al. PRL 61, 1245 (1988)

involved algebra and calculation

see lecture by S di Matteo !

basic physical explanation :

electric transitions

but exclusion principle leads

magnetic sensitivity

spin polarization of core levels and

excited levels

Page 56: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin56

resonant scattering

complex expression for scattering amplitude :

various approximations : L=1 dipolar, L=2 quadrupolar, …

many quantities to evaluate numerically !

with :

and :

Page 57: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin57

resonant scattering

no simple link to spin or moment values !

geometrical dependence of scattering amplitude

all invariants that can be formed with the quantities involved

dipole : polarisation vectors and quantization axis

quadrupole : same plus x-ray wave-vectors, …..

dipole :

zJ direction of local magnetisation

anomalous scattering: no z, magnetic sscattering: terms in z and z2

Page 58: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin58

resonant scattering

at lowest order it has no magnetic sensitivity

but contributes to anomalous scattering

first observations by K. Nanimakawa et al. J. Phys. Soc. Jpn 54, 4099 (1985)

at lowest order

no dichroism

Page 59: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin59

resonant scattering

dipole :

zJ direction of local magnetisation

anomalous scattering :no z, magnetic terms in z and z2

focus on the term

Page 60: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin60

resonant scattering

simple example/illustration at M edge (for dipole transition!)

assembly of (polarised) ions with simple ground state:

1 hole in the 4f band

Hund’s rule l=3, ml = -3, ms = -1/2 j = 7/2 mj=-7/2

only 1 possible transition possible at M5 edge

from 3d5/2, mj=-5/2 to 4f7/2, mj=-7/2

F11 = F10 = 0

contributions to 3 terms in scattering amplitude

no resonance at the M4 edge ! (in dipole approximation)

J.B. Goedkoop et al. PRB 37, 2086 (1988)

Page 61: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin61

resonant scattering

connection to absorption/fluorescence

Q=0 experiments

linear term : non-zero if complex polarisation circular dichroism

quadratic term : linear dichroism, Cotton-Mouton effect

scattering experiments

constant term : “normal anomalous” term non-magnetic

linear term : Bragg peaks corresponding to magnetic lattice symmetry

at Qm in reciprocal lattice

quadratic term : “resonant” harmonics at 2xQm !

Page 62: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin62

resonant scattering

fE1res

= F(0) ' i F(1) ( ' ) z + F(2) ( ' z)( z)

= F(0) 1 0

0 cos2

i F(1) 0 z1 cos + z3 sin

z1 cos z3 sin z2 sin2

+ F(2) z22 z2 z1 sin z3 cos( )

z2 z1 sin + z3 cos( ) z12 sin2

+ z32 cos2

geometry and polarisation dependence

no - scattering in first order

Page 63: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin63

resonant scattering

quadrupolar approximations

fE2res contains terms up to 4th order in z

order (0) (k' k) ( ' )

order (1) i (k' k ) ( ' ) z + [k' ' ,k ]

order (2) (k' k) ( ' z) ( z) + [k' ' ] + [k ]

+ [k' ' , k ]+ (k' k) z ( ' ) z

order (3) i (k' z) (k z) ( ' ) z + [k' ' , k ]

+ [k' ' ] + [k ]

order (4) (k' z) (k z)( ' z) ( z)

more “resonant harmonics” ! up to 4xQm

Page 64: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin64

resonant scattering

what does a resonance look like?

UAs simple antiferromagnet

(0,0,5/2) magnetic Bragg peak

diffracted intensity versus photon energy

D.B. McWhan et al. PRB 42, 6007 (1990)

huge intensities !

Interferences between resonances

M3, M4, M5 edges

essentially dipole transitions

M4,M5 from 3d to 5f

M3 from 3p to 6d

Page 65: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin65

resonant scattering

applications :

• large scattered intensities

• chemical selectivity

• electronic selectivity

• probe of electronic densities of states

• Q=0 experiments - reflectometry - absorption - imaging

difficulties :

• how to interpret observed intensities ?

• are intensities magnetic in origin ?

• experimental limitations - absorption

Page 66: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin66

resonant scattering

large intensities : many examples

but how to predict intensities ?

scattering amplitude : matrix elements (dipole/quadrupole)

spin polarisation of electronic levels

presence of spin-orbit coupling !

elements edge transitionintermediate

statesenergy (keV)

wavelength (Å)

3d K E1,E2 4p, 3d 7.112 1.743Fe L3 E1 3d 0.707 17.54

5d Pt L3 E2 5d 11.65 1.0724f L2,3 E1,E2 5d, 4f 7.24 1.71Gd M4,5 E1 4f 1.22 10.25f L2,3 E1,E2 6d, 5f 17.17 0.722U M4,5 E1 5f 3.74 3.32

100 r0

10 r0

0.1 r0

0.01 r0

1 r0

Page 67: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin67

resonant scattering - chemical selectivity

chemical selectivity : absorption edges energies are element specific

3d series

elementK edge

(eV)L1 edge

(eV)L2 edge

(eV)L3 edge

(eV)Sc 4492 498 403 399

Ti 4966 561 461 454

V 5465 623 520 512

Cr 5989 696 584 574

Mn 6539 769 650 639

Fe 7112 845 720 707

Co 7709 925 793 778

Ni 8333 1008 870 853

Cu 8979 1097 952 932

Zn 9659 1196 1045 1022

across 3d series

selecting chemical species by tuning photon energies to proper edge

Page 68: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin68

resonant scattering - chemical selectivity

alloys, compounds, intermetallics

hetero-magnetic multilayers,

U1-xNpxRu2Si2

antiferromagnetic system

incommensurate structure at x=0

(neutron scattering)

magnetic intensity at (00 4+q)

separation of U and Np response

E. Lidström et al. PRB 61, 1375 (2000)

Page 69: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin69

resonant scattering - chemical selectivity

temperature dependence of

order parameters :

Np magnetism drives

magnetism of U lattice

Page 70: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin70

resonant scattering - electronic selectivity

similarly, different edges couple to different electronic levels :

edge K L1 L2 L3 M1 M2 M3 M4 M5 …

core level 1s1/2 2s1/2 2p1/2 2p3/2 3s1/2 3p1/2 3p3/2 3d3/2 3d5/2 …

Holmium as an example

hexagonal crystal structure

helicoidal magnetic structure

propagating along c-axis

magnetic Bragg peaks at (h,k,l)+(0,0, )

at each edge, dipole and quadrupole transitions couple to

different bands

Page 71: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin71

resonant scattering - electronic selectivity

D. Gibbs et al. PRL 61, 1241 (1988)

Holmium ordered phase at the L3 edge (8.07 keV)

L3 E1 leads to 5d states, E2 leads to 4f states

Page 72: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin72

resonant scattering - electronic selectivity

unpolarised

resonance

harmonics

polarisation

analysis

- and -

separation

E1/E2

D. Gibbs et al. PRB 43, 5663 (1991)

d states

f states

Page 73: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin73

resonant scattering - resonant harmonics

G. Helgesen et al., PRB 50, 2990 (1994)

temperature dependence of high-order harmonics

test for scaling theories

mean-field not

quite right !

Page 74: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin74

resonant scattering - electronic selectivity

valence state selectivity

Coexistence of 2 valence states

Tm2+(4f13) and Tm3 +(4f12)

time scales ?

L3 edge dipole transitions to 5d states

D.B. McWhan et al. PRB 47, 8630 (1993)

Page 75: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin75

resonant scattering - electronic selectivity

0

20

40

60

80

100

6.70 6.71 6.72 6.73 6.74

Peak I

nte

nsi

ty (

cts

/s/

20

0m

A)

Sm 5000 Å film

(0 0 16.5)

T = 50 K

Energy (keV)

E1

E2

application to the observation of induced magnetic moments

Samarium metallic rare-earth

exchange mediated by 5d electrons

0.1

1

1 0

100

2 0 4 0 6 0 8 0 100

E2 4f

E1 5d

Inte

gra

ted I

nte

nsi

ty

Temperature (K)

0.1

1.0

10.0

100 102 104 106

spin-polarisation of 5d bands follows 4f polarisation !

A. Stunault at al. PRB 65, 64436 (2002)

Page 76: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin76

resonant scattering - selectivity ?

UGa3 simple antiferromagnet

strong resonance at the M4,5 edges of U

but resonance at K-edge of non-magnetic Ga

similar effects at K-edge of As in UAs !

K-edge transition from s to p bands

no large polarization expected !

not observed with neutrons nor Mössbauer

asymmetry between up/down orbitals ….

D. Mannix et al. PRL 86, 4128 (2001)

Page 77: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin77

resonant scattering - spectrometry ?

observation of density of unoccupied electronic states !

simple energy line-shapes

UAs : M4,5 edges

E1 transition to 5f states

Ho : L3 edge

E1 transition to 4f states

E2 transition to 5d states

Page 78: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin78

resonant scattering - spectrometry ?

0

20

40

60

80

100

6.70 6.71 6.72 6.73 6.74

Peak I

nte

nsi

ty (

cts

/s/

20

0m

A)

Sm 5000 Å film

(0 0 16.5)

T = 50 K

Energy (keV)

E1

E2Sm : L3 edge

E1 transition to 4f states

complex and broad

E2 transition to 5d states

Page 79: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin79

resonant scattering - spectrometry ?

RbMnF3

K edge of Mn2+

K-edges are special

E1 transitions to p states

complex and very broad

E2 transitions to 3d states

very weak E2

no orbital moment

observed in other systems

difficult to analyse !

Page 80: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin80

Q=0 experiments

XMCD

soft x-ray range (low energy)

circular x-ray polarisation

element sensitivity

XMCD & PhotoElectron Emission Microscopy PEEM

imaging of magnetic domain/walls

Co/Cu/Ni trilayer

coupling mechanism through domainwall stray fields

importance for thin film technology

W. Kuch et al. PRB 67, 214403 (2003)

Page 81: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin81

resonant scattering - difficulties

• how to interpret observed intensities ?

no simple connection to magnetic moments

data analysis involves evaluating band calculations

• experimental limitations - absorption

large variation through the edge

corrections ?

example NiO K-edge of Ni. mu

raw

Int

corr

. Int

Page 82: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin82

resonant scattering - difficulties

• are intensities magnetic in origin ?

RESONANCE is a very GENERAL PROCESS

the origin of the resonance can be very diverse

low local symmetry

incident photon promotes an electron (photo-electron) into anavailable electronic states (outer electronic shells).

these shells are sensitive to local symmetry of the siteprobabilities of transition (similar to scattering amplitudes)depend on the orientation of the symmetry axes with respect tothe incident polarisation (electrical field which actually inducesthe promotion of the electron)

atomic structure factors cannot be longer consider as spherical

objects; they depend on the orientation of the object with respect

to the incident polarisation (incident electrical field)

Templeton and Templeton Acta Cryst A38, 62 (1982)

Page 83: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin83

resonant scattering - difficulties

difficult but classical problem: symmetry allows resonant scattering

but physical origin of the resonance to be determined by

experiments.

examples: low symmetry of crystal structures

MnF2 tetragonal structure

magnetic order (local moments break the symmetry)

orbital order (degenerate orbitals e.g. in a doublet

are occupied preferentially with LRO)

see S di Matteo

Page 84: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin84

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0

0.001

0.002

0.003

-10 0 1 0 2 0 3 0 4 0 5 0 6 0

MnF2 (001) Templeton scattering E=6.55keV

Integrated i

ntensit

y (

cts/m

on)

Integrated in

tensit

y (c

ts/m

on)

Azimuthal angle (°)

resonant scattering - difficulties

MnF2

simple bct structure - Mn ions in low symmetry

environment D2h

(001) reflex forbidden

Mn K-edge at (001) strong resonance

0

0.05

0.1

0.15

0 . 2

6.52 6.53 6.54 6.55 6.56 6.57

Intensit

y

Energy (keV)

(0 0 1)

0

0.1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

6.52 6.53 6.54 6.55 6.56 6.57

Intensit

y (

cts/m

on)

Energy (keV)

polarisation and azimuth dependence

Page 85: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin85

resonant scattering - summary

what does resonant magnetic scattering bring about ?

large scattering intensities

chemical selectivity

electronic selectivity

spectroscopy of available states

imaging methods

can we use x-rays to replace neutron scattering ?

NO !

inelastic scattering - and structure determinations

Page 86: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin86

resonant scattering - summary

C.G. Shull et al. PR 76, 1256 (1949)

neutrons methods provide all

what we know about magnetic

structures

S.P. Collins et al. J.Phys. Cond. 7 L223 (1995)

resonant x-ray scattering from

UO2 powder at M4 edge !

only one powder line visible

Page 87: Magnetic X-ray Scattering - Roma Tre Universitywebusers.fis.uniroma3.it/sils/scuole/frascati2005/...C. Vettier Institut Laue Langevin 19 October 2005 21 non-resonant scattering F

19 October 2005C. Vettier Institut Laue Langevin87

magnetic x-ray scattering - summary

what do x-ray magnetic scattering bring about ?

new features - not available before

L/S separation

chemical selectivity

electronic selectivity

spectroscopy of available states

studies of micro-samples (surfaces !)

imaging methods and time-resolved

but requires a lot of care and caution