27
Jean-Frédéric Gerbeau INRIA Paris-Rocquencourt & Laboratoire J-L. Lions France Conference on Mathematics of Medical Imaging June 20-24, 2011 MagnetoHemoDynamics in MRI devices Joint work with A. Drochon (UTC), O. Fokapu (UTC), V. Martin (UTC & INRIA)

MagnetoHemoDynamics in MRI devices

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MagnetoHemoDynamics in MRI devices

Jean-Frédéric GerbeauINRIA Paris-Rocquencourt & Laboratoire J-L. Lions

France

Conference on Mathematics of Medical Imaging June 20-24, 2011

MagnetoHemoDynamics in MRI devices

Joint work with A. Drochon (UTC), O. Fokapu (UTC), V. Martin (UTC & INRIA)

Page 2: MagnetoHemoDynamics in MRI devices

MHD Artifact in MRI

• Permanent uniform magnetic field (typically 1.5 Teslas)• Today: 3 Teslas (human), 10 Teslas (animals)• Tomorrow : 10 Teslas (human), 17 Teslas (animals)

Philips MRI, 3 Teslas

2

Page 3: MagnetoHemoDynamics in MRI devices

MHD Artifact in MRI

• Electrocardiograms (ECG): synchronize MRI sequences (“gating”)• Several known artifacts. Among them : MHD• T wave may be as large as the R wave : may result in triggering

problems for MR image acquisition

3

B = 0 T B = 3T

D. Abi Abdallah, A. Drochon, O. Fokapu(UTC)

Page 4: MagnetoHemoDynamics in MRI devices

MHD induced current

4

R

T

P

Aorta Flow rate

ECG

j = σ(E + u×B)

u

B

Page 5: MagnetoHemoDynamics in MRI devices

MHD and blood flows• MHD and blood flows:

Kinouchi et al. (Bioelectromag., 1996), Tenforde (Prog. Biophys. Mol. Biol., 2005). Simplified 2D stationary computations : no fluid, no electrophysiology. Prediction 10 Teslas: - 2200 mA/cm2 in aorta, 115 mA/cm2 in the heart- Normal cardiac current density 10-1000 mA/cm2

- Flow rate reduction : 5 %

• In vivo observation Chakeres et al. (J. Mag. Res. Imag. 2003): at 8 Teslas, no flow reduction, but consistent pressure increase• MHD artifact

Gupta et al. (IEEE Tr. Biomed Eng., 2008) : analytical solution in a straight pipe + ECGSIM

Nijm et al. (Comp. Card., 2008), Kainz et al. (Phys Med Biol, 2010)

5

Page 6: MagnetoHemoDynamics in MRI devices

Roadmap

6

Electrophysiology in the heart Electrostatic in the torso MHD in the aorta

Page 7: MagnetoHemoDynamics in MRI devices

Roadmap

7

Electrophysiology in the heart Electrostatic in the torso MHD in the aorta

Page 8: MagnetoHemoDynamics in MRI devices

Cell scalePhysiological models• In F. Sachse Springer 2004 :

28 models of cardiac cells !

• Noble 60, Luo Rudy 91 & 94, ...

• Up to sixty state variables : very difficult to parametrize

Phenomelogical models• The purpose is to reproduce the shape of the action potential:

• Typically 2 or 4 state variables

• FitzHugh 61, Nagumo et al. 62,

• Fenton-Carma 98, Mitchell-Schaeffer 03...

Page 9: MagnetoHemoDynamics in MRI devices

Tissue scale

• Bidomain equations :

Am

Cm

∂Vm

∂t+ Iion(Vm, g)

− div(σi∇ui) = AmIapp, in ΩH

div(σe∇ue) = −div(σi∇ui), in ΩH

∂g

∂t+ G(Vm, g) = 0, in ΩH

σi∇ui · n = 0, on Γepi

σe∇ue · n = 0, on Γepi

σi,e(x) = σti,eI + (σl

i,e − σti,e)a(x)⊗ a(x)

• Anisotropic conductivity

• If the anisotropy is the same in both media : mono-domain equations

Page 10: MagnetoHemoDynamics in MRI devices

Roadmap

10

Electrophysiology in the heart Electrostatic in the torso MHD in the aorta

Page 11: MagnetoHemoDynamics in MRI devices

Heart-torso coupling

• Torso: passive conductor

• Strong coupling conditions:

(Krassowsca-Neu 94, Clements et al. 04, Pierre 05, Lines et. al 06,...)

• Weak coupling conditions:

ue = uT, on Γepi

σe∇ue · n = σT∇uT · n, on Γepi

div(σT∇uT) = 0, in ΩT

σT∇uT · nT = 0, on Γext

ue = uT, on Γepi

σe∇ue · n = 0, on Γepi

Page 12: MagnetoHemoDynamics in MRI devices

Body surface potential

extra-cellular potential body surface potential

• Strong / Weak coupling with the torso• Monodomain / Bidomain equations &

fibers• Mitchell-Schaeffer phenomenological

model• 3 different cells• Careful initialization of the

simulation

Boulakia, Fernández, Cazeau, JFG, Zemzemi, Annals Biomed Engng. 2010

Page 13: MagnetoHemoDynamics in MRI devices

12-lead ECG• Simulated ECG:

• Real ECG:

V5

V6

V1

V2

V3

V4

D1

aVR

aVL

aVFD2

D3

(from www.wikipedia.org)

Fernández, Boulakia, Cazeau, JFG, Zemzemi, Annals Biomed Engng. 2010

2

1

0

-1

0 200 400 600 800

I

2

1

0

-1

0 200 400 600 800

II

2

1

0

-1

0 200 400 600 800

III

2

1

0

-1

0 200 400 600 800

aVR

2

1

0

-1

0 200 400 600 800

aVL

2

1

0

-1

0 200 400 600 800

aVF

2

1

0

-1

0 200 400 600 800

V1

2

1

0

-1

0 200 400 600 800

V2

2

1

0

-1

0 200 400 600 800

V3

2

1

0

-1

0 200 400 600 800

V4

2

1

0

-1

0 200 400 600 800

V5

2

1

0

-1

0 200 400 600 800

V6

Page 14: MagnetoHemoDynamics in MRI devices

14

Healthy case Right bundle branch block

Chapelle, Fernández, JFG, Moireau, Sainte-Marie, Zemzemi, FIMH 2009

Example 1: Electro-mechanical coupling

Page 15: MagnetoHemoDynamics in MRI devices

Example 2: infarct

Example:Anterior infarct

• Anterior infarct : ST elevation• Posterior infarct: ST depression

Simulation : E. Schenone & M. Boulakia

Page 16: MagnetoHemoDynamics in MRI devices

Statistical classification

• Prometeo project (F. Ieva & AM Paganoni, Politecnino di Milano)• Pilot analysis: database of

- 25 normal ECG- 10 LBBB- 13 RBBB

• Statistical clustering...

•Our normal, LBBB and RBBB ecg are correctly classified !

Page 17: MagnetoHemoDynamics in MRI devices

Roadmap

17

Electrophysiology in the heart Electrostatic in the torso MHD in the aorta

Page 18: MagnetoHemoDynamics in MRI devices

MHD in blood flows

∂u

∂t+ u · ∇u− 1

Re∆u + ∇p = −Ha

2

Re∇Φa ×B +

Ha2

Re(u×B)×B,

div u = 0,

div

σ

σ0∇Φa

= div

σ

σ0u×B

18

• Ohm law: j = σ(E + u×B) = σ(−∇φa + u×B)

• Quasi-static approximation (∂tB ≈ 0): E = −∇φa

u

B

• Nondimensional parameters:

– Magnetic Reynolds: Rm = µ0σ0U0L0 ≈ 10−9

– Hartman number: Ha = B0L0

σ0

η≈ 0.1

σblood ≈ 0.5S/m

Page 19: MagnetoHemoDynamics in MRI devices

Code verification

19

• Analytical solution of the full MHD equation (Bessel functions...)• Gold (1962), Abi-Abdallah et al. (2009)

Page 20: MagnetoHemoDynamics in MRI devices

Code verification

• 3D test from a 2D benchmark proposed by Tenforde et al. 1996• Excellent agreement with their results

20

Page 21: MagnetoHemoDynamics in MRI devices

Computational domain

21

Page 22: MagnetoHemoDynamics in MRI devices

22

0 100 200 300 400 500 600 700100

0

100

200

300

400

500Inflow

time, ms

Inflo

w c

m3/

s.

Flow rate (about 5L/min):

Inlet BC:

At the 4 Outlets:3-element Windkessel

Aorta geometry: courtesy of C.A. Taylor

Rp

Rd

C

Velocity field Potential

Page 23: MagnetoHemoDynamics in MRI devices

Coupling algorithm

Weak coupling

Page 24: MagnetoHemoDynamics in MRI devices

Coupling algorithm

Strong coupling (relaxed Dirichlet-Neumann)

Page 25: MagnetoHemoDynamics in MRI devices

MHD effect on the ECG

25

-2

-1

0

1

2

0 200 400 600 800

I

-2

-1

0

1

2

0 200 400 600 800

II

-2

-1

0

1

2

0 200 400 600 800

III

-2

-1

0

1

2

0 200 400 600 800

aVR

-2

-1

0

1

2

0 200 400 600 800

aVL

-2

-1

0

1

2

0 200 400 600 800

aVF

-2

-1

0

1

2

0 200 400 600 800

V1

-2

-1

0

1

2

0 200 400 600 800

V2

-2

-1

0

1

2

0 200 400 600 800

V3

-2

-1

0

1

2

0 200 400 600 800

V4

-2

-1

0

1

2

0 200 400 600 800

V5

-2

-1

0

1

2

0 200 400 600 800

V6

-2

-1

0

1

2

0 200 400 600 800

I

-2

-1

0

1

2

0 200 400 600 800

II

-2

-1

0

1

2

0 200 400 600 800

III

-2

-1

0

1

2

0 200 400 600 800

aVR

-2

-1

0

1

2

0 200 400 600 800

aVL

-2

-1

0

1

2

0 200 400 600 800

aVF

-2

-1

0

1

2

0 200 400 600 800

V1

-2

-1

0

1

2

0 200 400 600 800

V2

-2

-1

0

1

2

0 200 400 600 800

V3

-2

-1

0

1

2

0 200 400 600 800

V4

-2

-1

0

1

2

0 200 400 600 800

V5

-2

-1

0

1

2

0 200 400 600 800

V6

Without Magnetic Field With Magnetic Field (B = 3T)

B = 0 T B = 3T

Page 26: MagnetoHemoDynamics in MRI devices

26

Page 27: MagnetoHemoDynamics in MRI devices

Conclusion

• Results: We do obtain a T-wave perturbation No significant flow perturbation (to be confirmed) No significant perturbation on the myocardium (to be

confirmed) • Possible future works:

Improve the model: other vessels ? FSI ? Optimize the ECG lead locations to reduce the artifact Extract information from the perturbed signal

27