82
Management of Patients with alterations in the Renal system C. Cummings RN, EdD

Management of Patients with alterations in the Renal system

  • Upload
    matty

  • View
    35

  • Download
    1

Embed Size (px)

DESCRIPTION

Management of Patients with alterations in the Renal system. C. Cummings RN, EdD. Renal Anatomy. Anatomy. System includes the kidneys and entire urinary tract 2 kidneys located behind the peritoneum, on either side of the spine - PowerPoint PPT Presentation

Citation preview

Page 1: Management of Patients with alterations in the Renal system

Management of Patients with alterations in the Renal system

C. Cummings RN, EdD

Page 2: Management of Patients with alterations in the Renal system

Renal Anatomy

Page 3: Management of Patients with alterations in the Renal system

Anatomy

• System includes the kidneys and entire urinary tract

• 2 kidneys located behind the peritoneum, on either side of the spine

• Weighs about 8 oz and the left if longer and narrower than the right

Page 4: Management of Patients with alterations in the Renal system

Kidney Renal capsule- fibrous

tissue Renal cortex- outer tissue Medulla-inner tissue with

“fans” Pyramids-12-18/kidney Papilla-end of the pyramid Calyx-collects the urine at

the end of the papilla Renal pelvis- calices form it

and leads to ureter

Page 5: Management of Patients with alterations in the Renal system

Renal blood flow

• Kidneys receive 20-25% of the total cardiac output

• Blood flow is 600-1300 ml/min• Renal artery comes off of the abdominal aorta• Exits off the renal vein and into the IVC

Page 6: Management of Patients with alterations in the Renal system

Nephrons

• Functioning unit of the kidney

• Urine is formed from blood

• 1 million nephrons• Blood comes from the

afferent arterioles, enters the glomerulus

• Leaves by efferent arterioles

Page 7: Management of Patients with alterations in the Renal system

Nephron parts

• Bowman’s capsule surrounds the glomerulus

• Proximal convoluted tubule

• Loop of Henle• Distal convoluted

tubule• Collecting ducts

Page 8: Management of Patients with alterations in the Renal system

Renin-angiotensin system

• Renin is produced by the macula densa cells note changes in the distal convoluted tubules

• Based on decreased BP, bld volume and bld NA levels

• Renin changes angiotensinogen into angiotensin I, ACE changes it to angiotensin II

Page 9: Management of Patients with alterations in the Renal system

Angiotensin II

• Leads to 4 main outcomes:– Increased Na concentration (aldosterone from adrenal

cortex)– Increased serum Na level by tubular reabsorption of Na in

ascending loop of Henle (constricts afferent arteriole to decrease GFR, if bld volume is low)

– Allows fluid to be removed and increases Na concentration in the bld, if blood volume if normal (constricts efferent arteriole to increase GFR)

– Enhances reabsorption of Na from DCT

Page 10: Management of Patients with alterations in the Renal system

Renal regulatory functions• Glomerular filtration-

water, electrolytes, Cr, urea N and glucose are filtered

• Blood, albuminis too large• Forms 180 L of filtrate/day

or GFR=125ml/min• Regulated by constricting

and dilating the afferent arteriole

• When SBP goes below 70mm Hg, GFR stops (MAP of 60)

Page 11: Management of Patients with alterations in the Renal system

Tubular reabsorption and Secretion

Reabsorption– Most of the water and

electrolytes are reabsorbed, 65% of filtrate to keep urine output at 1-3 L

– Most of water reabsorption is in the PCT, some is in DCT

– DCT is affected by ADH and aldosterone

– ADH enhances water reabsorption by increasing membrane permeability

– Aldosterone reabsorbs Na

Solute Reabsorption– 50% of urea, no creatinine– Most Na, Cl is reabsorbed in

the PCT, some in the collecting ducts by aldosterone

– K is reabsorbed in the PCT and the ascending loop of Henle

– Bicarb, Ca and Phosphate are in the PCT

– Glucose is reabsorbed up to 220mg/dl > will be excreted

Tubular secretion is substance need to be excreted, such as K and H

Page 12: Management of Patients with alterations in the Renal system

Renal hormones• Renin= RAAS (renin-angiotensin-aldosterone system)• Prostaglandins- PGE and PGI, regulate filtration and

vascular resistance• Bradykinins-dilates the afferent arteriole and

increase capillary membrane permeability• Erythropoetin-released when there is decreased

oxygen, triggers RBC production in the bone marrow• Vitamin D activation- converted to its active form in

the kidney

Page 13: Management of Patients with alterations in the Renal system

Renal Assessment

• Personal history- what questions should we ask?

• What about diet, why is that important?• What is a normal urine output?• What types of medical conditions can affect

the kidneys?

Page 14: Management of Patients with alterations in the Renal system

Renal Assessment

Inspection- note any swelling or discoloration in the flank region, costovertebral angle is 12th rib and vertebrae

Auscultate for what? How do you palpate the kidneys?, not be done

is suspect pheochromocytoma, what is that? Percuss what? Only the kidneys or bladder

too?

Page 15: Management of Patients with alterations in the Renal system

Diagnostic tests

• Blood– Creatinine- end product of

muscle and protein metabolism (0.6-1.2)

– BUN- excretion of urea N from protein metab, liver failure, trauma will elevate (10-20 mg/dl

– Ratio BUN/CR is 12-20:1, dehydration can cause BUN to be elevated, but not CR

– Decreased ratio will occur with FVE

• Urine– Urinalysis for inspection,

odor, cloudiness, pH, specific gravity

– What is a normal S.G.?– What things would be

abnormal in the urine?– How high is the bacterial

count in order to be treated?

Page 16: Management of Patients with alterations in the Renal system

Diagnostic tests• IVP- intravenous pyelogram,

now called IV urography• Given a contrast dye,

should not give if pt has renal insufficiency

• Shows the size, shape and location of kidneys

• Patency of calices, pelves and ureters

• Detects obstructions and masses

Page 17: Management of Patients with alterations in the Renal system

Diagnostic Tests

• CT of the kidney • Renal Arteriogram

Page 18: Management of Patients with alterations in the Renal system

Diagnostic

• Renal Biopsy– Check blood counts

before procedure, may need to transfuse

– Given procedural sedation

– Monitor the site for bleeding 24 hours after, bruising on flank, H&H

– Bedrest for 6 hours– Will have hematuria

Page 19: Management of Patients with alterations in the Renal system

Cystoscopy

• Visualize the bladder and any abnormalities

Page 20: Management of Patients with alterations in the Renal system

Urinary Tract Infections

• UTI’s are the most prevalent nosocomial infections, costing 1.6 billion/yr

• How can they be prevented in the hospital?• What is the recommended length of time a catheter

should remain in, in the acute care setting?• What factors may contribute to a UTI?• Which organisms are most commonly the cause of

UTI’s?

Page 21: Management of Patients with alterations in the Renal system

Urinary Tract Infections

• Cystitis- inflammation of the bladder, interstitial cystitis, unknown etiology

• Can lead to urosepsis, has a high mortality and prolonged hospitalization

• Incidence is greater in women than men and increases by 50% in women over 80

Page 22: Management of Patients with alterations in the Renal system

Case Study- UTI

• 24 y.o. sexually active female, who arrives in the ED, complaining of frequency, urgency and dysuria. She has difficulty initiating a stream. This has been occurring for the past 3 days, but not she feels weak and has noticed some blood in her urine

Page 23: Management of Patients with alterations in the Renal system

Case Study

• What type of questions may you ask this patient?

• What type of urine sample would you get?• The urine comes back with > 100,000 c./ml• Should this be treated? What is the most

common antibiotic that is given for an uncomplicated 3 day course?

Page 24: Management of Patients with alterations in the Renal system

Case Study

• What nursing diagnoses would be appropriate for this patient?

• What patient education should be done?• Include diet and prevention therapy

Page 25: Management of Patients with alterations in the Renal system

Urinary Incontinence

• Incontinence- involuntary loss of urine

• Not a normal result of aging

• In the elderly, can be caused by:– Medications, disease,

depression, unable to walk or get to the BR

Page 26: Management of Patients with alterations in the Renal system

Types of incontinence

• Stress- most common, occurs during coughing, sneezing, jogging or lifting, weakening of the bladder neck can occur with childbirth, can’t tighten the urethra enough to overcome the urge to void

• Urge- when they feel the “urge” to go, they can not hold it until they find a BR, called overactive bladder, can be caused by CVA, parkinson’s disease, MS, UTI, BPH, artificial sweeteners, caffeine, alcohol, diruetics, nicotine

Page 27: Management of Patients with alterations in the Renal system

Incontinence

• Overflow- when the detrusor muscle fails to contract, the bladder becomes overdistended, leaks out to prevent rupture, may be urethral obstruction, diabetic neuropathy, pelvic surgery

• Reflex- abnormal detrusor contractions r/t neurologic problems- CVA, spinal cord lesions, MS

• Functional- loss of cognitive function in patients with dementia

Page 28: Management of Patients with alterations in the Renal system

Incontinence

• 85% of all cases are women• Contributing factors are:– Medications- diuretics, opioids– Diseases- CVA, arthritis, parkinson’s– Psychological disturbances

• Physical examination– Assess for bladder fullness- bladder scan,

cystocele, note detrusor muscle

Page 29: Management of Patients with alterations in the Renal system

Incontinence- Interventions

Exercise- kegel’s strengthen pelvic floor Weight reduction, decrease fluids at night Drug therapy- estrogen, antispasmodics-

ditropan, probanthine, bentyl, detrol, antidepressants- tricyclics- anticholinergics and alpha-adrenergics, so decrease urination

Vaginal cone- weighted cones to tighten muscles, pessary to hold bladder up in cases of cystocele

Page 30: Management of Patients with alterations in the Renal system

Incontinence- Surgery

• Vaginal or retropubic surgery

• Elevates the urethra, repairs cystocele

• Postop- monitor voiding, may have SP catheter, PVR should be less than 50ml, monitor for bleeding

Page 31: Management of Patients with alterations in the Renal system

Incontinence education

• What type of education should be provided for bladder training?

• How can you get the family to help?• If the patient does need to straight cath or

have a foley at home, what things should they monitor for?

Page 32: Management of Patients with alterations in the Renal system

Renal Calculi- Urolithiasis

• Nephrolithiasis- stones in the kidney• Ureterolithiasis- stones in the ureter• 75% of the stones contain Ca- Ca oxalate or Ca

phosphate• 15% struvite, 8% uric acid and 3% cystine• 90% of patient have a metabolic risk factor for

the stones• Incidence is higher in men

Page 33: Management of Patients with alterations in the Renal system

Renal calculi

• Formation is from– Slow urine flow from the

element, such as Ca– Damage to the lining of

the tract– Decreased inhibitor

substances in the urine that would dissolve

Page 34: Management of Patients with alterations in the Renal system

Renal Calculi Risk Factors• Hypercalcemia-

– Increased intake or renal failure

– Hyperparathyroidism– Immobilization

• Hyperoxaluria- – genetic trait that

overproduces– Excess intake from spinach,

rhubarb, coca, beets, wheat germ, pecans, okra, chocolate

• Hyperuricemia-– Gout with purine metabolism

disorder– Increased purines from

cancers and thiazide diuretics• Struvite-

– Magnesium ammonium phosphate and carbonate, urea splitting bacteria causes

• Cystinuria-– Genetic defect of amino acids

Page 35: Management of Patients with alterations in the Renal system

Renal Calculi

• Symptoms:– Renal colic- what is that?– Oliguria vs anuria, what

is the difference?• What is the

predominant nursing diagnosis?

• Interventions:– Drug therapy:

• Pain relief, what should be used?

• Besides opioids, what medication may be helpful?

– Lithotripsy-• Shock wave therapy to

break up stones• Monitor ECG, bleeding

after• Strain the urine for stone

collection

Page 36: Management of Patients with alterations in the Renal system

Surgical interventions

• Nephrolithotomy and ureterolithotomy– Endoscope or lithotriptor to

grasp and extract the stone– Nephrostomy tube is left in

place– Keep the nephrostomy site

sterile and never irrigate with more than 10 ml

– May be performed as an open procedure if the stone is too large

Page 37: Management of Patients with alterations in the Renal system

Patient education

• How can the patient prevent getting more stones?

• What foods should be avoided if the patient has a calcium oxalate stone? A calcium phosphate stone? A struvite stone? A uric acid stone?

• How much fluid should the patient take in per day?

Page 38: Management of Patients with alterations in the Renal system

Renal Disorders

Polycystic kidney disease- genetic disorder, cysts develop on the kidney, most patients are hypertensive, RAAS is activated

As the patient ages, kidney is more damaged Controlled by monitoring the BP and using

ACE inhibitors, control the cell proliferation of PKD, follow a low NA diet

Control for pain, many need a transplant

Page 40: Management of Patients with alterations in the Renal system

Glomerulonephritis

• Third leading cause of ESRD• Disorders that cause are often autoimmune, such as:– Lupus, Goodpasture’s syndrome, Wegener’s

granulomatosis, amyloidosis, diabetes, HIV, hepatitis C, cirrhosis, sickle cell disease, endocarditis

• Infectious processes also cause, such as:– Beta-hemolytic streptococcus, Staph bacteremia, syphilis,

pneumococcal mycoplasma or klebsiella, CMV, histoplasmosis, varicella, toxoplasmosis

Page 41: Management of Patients with alterations in the Renal system

Glomerulonephritis

• An infection may precipitate

• Symptoms occur 10 days

• 75% of patients have edema of face, hands, eyelids

• Fluid overload and circulatory congestion

Page 42: Management of Patients with alterations in the Renal system

Glomerulonephritis

• Urine is smoky or reddish brown with hematuria and oliguria

• HTN with wt. gain• Fatigue, anorexia, N&V

• What kind of labs would be done?

• What lab would be done to assess for a strep infection?

• What type of 24 hour urine would be done?

Page 43: Management of Patients with alterations in the Renal system

Case Study- Nephrotic Syndrome

8 y.o. presents to the hospital with swelling of the face and hands. He has the sickle cell trait. His mother has noted a marked decrease in his urine output and it looks dark brown. He complains of feeling tired and not wanting to eat.

Page 44: Management of Patients with alterations in the Renal system

Case Study

• What process occurs with Nephrotic syndrome?

• What would you expect to see in his urine? What about his lab values?

• His mother asks if this condition can be cured, what would you say?

• What type of treatment may be prescribed? Medications and therapy

Page 45: Management of Patients with alterations in the Renal system

Benign Prostatic Hypertrophy

• Prostate become hyperplastic and enlarges with age

• Prostate extends upward into the bladder and inward, narrowing the urethral channel

• Obstructs urine flow, overflow incontinence

• Bladder becomes irritable and leads to urgency and frequency, muscles enlarge and can lead to hydroureters and hydronephrosis

Page 46: Management of Patients with alterations in the Renal system

BPH

• Symptoms:– Nocturia– Frequency, urgency– Reduced stream and

force– Incomplete emptying

and dribbling– Hematuria in elderly

males

• Assessment:– Digital rectal exam– Urinalysis– PSA level, what is this

for?

• What nursing diagnoses would be appropriate?

Page 47: Management of Patients with alterations in the Renal system

BPH Medications:– Shrink- Proscar,

finasteride, lowers DHT, may take 6 months to lower, major side effect is ED and decreased libido

– Alpha-adrenergic blockers- Hytrin, Cardura, Flomax, constricts the prostrate and reduces pressure

Avoid medications that may cause urinary retention, such as anticholinergics, antihistamines and decongestants

Don’t take in a large amounts of fluid, avoid alcohol and diuretics, that can cause overdistention

Page 48: Management of Patients with alterations in the Renal system

BPH Surgery

• TURP- transurethral resection of the prostate

• Can only remove pieces of the prostrate in chip form

• Suprapubic, Retropubic and Perineal prostatectomy- done when the prostate is large or the bladder also needs to be explored

Page 49: Management of Patients with alterations in the Renal system

BPH surgery• Postop:

– Assess incision site if applicable for bleeding

– Continuous Bladder irrigation (CBI) done 24 hours post surgery

– Monitor for FVE, running total of I & O

– Bleeding is to be expected, but urine should not be “frank” blood, may have clots, monitor H&H

– May have bladder spasms, ditropan or B&O supp.

Page 50: Management of Patients with alterations in the Renal system

Renal Failure

• Renal failure is the loss of function r/t nephron damage. In CRF, 90-95% of the nephrons are lost before failure is obvious

• ARF, only 50% decrease in nephrons can cause failure, ARF is a sudden onset and may last < 3 mo, good prognosis

• Most common causes of CRF are: – Diabetes (43%), HTN (25%), glomerulonephritis

(8%)

Page 51: Management of Patients with alterations in the Renal system

Acute Renal failure- ARF

• Types of ARF:– Prerenal azotemia- correct by

increasing BP, giving volume, improve C.O., prolonged damage can lead to intrarenal failure

– Intrarenal- ATN- infections, drugs, NSAID’s, aminoglycosides, tumors, glomerulonephritis

Page 52: Management of Patients with alterations in the Renal system

Phases of ARF

• Onset:– Hours to days, precipitating event until oliguria,

BUN and Cr increase• Oliguric:– Urine output of 100-400ml/day, does not respond

to diuretics or fluid challenges, BUN and CR increase, K, Magnesium and Phosphate increase, Na is retained, but masked with fluid, dilutional, lasts 8-15 days

Page 53: Management of Patients with alterations in the Renal system

Phases of ARF

• Diuretic:– Urine output increases rapidly, can be 10L/day of

dilute urine, electrolyte losses occur, BUN decreases last, 2-6 weeks, until BUN falls, renal tubular function returns

• Recovery:– Functions at lower level, may take up to 12

months to return to normal• In critically ill patients, 50-80% mortality rate

for those who develop ATN

Page 54: Management of Patients with alterations in the Renal system

Case Study for ARF

25 y.o. male admitted to the ICU post MVA, he had multiple fractures, ruptured spleen and significant blood loss. He has been in the ICU for 24 hours and is ventilated. He has received blood transfusions and maintenance IV fluids, but his blood pressure continues to drop and is presently 80/44, his urine output has only been 100 ml for the past 12 hours.

What do you expect is occurring?

Page 55: Management of Patients with alterations in the Renal system

Case Study for ARF

• What type of ARF is the patient experiencing? What phase is he in?

• What can be done to initially correct this problem?

• What nursing interventions should be done to monitor for patient improvement?

• The MD says that the patient has prerenal azotemia, what does that mean?

Page 56: Management of Patients with alterations in the Renal system

Case Study- ARF

• If the patient is in the oliguric phase, what would the lab values be?

• CR –• Bun –• Na –• K –• Phosphorus- • Ca –• Magnesium –• Bicarbonate- • pH-

Page 57: Management of Patients with alterations in the Renal system

Case Study- ARF

• Because of the disruption in electrolytes, what symptoms may the patient experience?

• Besides electrolytes, what other labs should the RN monitor?

• K-• Na-• Phosphate-• Ca-• H-

Page 58: Management of Patients with alterations in the Renal system

Case Study- ARF

• What are the main Nursing diagnoses for this patient?

• What medications may be given to this patient?

• Besides replacements, what other meds would be needed?

• What should his diet include?

• How much protein can he take in?

• How much fluid?

Page 59: Management of Patients with alterations in the Renal system

Case Study- ARF

• The patient remains oliguric and has persistent hyperkalemia, FVE and metabolic acidosis, the MD decides that he must begin dialysis to remove the end-products

• CRRT is ordered, what does this mean? Why is this done instead of Hemodialysis?

• What type of catheter would be inserted? Where is the cath inserted?

• Why not have a renal fistula done?

Page 60: Management of Patients with alterations in the Renal system

Case Study- ARF• Prisma machine used for

CRRT• Can do hemofiltration, uses

a double venous access, one catheter is arterial and one venous return

• Changes in fluid removal can be set for every 30-60 minutes and so they don’t remove as much as regular hemodialysis

• Set blood flow at 150ml/hr, dialysate rate at 1L/hr

Page 61: Management of Patients with alterations in the Renal system

Case Study- ARF

• After 5 days on CRRT, the patient’s kidneys begin to improve and his urine output is >30ml/hr, his BP has stabilized and he is off of all vasopressors. He is being transferred to the floor.

• What types of things should be still be careful of? What agents may be nephrotoxic to him?

Page 62: Management of Patients with alterations in the Renal system

Chronic Renal Failure

• Progressive, irreversible kidney disease

• Kidney function does not recover, ESRD

• Have azotemia (increased nitrogen wastes), uremia (azotemia with symptoms), uremic syndrome (clinical and labs r/t ESRD)

Page 63: Management of Patients with alterations in the Renal system

Chronic Renal Failure

• Stages of CRF:– Stage 1: Diminished Renal Reserve- renal function

is reduced, but no accumulation of wastes, can’t concentrate urinepolyuria and nocturia

– Stage 2: Renal Insufficiency- wastes accumulate, no response to diuretics, oliguria and edema develop, decreased GFR

– Stage 3: ESRD- excessive wastes, BUN and CR, H, treatment is dialysis

Page 64: Management of Patients with alterations in the Renal system

Chronic Renal Failure Metabolic changes:– BUN, CR elevated– Na elevated in later stages, may appear nl or low at first– K elevated, up to 7 or 8 mEq/L, can cause cardiac arrest– H is elevated metabolic acidosis, lungs try to blow off

Kussmaul’s respirations– Ca is low, phosphorus is elevated stimulation of PTH,

which causes Ca to be released form bone renal osteodystrophy, lack of vitamin D also makes it worse

Page 65: Management of Patients with alterations in the Renal system

Chronic Renal Failure

• Cardiac changes:– Hypertension- most have because of what?– Hyperlipidemia- changes fat metabolism elevated trigylcerides,

cholesterol and LDL– Heart failure- resulting from increased cardiac workload r/t volume,

HTN and CAD– Uremic pericarditis- pericardial sac becomes inflammed with toxins

pericardial effusion, tamponade and death• Hematologic:

– Anemia occurs because of decreased erythropoetin and RBC’s• GI changes:

– Ammonia from urea breakdown causes halitosis and stomatitis– Anorexia, N & V occurs, PUD may occur

Page 66: Management of Patients with alterations in the Renal system

Chronic Renal Failure• Clinical Signs:

– Neurologic• Lethargy, seizures, coma

from uremia– Cardiovascular

• Tachycardia, increased BP, elevated CVP, peripheral edema

– Respiratory• Tachypnea, kussmaul’s

• Clinical Signs:– Hematologic

• Anemia, bleeding, fatigue– GI

• Abdominal pain, anorexia, foul breath

– Urinary• Oliguria, proteinuria,

hematuria, amount depends on dialysis

– Skin• Yellowish tint, pruitus,

uremic frost, purpura and ecchymosis

Page 67: Management of Patients with alterations in the Renal system

Chronic Renal Failure

• What are the common nursing diagnoses for the patient with CRF?

Page 68: Management of Patients with alterations in the Renal system

Chronic Renal Failure- Interventions

• Diet therapy:– Increase calories, but restrict Protein, Fluid, K, Na,

Phosphorus, why restrict protein? If the patient is on peritoneal dialysis, protein may be increased

– Take vitamins and minerals- return vitamin D, Ca, folic acid

Page 69: Management of Patients with alterations in the Renal system

Chronic Renal Failure- Interventions

• Drug therapy-– Diuretics- only if FVE that is not on dialysis– Biologic response modifiers- procrit– Phosphate binders- amphojel, alternagel, renagel,

tums, oscal– Stool softeners- colace, miralax– Vitamins- folic acid, ferrous sulfate– Antihypertensives- ACE, Ca channel and betas may

be used

Page 70: Management of Patients with alterations in the Renal system

Renal Replacement Therapies

• Hemodialysis– Better clearance– Short time for treatment– Have to leave home

3x/wk– Can cause disequilibrium

syndrome, muscle cramps, hemorrhage

– Restricted diet

• Peritoneal dialysis– Easy access– Fewer hemodynamic

complications– Infections and adhesions

can occur– Less effective– Protein loss and

peritonitis– Uses intra-abdominal

catheter

Page 71: Management of Patients with alterations in the Renal system

Hemodialysis

• Used in patients with:– Fluid overload– Pericarditis– Uncontrolled HTN– Uremic signs– Worsening anemia– Irreversible renal failure

when other therapies are not possible

Page 72: Management of Patients with alterations in the Renal system

Hemodialysis

• Process:– Diffusion of molecules

with the use of dialysate solution, high in electrolytes, water

– Waste products move from the blood through the filters semipermeable membrane into the outflow resevoir

– Water is also removed by osmosis as it follows the solutes

Page 73: Management of Patients with alterations in the Renal system

Hemodialysis

• Hemo filter- over 1 million fine hairs, act as nephrons

• Venous access• AV shunt- only short

term

• Can become dislodged, or bleed

Page 74: Management of Patients with alterations in the Renal system

Hemodialysis• Venous access• AV fistula or graft- artery

and vein anastomosed, as it matures, blood flow increases and it enlarges

• Do not take BP or blood draws from that arm

• Assess pulses• Palpate for thrill and listen

for bruits• No lifting of heavy objects

Page 75: Management of Patients with alterations in the Renal system

Hemodialysis Care

• Weigh the patient before and after, know the “dry wt”

• Measure BP, HR and Respirations• Watch for orthostatic hypotension• Watch for disequilibrium syndrome- after HD is

completed, change in fluid and urea headache, N&V, change in LOC, cerebral edema, seizures, slowing down the fluid removal can prevent it

• Bleeding can occur, from heparinization of the lines and low blood counts

• Infectious diseases, such as hepatitis C and HIV through blood transmission

Page 76: Management of Patients with alterations in the Renal system

Peritoneal dialysis

• Silastic Catheter is inserted in the abdominal cavity

• Dialysate is inserted, dwells for 3-4 hours, allowing fluid to mix with dialysate

• Effluent or outflow is then opened and waste products and water are removed

Page 77: Management of Patients with alterations in the Renal system

Peritoneal dialysis

• Process is by diffusion and osmosis of products• Dialysate has water and electrolytes, also glucose in

2.5, 5 or 10%, determines the amount of diffusion• Heparin and antibiotics may be added to dialysate• Can be done either throughout the day with a Y-set

or at night with an automatic cycler

Page 78: Management of Patients with alterations in the Renal system

Peritoneal dialysis

Complications– Peritonitis-

contamination of catheter, cloudy outflow, fever, abdominal pain and cramping

– Pain– Poor outflow and

leakage- can be caused by constipation, fibrin clots in the catheter

Tenckhoff, peritoneal catheter

Page 79: Management of Patients with alterations in the Renal system

Renal Transplantation

• Selection:– Free from medical

problems, such as cancer, heart disease and diabetes ( should be under control)

– Age is 2-70– Use living and cadaver

donors

Page 80: Management of Patients with alterations in the Renal system

Renal Transplantation

• Postoperative Care– Monitor urine output, should return to normal in

48 hours, color may be pink with some clots– Complications:• Rejection

– Hyperacute- within 48 hours, fever, pain and increased BP– Acute- 1 wk to 2 yrs, most common, oliguria, fever, enlarged

kidney, elevated BUN, Cr– Chronic- months to years, gradual increase in BUN, Cr, fluid

retention, fatigue

Page 81: Management of Patients with alterations in the Renal system

Renal Transplantation

• Complications– ATN- may have occurred due to damage to

transplanted kidney– Thrombosis- renal artery or vein 2-3 days post– Renal artery stenosis- may lead to hypertension,

can often be repaired with a stent– Infections- on immunosuppressives for life• Cyclosporine, prednisone, imuran

Page 82: Management of Patients with alterations in the Renal system

Renal Transplant Surgery

http://Kidney transplant surgery