22
Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3 , and Norbert Lütkenhaus 2,3 1. Center for Quantum Information and Quantum Control (CQIQC), University of Toronto 2. Institute for Quantum Computing, University of Waterloo 3. Max-Plank-Forschungsgruppe, Institut für Optik, Information und Photonik, Universität Erlangen-Nürnberg On One-way and Two-way Classical Post-Processing Quantum Key Distribution

Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Embed Size (px)

Citation preview

Page 1: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Marcos Curty1,2

Coauthors: Tobias Moroder2,3, and Norbert Lütkenhaus2,3 1. Center for Quantum Information and Quantum Control (CQIQC), University of Toronto2. Institute for Quantum Computing, University of Waterloo3. Max-Plank-Forschungsgruppe, Institut für Optik, Information und Photonik, Universität

Erlangen-Nürnberg

On One-way and Two-way Classical Post-Processing Quantum Key Distribution

Page 2: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

• Quantum Key Distribution (QKD)• Precondition for secure QKD (Two-way & One-

way)• Witness Operators (Two-way & One-way QKD)• Semidefinite Programming• Evaluation

Overview

Page 3: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Quantum Key Distribution (QKD)

Phase I: Physical Set-Up

Mathematical Model

AiBj

Pr(Ai,Bj)=Tr(Ai Bj )AB

AB=i Pr(Ai)1/2AiAi with AB= AB

AB

Bj

Ai

Ai

Pr(Ai,Bj)=Pr(Ai)Tr(Bj )AiAi

Reduced density matrix of Alice fixed Add: A= TrB(AB) Ai 1

Page 4: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Quantum Key Distribution (QKD)

Phase II: Classical Communication Protocol

Pr(Ai,Bj) Secret key

• Advantage distillation (e.g. announcement of bases in BB84 protocol)• Error Correction ( Alice and Bob share the same key)• Privacy Amplification ( generates secret key shared by Alice and Bob)

Authenticated Classical Channel

Two-way

Page 5: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Quantum Key Distribution (QKD)

Phase II: Classical Communication Protocol

Pr(Ai,Bj) Secret key

• Advantage distillation (e.g. announcement of bases in BB84 protocol)• Error Correction ( Alice and Bob share the same key)• Privacy Amplification ( generates secret key shared by Alice and Bob)

Authenticated Classical Channel

One-way (Reverse Reconciliation: RR)

Page 6: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Quantum Key Distribution (QKD)

Phase II: Classical Communication Protocol

Pr(Ai,Bj) Secret key

• Advantage distillation (e.g. announcement of bases in BB84 protocol)• Error Correction ( Alice and Bob share the same key)• Privacy Amplification ( generates secret key shared by Alice and Bob)

Authenticated Classical Channel

One-way (Direct communication: DC)

Page 7: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Quantum Key Distribution (QKD)

Which type of correlations Pr(Ai,Bj) are useful for QKD?

secret bitsper signal

Distance (channel model)

Not secure (proven) Protocol independent

Regime of Hope

secure(proven)protocol

Talk: T. Moroder

This talk

Talk: G. O. Myhr

Page 8: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Precondition for Secure QKD

Theorem (Two-way QKD)

AB

Pr(Ai,Bj)

AB separable No Key

MC, M. Lewenstein and N. Lütkenhaus, Phys. Rev. Lett. 92, 217903 (2004)

Ai Bj

AB is separable if AB = i pi |aiai|A|bibi|B

Page 9: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Precondition for Secure QKD

Theorem (One-way QKD)

AB

Pr(Ai,Bj)

AB has a symmetric extension to two-copies of system B

(A), then the secret key rate for direct communication (reverse reconciliation) vanishes.

T. Moroder, MC and N. Lütkenhaus, quant-ph/0603270.

Ai Bj

Page 10: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Precondition for Secure QKD

AB with symmetric extension to two copies of system B

AB

TrE(ABE)= AB

ABE

A B

E

A B

E

AB

A B

E

TrB(ABE)= AE = AB AB

Page 11: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Witness Operators (Two-way QKD)

AB separable?

TrWAB < 0 TrWAB 0 AB comp.with

separable

Witness Operators

TrWAB = ij cij P(Ai,Bj )

MC, M. Lewenstein and N. Lütkenhaus, Phys. Rev. Lett. 92, 217903 (2004)MC, O. Gühne, N. Lewenstein, N. Lütkemhaus, Phys. Rev. A 71, 022306 (2005)

restricted knowledge

compatiblewith sep.

verifiableentangled

• AB

W

Accesible witnesses: W = ij cij Ai Bj

Optimal Wopt

Wopt

Page 12: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Witness Operators (One-way QKD)

AB symmetric extension?

T. Moroder, MC and N. Lütkenhaus, quant_ph/0603270.

TrWAB = ij cij P(Ai,Bj )

TrWAB < 0 TrWAB 0 AB comp. with symmetric extension

restricted knowledge

compatiblewith symmetric

extension.

Without symmetric extension

• AB

Wopt

Witness Operators

Accesible witnesses: W = ij cij Ai Bj

Page 13: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Witness Operators (Two-way QKD)

Evaluation: 4-state QKD protocol

Uses two mutually unbiased bases:e.g. X,Z direction in Bloch sphere

|0|1|1

|0

Error Rate: 36 %

0.07987 0.04516 0.00913 0.11591 0.04508 0.07986 0.11593 0.00901 0.11599 0.00909 0.08001 0.04507 0.00897 0.11593 0.04505 0.07985

0101

0 1 0 1A\B

Pr(Ai,Bj)

| e=cos(X)|00+sin(X)(cos(Y)|01+sin(Y)(cos(Z)|10+sin(Z)|11))

Systematic Search

MC, M. Lewenstein and N. Lütkenhaus, Phys. Rev. Lett. 92, 217903 (2004)

W4 = 1/2(|ee| + |ee|)

Page 14: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Witness Operators (Two-way QKD)

(only parameter combinations leading to negative expectation values are marked)

MC, O. Gühne, N. Lewenstein, N. Lütkemhaus, Phys. Rev. A 71, 022306 (2005)MC, O. Gühne, N. Lewenstein, N. Lütkemhaus, Proc. SPIE Int. Soc. Opt. Eng. 5631, 9-19 (2005).J. Eisert, P. Hyllus, O. Gühne, MC, Phys. Rev. A 70, 062317 (2004).

Evaluation: 4-state QKD protocol

TrWAB = ij cij P(Ai,Bj )

Other QKD protocols (including higher dimensional QKD schemes)

Page 15: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Witness Operators (Two-way and One-way QKD)

• One witness: Sufficient condition as a first step towards the demonstration of the feasibility of a particular experimental implementation of QKD. This criterion is independent of any chosen communication protocol in Phase II.

• All witnesses: Systematic search for quantum correlations (or symmetric extensions) for a given QKD setup. Ideally the main goal is to obtain a compact description of a minimal verification set of witnesses (Necessary-and Sufficient).

Advantages: Witnesses operators

Disadvantages: Witnesses operators

• Too many tests: To guarantee that no secret key can be obtained from the observed data it is necessary to test all the members of the minimal verification set.

• How to find them?: To find a minimal verification set of EWs, even for qubit-based QKD schemes, is not always an easy task, and it seems to require a whole independent analysis for each protocol.

Page 16: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Semidefinite Programming (SDP)

Primal problem

minimise cTxsubject to F0+i xi Fi ≥ 0

with x=(x1, ..., xt)T the objective variable, c is fixed by the optimisation problem, and the matrices Fi are Hermitian

SDPs can be efficiently solved

Equivalent class of states S

S = {AB such as Tr(Ai Bj AB) = Pr(Ai,Bj) i,j}

Qubit-based QKD (with losses): AB H2H3

Page 17: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Semidefinite Programming (SDP)

Two-way QKD

AB S with AB 0 No Key

AB

Pr(Ai,Bj) Ai Bj

SDP

Feasibility problemc = 0

minimise 0subject to AB(x) 0 AB

(x) 0

AB(x) SS

MC, T. Moroder, and N. Lütkenhaus, in preparation (2006)

Page 18: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Dual problem maximise -Tr(F0 Z)

subject to Z ≥ 0 Tr(Fi Z) = ci for all i

where the Hermitian Z is the objective variable

Semidefinite Programming (SDP)SDP: One-way QKD

MC, T. Moroder, and N. Lütkenhaus, in preparation (2006)

minimise 0subject to AB(x) SS PABA’(x)P = ABA’(x)

ABA’(x) 0 TrA’[ABA’(x)] = AB(x)

with P the swap operator: P|ijkABA’ = |kjiABA’

Dual problem (one way & two-way) Witness operator optimal for Pr(Ai,Bj)

Page 19: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Evaluation

• We need experimental data Pr(Ai,Bj)

• Channel Model:

AB = (1-p)[(1-e)|AB|+e/2 A1B] + p A|vacBvac|

p: probability Bob receives the vacuum state |vacB e: depolarizing rate1B: 1B- |vacBvac|

Page 20: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Evaluation

Six-state protocol:

|0

|00

|1|1

|0

|11Alice and Bob:

Bruß, Phys. Rev. Lett. 81, 3018 (1998).

Four-state protocol:

|0

|00

|1

|11Alice and Bob:

C.H. Bennett and G. Brassard, Proc. IEEE Int. Conf. On Computers, System and Signal Processing, 175 (1984).

QBER: 33 %

QBER: 16.66 %

H. Bechmann-Pasquinucci, and N. Gisin, Phys. Rev. A 59, 4238 (1999).

QBER: 25 %

QBER: 14.6 %

C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, andA. Peres, Phys. Rev. A 56, 1163 (1997); J. I. Cirac, and N. Gisin, Phys. Lett. A 229, 1 (1997).

Page 21: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Evaluation Two-state protocol:

Alice:

|0 = |0+|1

|1 = |0-|1 C. H. Bennett, Phys. Rev. Lett. 68, 3121 (1992).

Bob:

B0 = 1/(22)|11

|

B1 = 1/(22)|00

|

B? = |00|+|11|-B0-B1

Bvac = |vacvac|

Limit USD p1-22

e=0Four-plus-two-state protocol:

|0|1|1

|0

Like 2 two-state protocols:

B. Huttner, N. Imoto, N. Gisin, and T. Mor, Phys. Rev. A 51, 1863 (1995).

Inflexion pointe constant

p=1-22

(USD)

Other QKD protocols MC, T. Moroder, and N. Lütkenhaus, in preparation (2006)

Page 22: Marcos Curty 1,2 Coauthors: Tobias Moroder 2,3, and Norbert Lütkenhaus 2,3 1.Center for Quantum Information and Quantum Control (CQIQC), University of

Summary

Interface Physics – Computer Science: Classical Correlated Data with a Promise Necessary condition for secure QKD (Two-way & One-way).

Relevance for experiments: show the presence of entanglement (states without symmetric extension)

• No need to enter details of classical communication protocols• Prevent oversights in preliminary analysis• One properly constructed proof suffices

Evaluation: Semidefinite programming (qubit-based QKD protocols in the presence of loss).

Task for Theory: Develop practical tools for realistic experiments ( for given measurements).