57
SOLAS SUMMER SCHOOL 2011 Cargèse, Corsica, France (August 29th to Septembre 7th 2011) MARINE PELAGIC ECOLOGY Maurice Levasseur Université Laval (QuébecOcéan), Québec, Canada [email protected]

MARINE PELAGIC ECOLOGY - SOLAS INT

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MARINE PELAGIC ECOLOGY - SOLAS INT

SOLAS SUMMER SCHOOL 2011

Cargèse, Corsica, France (August 29th to Septembre 7th 2011)

MARINE PELAGIC ECOLOGY

Maurice LevasseurUniversité

Laval (Québec‐Océan), Québec, [email protected]

Page 2: MARINE PELAGIC ECOLOGY - SOLAS INT

2

Objective of the lectures

To provide a general understanding of the diversity of 

pelagic marine life forms, their functions within 

ecosystems, and of their contributions to the 

biogeochemical cycling of SOLAS‐relevant 

elements/compounds.

Page 3: MARINE PELAGIC ECOLOGY - SOLAS INT

3

CO2

DMSN2

O

halogens

VOCs

CH4

SOLAS‐RELEVANT COMPOUNDS:

Page 4: MARINE PELAGIC ECOLOGY - SOLAS INT

4

Oceans are huge…They contain 97% of all available water at the surface of the Earth.

Large volume…Their volume is ca. 1.3‐1.5 billions Km3.This is an immense heat reservoir (1200 times more than the atmosphere)

A vast environment for living organisms and biogeochemistry

Large surface…They cover 70% of the surface of the globe. They thus represent an 

important interface for heat, particle and gas exchanges with the 

atmosphere.

Page 5: MARINE PELAGIC ECOLOGY - SOLAS INT

5

OUTLINE

1. A brief introduction on the origin of the oceans and evolution of life

2. Phytoplankton diversity and ecology

3. Phytoplankton growth and species succession

4. Photosynthesis and Primary Production

***

5. Phytoplankton elemental composition and nutrient requirements

6. The marine pelagic food web

7. The microbial loop

8. Future challenges

Page 6: MARINE PELAGIC ECOLOGY - SOLAS INT

6

‐1‐

A brief introduction on the origin of the oceans and 

evolution of life

Page 7: MARINE PELAGIC ECOLOGY - SOLAS INT

7

A 4.5 billion years story

Mars Earth

Page 8: MARINE PELAGIC ECOLOGY - SOLAS INT

8

Life on Earth(since

its

formation 4.5 Gyr

ago)

(Archaea)

Humans

(<1 Myr)

First Archeae

(3.5‐2.7 Gyr)

Cyanobacteria

(2.8 Gyr)Photosynthesis

Eukaryote

(1.4 Gyr)

Dinosaures

(230‐66 Myr)Ocean

formation (4.2‐4.5 Gyr)

Page 9: MARINE PELAGIC ECOLOGY - SOLAS INT

9

Wikipedia

2011

The three domains of life

The recognition of Archaea

as a distinct domain of life is recent (Woese

et al, 1990). 

Archeae

present a distinct sequence of ribosomal ARN.

Page 10: MARINE PELAGIC ECOLOGY - SOLAS INT

10

The former reducing environment changed for an oxidative environment.Development of the ozone layer (protects the Earth from harmful UV).Life becomes possible on continents – increase of biodiversity.Organisms sensitive to O2

are now restricted to anoxic environments.

Photosynthesis changes the Earth in a definitive way

Page 11: MARINE PELAGIC ECOLOGY - SOLAS INT

11

‐2‐

Phytoplankton diversity and ecology

Page 12: MARINE PELAGIC ECOLOGY - SOLAS INT

12

The marine pelagic food web

Autotrophs

Heterotrophs

D. Pauly

http://cordis.europa.eu/inco/fp5/acprep8_en.html

Page 13: MARINE PELAGIC ECOLOGY - SOLAS INT

13

Autotrophic organismsThe basis of the marine food web

Page 14: MARINE PELAGIC ECOLOGY - SOLAS INT

14

PHYTOPLANKTON

Autotrophic component of the plankton community.

They use CO2

and solar energy to synthesize organic compounds (photosynthesis).

Possess pigments, mostly chlorophyll a, to capture light energy.

About 4,000 described species.

Can be classified into biochemically important ‘functional groups’

based on size: 

Microplankton

(20‐200µm): ex. diatoms, dinoflagellatesNanoplankton

(2‐20 µm): ex. coccolithophores, flagellatesPicoplankton

(0.2‐2 µm ): ex.cyanobacteria

and/or functions:

Calcifiers: ex. coccolithophores, foraminifersN‐fixers: ex. cyanobacteriaSi‐users: ex. diatoms, silicoflagellates

Page 15: MARINE PELAGIC ECOLOGY - SOLAS INT

15Lalli

and Parsons 1997

Taxonomic survey of the marine phytoplankton

Page 16: MARINE PELAGIC ECOLOGY - SOLAS INT

16

Bacillariophyceae

(diatoms)

One of the largest group of microscopic algae.

Relatively large cells (2‐1000 µm). 

Form large blooms in nutrient‐rich environments.

Responsible for spring blooms at mid and high latitudes.

Responsible for most of the ‘new production

‘ and carbon sequestration.

They support the ‘classical’

marine food web.

Use mostly nitrate as a nitrogen source.

Also require silicate

for their frustules.

r‐selected species adapted to unstable environments.

Two main groups: centric and pennates.

Page 17: MARINE PELAGIC ECOLOGY - SOLAS INT

17

Example of diatoms

Silica valves (frustules)

Filaments(↑

floatability, ↓

grazing)

Several chain forming species

Page 18: MARINE PELAGIC ECOLOGY - SOLAS INT

18

Diatoms are responsible for most oceanic blooms at mid and high latitudes

Page 19: MARINE PELAGIC ECOLOGY - SOLAS INT

19

Dinophyceae

(dinoflagellates)

The second most abundant phytoplankton group.

Organisms of widely different forms and sizes.

They possess two flagella (transverse & longitudinal flagellum).

Can perform diel

vertical migrations.

Some species are naked (sensitive to sampling procedures).

Other species are covered with a theca made of cellulosic plates.

Some species are toxic or harmful.

They can form ‘red tides’

in coastal waters. 

K‐selected species with complex life cycle (temporary and/or dormant cysts).

Page 20: MARINE PELAGIC ECOLOGY - SOLAS INT

20

Dinoflagellates

Alexandrium

tamaremse

Epitheca

Hypotheca

Cingulum

Sulcus

Plates in cellulose

Page 21: MARINE PELAGIC ECOLOGY - SOLAS INT

21

Noctiluca

bloom 

Page 22: MARINE PELAGIC ECOLOGY - SOLAS INT

22

Prymnesiophyceae

Small cells (4‐6 µm).

Cells with two flagella and a third different one called 

haptonema.

Covered with organic scales.

Scales may be calcified

(e.g. Coccolithophores).

Blooms may cover vast oceanic areas.

Some species are toxic (ex. gender Chrysochromulina

and 

Prymnesium).

Strong DMSP and DMS producers.

K‐selected species adapted to stable, resource‐limited 

conditions.

Page 23: MARINE PELAGIC ECOLOGY - SOLAS INT

23

Prymnesium

parvum Chrysochromulina

spp.

Examples of Prymnesiophyceae

http://aquaplant.tamu.edu/plant‐

identification/alphabetical‐index/golden‐alga/

Heidi Hällfors, FIMR 

Page 24: MARINE PELAGIC ECOLOGY - SOLAS INT

24

Example of calcified Prymnesiophyceae

Emiliania

huxleyi

(coccolithophore)

Scales

(CaCO2

)

Page 25: MARINE PELAGIC ECOLOGY - SOLAS INT

25

Bloom of coccolithophores

as seen from space

Britain

Jacques Descloitres, MODIS Rapid Response Team, NASA/GSFC

NORTHATLANTIC

Page 26: MARINE PELAGIC ECOLOGY - SOLAS INT

26

Phaeocystis

spp.

A special case of Prymnesiophyceae

Single cell form (4‐6 µm) Colonial form (> 250 µm)

Very

strong DMS producer

Image from The mystery of the foam on the sea shore 

by Wim

van Egmondhttp://www.jochemnet.de/fiu/OCB3043_21.html

Page 27: MARINE PELAGIC ECOLOGY - SOLAS INT

27

Cyanophyceae

Very small cell size (0.2 – 2.0 μm). 

Unicellular or chain forming.

Thrive in warm, vertically stable nitrogen‐poor environments.

May be responsible for 50% of the PP.

Some species can fix atmospheric molecular N2

(contribution to 

the oceanic new production).

Include the cyanobacteria

Trichodesmium, Synechococcus, and 

Prochlorococcus.

Page 28: MARINE PELAGIC ECOLOGY - SOLAS INT

28

Picophytoplankton

Picophytoplankton

as seen by epifluorescence

microscopy.

http://www.mreckermann.de/flow/index‐e.htm

Page 29: MARINE PELAGIC ECOLOGY - SOLAS INT

29

Picophytoplankton

as revealed by flow cytometry

http://en.wikipedia.org/wiki/Flow_cytometry

Page 30: MARINE PELAGIC ECOLOGY - SOLAS INT

30

Cox P A et al. PNAS 2005;102:5074-5078

©2005 by National Academy of Sciences

Cyanobacteria

Trichodesmium Synechococcus

Heterocysts

Page 31: MARINE PELAGIC ECOLOGY - SOLAS INT

31

Figure 1. Percent of time Trichodesmium blooms are present (persistence) as estimated from SeaWiFS. The percentage of time is calculated at each pixel as the fraction of clear-sky observations which are identified as Trichodesmium blooms between January 1998 and December 2003, scaled to the frequency of clear-sky occurrences during that period. Bloom fields calculated at a spatial resolution of 1/4° (~27 km) using 8-day SeaWiFS reflectance data.

Westberry

and Siegel 2006

Global distribution of Trichodesmium

Page 32: MARINE PELAGIC ECOLOGY - SOLAS INT

32

‐3‐

Phytoplankton growth and species succession

Page 33: MARINE PELAGIC ECOLOGY - SOLAS INT

33

Phytoplankton growth phases

Cell numbers(cell l‐1)

Time (day)

Latentphase

Exponential 

phase

Senescence phase

Page 34: MARINE PELAGIC ECOLOGY - SOLAS INT

34

Time (day)

Diatoms (cell l‐1)

Nitrate or silicate (μmol L‐1)

0 10

Variations in cell number and macronutrient 

concentrations during a typical diatom bloom 

(in vitro)

Cell or nutrientconcentrations(rel. units)

Page 35: MARINE PELAGIC ECOLOGY - SOLAS INT

35See

Tsuda et al. 2003

Variations in cell number and macronutrient concentrations during 

the iron addition experiment SEEDS I 

(µmol L‐1)

(µmol L‐1) (µg L‐1)

Page 36: MARINE PELAGIC ECOLOGY - SOLAS INT

36

Calculation of phytoplankton growth rate

Increase in cells number:

N = N0

eµt

Growth rate:

μ

= ln

N – ln N0

/t

(units =  day‐1)

Doubling time:

Td = 0.69/ μ

(units = day)

Phytoplankton doubling times vary between 0.5 and 2.0 days.

In the lab and in nutrient‐replete conditions, doubling time vary with water 

temperature. 

Page 37: MARINE PELAGIC ECOLOGY - SOLAS INT

37Eppley, 1972

Influence of water temperature on phytoplankton growth rate

Page 38: MARINE PELAGIC ECOLOGY - SOLAS INT

38

Time (day)

Diatoms 

Nitrate or silicate (μmol L‐1)

0 10

Sinking/aggregation/ 

grazing

Variations in cell number and macronutrient 

concentrations during a typical diatom bloom

(in situ)

(cell l‐1)

Page 39: MARINE PELAGIC ECOLOGY - SOLAS INT

39

Evolution of the spring bloom and development of the deep chlorophyll 

maximum

NO3

NO3

Chl

a

(µg L‐1) or NO3 

(µmol L‐1)

Chl

a

Z(m)

Time (days)

Page 40: MARINE PELAGIC ECOLOGY - SOLAS INT

40

WHAT IS LIMITING PP IN THE OCEAN?

The dilemma of aquatic autotrophs

Light is rapidly absorbed in the water column (first 100‐150 m) while the large 

nutrient reservoir is located deeper in the water column.

How to access both resources?

Turbulence plays a key role in replenishing the upper part of the water column 

with nutrients.

Page 41: MARINE PELAGIC ECOLOGY - SOLAS INT

41

Phytoplankton succession

Ramon Margalef

(1919‐2004)

Page 42: MARINE PELAGIC ECOLOGY - SOLAS INT

42

Margalef's matrix summarizing the sequence of phytoplankton (the

main 

sequence) as a function of diminishing ‘turbulence’

and nutrient availability.

Margalef

1978

Page 43: MARINE PELAGIC ECOLOGY - SOLAS INT

43

Margalef's Mandala developed from Figure 1, and including a ‘red tide’

or HAB 

trajectory.

From Smayda

and  Reynolds 2001

Page 44: MARINE PELAGIC ECOLOGY - SOLAS INT

44

‐4‐

Photosynthesis and Primary Production

Page 45: MARINE PELAGIC ECOLOGY - SOLAS INT

45

PHOTOSYNTHESIS6CO2

+ 6H2

O + light →

C6

H12

O6

+ 6O2

Page 46: MARINE PELAGIC ECOLOGY - SOLAS INT

46

Capturing the light

Photosystem

II Photosystem

I

Pigments Pigments

Reaction center

Photons

Energy of excitation

The antenna are composed of:Chlorophyll a (most commonly used phyto‐biomass index) Accessory pigments (carotenoid, Chl‐b and ‐c, others)

Accessory pigments spread the light absorption spectra (use in ‘HPLC’

taxonomy).

Fluorescence 

used as biomass 

index.

Page 47: MARINE PELAGIC ECOLOGY - SOLAS INT

47400‐700 nm band = Photosynthetically

available radiation (PAR)

http://12knights.pbworks.com/w/page/37702220/827‐‐Explain‐the‐relationship‐between‐the‐action‐spectrum

Page 48: MARINE PELAGIC ECOLOGY - SOLAS INT

48

Light absorption spectra

Chl‐a

chlorophyll b

chlorophyll acarotenoids

phycoerythrin (a phycobilin)

(combined absorption efficiency across entire visible spectrum)

chlorophyll achlorophyll b

phycoerythrin (a phycobilin)

Accessory pigments fill the gaps

Page 49: MARINE PELAGIC ECOLOGY - SOLAS INT

49

Global distribution of chlorophyll a in the first cm of the water column(false colors composite image)

MID‐HIGH LAT SPRING BLOOM

COASTAL UPWELLING BLOOM

LOW LAT OLIGOTROPHIC CONDITIONS

EQUATORIAL UPWELLING BLOOM

Page 50: MARINE PELAGIC ECOLOGY - SOLAS INT

50

Longhurst

Biogeographic

Provinces

A. Longhurst, Ecological Geography of the Sea, second edition, 2007, Academic Press

Page 51: MARINE PELAGIC ECOLOGY - SOLAS INT

51

Photosynthesis or PP can be measured in terms of carbon fixation

per unit of 

volume per unit of time (mg C m‐3

h‐1) by using the 14C or 13C methods.

Addition of 14CO2

or 13CO2

as bicarbonate to bottles of seawater and measure of the 

increase in activity over time.

Depending on the objective, the incubations may take different forms:

1. In situ

2. In situ simulated

3. Photosynthetic/light curve

The 14C or 13C incorporated in the cells is measured with either a scintillation 

spectrometer or a mass spectrometer.

PP may also be determined by measuring the oxygen produced or CO2

consumed 

during photosynthesis.

Measuring primary production

Page 52: MARINE PELAGIC ECOLOGY - SOLAS INT

52

Primary production14C and 13C methods

Depth

Light

Samples

On‐deck incubator

1. in situ incubations

2. In situ simulated incubations

+ 14CO32‐

Page 53: MARINE PELAGIC ECOLOGY - SOLAS INT

53

Photosynthesis/light curves

Depth

Light

20 min to h

Light

(Photosynthesis/chl

a)

Biomass‐normalised photosynthesis

Page 54: MARINE PELAGIC ECOLOGY - SOLAS INT

54

Depth

Light

Light

P/B

Reconstruction of the PP profile from the vertical distribution 

of phytoplankton biomass (Chl

a) and light.

Photosynthesis/light curves

Page 55: MARINE PELAGIC ECOLOGY - SOLAS INT

55

P/B

Light

Pm

Ik

α

respiration0 Compensation point

Net production

Ik

= ca. 100 μE m‐2

s‐1

Ik

< 50 μE m‐2

s‐1

is

generally limiting for photosynthesis

ß

Pm 

= assimilation number

α

=  Initial slope = photosynthetic    

efficiency

ß

= photo-inhibition parameter –

dark reaction rate (enzymatic reactions)

Ik

= photo‐adaptation parameter

Photosynthesis/light curves

Page 56: MARINE PELAGIC ECOLOGY - SOLAS INT

56

Biomass

Primary

production

Exportproduction

Falkowski

et al.(in Fasham 2003)

Page 57: MARINE PELAGIC ECOLOGY - SOLAS INT

57

Global oceanic PP: ~51 x 1015

g C/year

Oceans are responsible for 80% of marine PP.Coastal zones are responsible for 20%.