Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training

  • Upload
    ana

  • View
    223

  • Download
    0

Embed Size (px)

Citation preview

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    1/39

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/46254562

    Neuro-Musculoskeletal and PerformanceAdaptations to Lower-Extremity Plyometric

    Training

     ARTICLE  in  SPORTS MEDICINE · OCTOBER 2010

    Impact Factor: 5.04 · DOI: 10.2165/11318370-000000000-00000 · Source: PubMed

    CITATIONS

    85

    READS

    1,473

    2 AUTHORS:

    Goran Markovic

    University of Zagreb

    73 PUBLICATIONS  1,719 CITATIONS 

    SEE PROFILE

    Pavle Mikulic

    University of Zagreb

    30 PUBLICATIONS  297 CITATIONS 

    SEE PROFILE

    Available from: Goran Markovic

    Retrieved on: 13 March 2016

    https://www.researchgate.net/?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_1https://www.researchgate.net/profile/Pavle_Mikulic?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_7https://www.researchgate.net/institution/University_of_Zagreb?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_6https://www.researchgate.net/profile/Pavle_Mikulic?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_5https://www.researchgate.net/profile/Pavle_Mikulic?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_4https://www.researchgate.net/profile/Goran_Markovic3?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_7https://www.researchgate.net/institution/University_of_Zagreb?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_6https://www.researchgate.net/profile/Goran_Markovic3?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_5https://www.researchgate.net/profile/Goran_Markovic3?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_1https://www.researchgate.net/publication/46254562_Neuro-Musculoskeletal_and_Performance_Adaptations_to_Lower-Extremity_Plyometric_Training?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_3https://www.researchgate.net/publication/46254562_Neuro-Musculoskeletal_and_Performance_Adaptations_to_Lower-Extremity_Plyometric_Training?enrichId=rgreq-133e6881-3720-4543-a635-98586fba856d&enrichSource=Y292ZXJQYWdlOzQ2MjU0NTYyO0FTOjEwMjg4MTA1MTAyMTMyM0AxNDAxNTQwMTYyODE0&el=1_x_2

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    2/39

    Terms and Conditions for Use of PDF

    The provision of PDFs for authors' personal use is subject to the following Terms & Conditions:

    The PDF provided is protected by copyright. All rights not specifically granted in these Terms & Conditions are expresslyreserved. Printing and storage is for scholarly research and educational and personal use. Any copyright or other noticesor disclaimers must not be removed, obscured or modified. The PDF may not be posted on an open-access website(including personal and university sites).

    The PDF may be used as follows:• to make copies of the article for your own personal use, including for your own classroom teaching use (this includesposting on a closed website for exclusive use by course students);• to make copies and distribute copies (including through e-mail) of the article to research colleagues, for the personal useby such colleagues (but not commercially or systematically, e.g. via an e-mail list or list serve);•

      to present the article at a meeting or conference and to distribute copies of such paper or article to the delegatesattending the meeting;• to include the article in full or in part in a thesis or dissertation (provided that this is not to be published commercially).

    This material is the copyright of the original publisher.Unauthorised copying and distribution is prohibited.

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    3/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    Neuro-Musculoskeletal and PerformanceAdaptations to Lower-ExtremityPlyometric TrainingGoran Markovic and  Pavle Mikulic

    School of Kinesiology, University of Zagreb, Zagreb, Croatia

    Contents

    Abstract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8591. Search Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8612. Plyometric Training (PLY) on Rigid Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 861

    2.1 Musculoskeletal Adaptation to PLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8612.1.1 Bone Adaptation to PLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8612.1.2 Muscle-Tendon Complex and Joint Adaptations to PLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865

    2.2 Neuromuscular Adaptations to PLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8662.2.1 Muscle Fibre Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8662.2.2 Whole Muscle and Single Fibre Contractile Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 867

    2.2.3 Whole Muscle and Single Fibre Hypertrophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8672.2.4 Muscle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8672.2.5 Neural Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8682.2.6 Muscle Strength and Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8692.2.7 Stretch-Shortening Cycle Muscle Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 875

    2.3 Athletic Performance Adaptation to PLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8752.3.1 Jumping Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8752.3.2 Sprinting Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8812.3.3 Agility Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8822.3.4 Endurance Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 883

    3. PLY on Non-Rigid Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8843.1 Neuromuscular and Performance Adaptations to Aquatic- and Sand-Based PLY. . . . . . . . . . . . 884

    4. PLY in Prevention of Lower-Extremity Injuries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885

    5. Practical Application of PLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8866. Conclusions and Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889

    Abstract   Plyometric training (PLY) is a very popular form of physical conditioningof healthy individuals that has been extensively studied over the last 3 de-cades. In this article, we critically review the available literature related tolower-body PLY and its effects on human neural and musculoskeletal sys-tems, athletic performance and injury prevention. We also considered studiesthat combined lower-body PLY with other popular training modalities, aswell as studies that applied PLY on non-rigid surfaces. The available evidencesuggests that PLY, either alone or in combination with other typical trainingmodalities, elicits numerous positive changes in the neural and musculoskeletal

    REVIEW ARTICLE  Sports Med 2010; 40 (10): 859-895

    0112-1642/10/0010-0859/$49.95/0

    ª 2010 Adis Data Information BV. All rights reserved.

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    4/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    systems, muscle function and athletic performance of healthy individuals.Specifically, the studies have shown that long-term PLY (i.e. 3 – 5 sessions aweek for 5

     – 12 months) represents an effective training method for enhancing

    bone mass in prepubertal/early pubertal children, young women and pre-menopausal women. Furthermore, short-term PLY (i.e. 2 – 3 sessions a weekfor 6 – 15 weeks) can change the stiffness of various elastic components of themuscle-tendon complex of plantar flexors in both athletes and non-athletes.Short-term PLY also improves the lower-extremity strength, power andstretch-shortening cycle (SSC) muscle function in healthy individuals. Theseadaptive changes in neuromuscular function are likely the result of (i) anincreased neural drive to the agonist muscles; (ii) changes in the muscle acti-vation strategies (i.e. improved intermuscular coordination); (iii) changes inthe mechanical characteristics of the muscle-tendon complex of plantar

    flexors; (iv) changes in muscle size and/or architecture; and (v) changes insingle-fibre mechanics. Our results also show that PLY, either alone or incombination with other training modalities, has the potential to (i) enhance awide range of athletic performance (i.e. jumping, sprinting, agility and en-durance performance) in children and young adults of both sexes; and (ii) toreduce the risk of lower-extremity injuries in female athletes. Finally, avail-able evidence suggests that short-term PLY on non-rigid surfaces (i.e. aqua-tic- or sand-based PLY) could elicit similar increases in jumping and sprintingperformance as traditional PLY, but with substantially less muscle soreness.Although many issues related to PLY remain to be resolved, the results of thisreview allow us to recommend the use of PLY as a safe and effective training

    modality for improving lower-extremity muscle function and functionalperformance of healthy individuals. For performance enhancement and in- jury prevention in competitive sports, we recommend an implementation of PLY into a well designed, sport-specific physical conditioning programme.

    Plyometric training (PLY) is a very popularform of physical conditioning of healthy individ-uals and certain patient populations (e.g. osteoporo-tic patients). It involves performing bodyweight

     jumping-type exercises and throwing medicineballs using the so-called stretch-shortening cycle(SSC) muscle action. The SSC enhances the abil-ity of the neural and musculotendinous systemsto produce maximal force in the shortest amountof time, prompting the use of plyometric exerciseas a bridge between strength and speed.[1] In thisregard, PLY has been extensively used for aug-menting dynamic athletic performance, partic-ularly vertical jump ability.[2-4] Indeed, the vastmajority of the earliest PLY studies examined the

    effects of SSC jumping programmes on vertical jump height.[5-12] Several other reviews on thistopic have also been published.[2-4,13]

    However, the focus and application of PLYhas evolved over the last 15 years. Specifically,PLY has been frequently used for improving humanneuromuscular function in general,[14-16] as well as

    for improving performance in both explosive[9,17,18]and endurance athletic events.[19,20] Furthermore, anumber of studies have shown that PLY (i) couldimprove biomechanical technique and neuromus-cular control during high-impact activities like cut-ting and landing;[21-28] and (ii) has the potential forreducing the risk of lower-extremity injuries in teamsports.[25,29-31] Finally, experimental evidence sug-gests that PLY appears to induce not only fav-ourable neuromuscular, but also bone[32,33] andmusculo-tendinous adaptation.[34,35]

    Our aim in this article is to critically review theavailable literature related to PLY and its effectson the human neural and musculoskeletal systems,

    860   Markovic & Mikulic

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    5/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    athletic performance and injury prevention. Giventhat the vast majority of PLY studies focused onlower body, we reviewed only lower-body PLYthat involved SSC jumping-type exercise. We alsoconsidered studies that combined lower-bodyPLY with other popular training modalities suchas weight training (WT), endurance training,sprint training or electromyostimulation.

    1. Search Strategy

    Computerized literature searches of articles

    published between January 1966 and April 2009were performed with the use of MEDLINE,Scopus and SportDiscus databases. The follow-ing keywords were used in different combinations:‘plyometric’, ‘pliometric’, ‘stretch-shortening cycle’,‘drop jump’, ‘jump training’, ‘performance’, ‘mus-cle strength’, ‘muscle power’, ‘injury prevention’,‘muscle-tendon’ and ‘bone mass’. All titles werescanned and the abstracts of any potentially rel-evant articles were retrieved for review. In addi-tion, the reference lists from both original and

    review articles retrieved were also reviewed. Thepresent literature review includes studies publishedin peer-reviewed journals that have presentedoriginal research data on healthy human subjects.Regarding training studies, we only consideredPLY studies (and studies that combined PLY withother training modalities) which lasted  ‡4 weeks.

    The size of the effect of PLY on each perfor-mance variable (i.e. muscle force or torque,muscle power, rate of force/torque development,vertical jump height, horizontal jump distance,

    sprint running performance, agility performanceand endurance performance) is given either bythe difference between the mean change in per-formance of subjects in the plyometric group andthe control group (controlled trials), or by thedifference between the mean change in perfor-mance of subjects in the plyometric group (single-group trials). To be able to compare the effects of PLY on different muscular and performancecharacteristics, we expressed the size of the effecteither relative to the mean value of the control

    group (controlled trials), or relative to the meanpre-test value of the PLY group (single-grouptrails) –  that is, in percentage values.

    2. Plyometric Training (PLY) on RigidSurfaces

    2.1 Musculoskeletal Adaptation to PLY

    2.1.1 Bone Adaptation to PLY 

    It is well established that physical exercise hasa positive effect on bone mass. This is particularlyevident for dynamic loading[36] of high magni-tude, i.e. high strain rate.[37] Since plyometric jumptraining is associated with high ground reactionforces (up to 7 times bodyweight),[38] this type of 

    exercise could be particularly suitable for increas-ing bone mass. Our literature search identified18 studies that examined bone adaptation to PLYin humans (table I); 13 involved children or ado-lescents, two involved young adults and three in-volved pre- and/or post-menopausal women. Moststudies incorporated PLY into either school- orhome-based exercise programmes; only two stu-dies combined PLY with WT. Training interven-tions in these studies mainly included 50 – 100 jumpsper session, three to five sessions per week and

    lasted between 5 and 24 months, considerablylonger than PLY interventions that are focusedon performance enhancement (see sections 2.2and 2.3).

    Twelve of 13 studies performed on children oradolescents reported significant positive effects of PLY on bone mass, with  relative  gains rangingfrom 1%   to 8%. However, bone adaptation tomechanical loading in children is not homo-genous but depends on the skeletal site and thematurity status of the participants. Specifically,

    positive effects of PLY on bone mass appear to behighest in early pubertal children, are somewhatlower in prepubertal children and are the lowestin pubertal children.[33,41,43,44] Furthermore, in-creases in bone mineral content and density ten-ded to be greater at the femoral neck than at thelumbar spine, trochanter or proximal femur. Im-portantly, school-based jump training program-mes not only increase bone mass in children, butalso improve bone structure and strength.[44,49]

    Finally, recent longitudinal studies showed that

    PLY in early childhood has a persistent long-term effect over and above the effects of normalgrowth and development.[52,55]

    Physiological Adaptation to Plyometric Training 861

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    6/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    Table I.  Chronological summary of studies examining the effects of plyometric jump training on bone tissue adaptation

    Study No. of subjects; design Training protocol Measures Relative

    effectsa(%)

    Bassey and

    Ramsdale[39]27 pre-menopausal women: 14

    underwent a high-impact trainingprogramme; RCT

    CMJ training programme

    performed 5 d/wk for 6 mo

    Femoral neck BMD

    Wards’s triangle BMDTrochanteric BMD

    Lumbar spine BMD

    ›   2.1fl   0.3

    ›   2.9b

    fl   0.3

    Bassey et al.[40] 55 pre-menopausal women: 30

    underwent a training intervention 123

    post-menopausal women: 69underwent a training intervention;

    RCTs

    CMJ training programme

    (50 jumps) performed 6 d/wk

    for 6 mo (pre-menopausal) or12 mo (post-menopausal)

    Pre-menopausal:

    Femoral neck BMD

    Trochanteric BMDLumbar spine BMD

    Post-menopausal:

    Femoral neck BMDTrochanteric BMD

    Lumbar spine BMD

    Post-menopausal(hormone replacement):

    Femoral neck BMDTrochanteric BMD

    Lumbar spine BMD

    ›   1.6

    ›   2.6b

    fl   0.8

    fl   1.1

    fl   0.4

    fl   0.1

    ›   0.2fl   0.5

    fl   0.3

    Witzke and Snow[33] 53 adolescent girls: 25 underwent a

    training intervention; non-RCT

    Combined PLY and resistance

    training programme performed

    3  ·/wk for 9 mo

    Total body BMC

    Lumbar spine BMC

    Femoral neck BMC

    Trochanteric BMC

    Femoral mid-schaft BMC

    fl   0.4›   0.9›   1.4fl   0.4›   0.9

    Heinonen et al.[41] 58 pre-menarcheal girls: 25

    underwent a training intervention 68

    post-menarcheal girls: 64 underwent

    a training intervention; non-RCT

    Combined aerobic step and

     jump training programme

    (100 – 200 jumps) performed

    2 ·/

    wk for 9 mo

    Pre-menarcheal girls:

    Lumbar spine BMC

    Femoral neck BMC

    Post-menarcheal girls:Lumbar spine BMC

    Femoral neck BMC

    ›   3.3b

    ›   4.0b

    ›   1.1›   0.2

    Fuchs et al.[42] 89 pre-pubescent children: (51 boys,

    38 girls) 55 underwent a training

    intervention; RCT

    Jump training programme

    (50 – 100 jumps) performed

    3  ·/wk for 7 mo

    Femoral neck BMC

    Femoral neck BMD

    Lumbar spine BMC

    Lumbar spine BMD

    ›   4.9b

    ›   1.2

    › 3.4b

    ›   2.0b

    MacKelvie et al.[43] 70 pre-pubertal girls: 44 underwent a

    training intervention 107 early

    pubertal girls: 43 underwent a training

    intervention); RCT

    Jump training programme

    (50 – 100 jumps) performed

    3  ·/wk for 7 mo

    Pre-pubertal girls:

    Total body BMC

    Total body BMD

    Lumbar spine BMC

    Lumbar spine BMD

    Femoral neck BMC

    Femoral neck BMD

    Trochanteric BMC

    Trochanteric BMD

    Proximal femur BMC

    Proximal femur BMD

    Early pubertal girls:

    Total body BMC

    Total body BMD

    Lumbar spine BMC

    Lumbar spine BMD

    Femoral neck BMC

    Femoral neck BMD

    Trochanteric BMC

    Trochanteric BMD

    Proximal femur BMC

    Proximal femur BMD

    2 02 0›   0.4

    ›   0.22 0

    ›   0.2

    fl   0.6fl   0.2

    fl   0.9

    fl   0.6

    ›   4.3

    ›   0.3

    ›   1.8b

    ›   1.9

    ›   3.8b

    ›   2.7b

    ›   0.3

    fl   0.2

    ›   1.3

    ›   0.8

    Continued next page 

    862   Markovic & Mikulic

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    7/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    Table I. Contd

    Study No. of subjects; design Training protocol Measures Relative

    effectsa(%)

    Petit et al.[44] 70 pre-pubertal girls: 44 underwent a

    training intervention

    107 early pubertal girls: 43 underwent

    a training intervention; RCT

    Jump training programme

    (50 – 100 jumps) performed

    3  ·/wk for 7 mo

    Pre-pubertal girls:

    Femoral neck BMD

    Femoral neck BA

    Intertrochanter BMD

    Intertrochanter BA

    Femoral shaft BMD

    Femoral shaft BA

    Early pubertal girls:

    Femoral neck BMD

    Femoral neck BA

    Intertrochanter BMD

    Intertrochanter BA

    Femoral shaft BMD

    Femoral shaft BA

    fl   0.6

    fl   1.0

    fl   0.5

    fl   0.2

    fl   0.8

    fl   1.0

    ›   2.7b

    ›   0.6b

    ›   1.8b

    ›   1.2›   0.4

    ›   0.3

    MacKelvie et al.[45] 121 pre-pubertal boys: 61 underwenta training intervention; RCT

    Jump training programme(50 – 100 jumps) performed

    3  ·/wk for 7 mo

    Total body BMCLumbar spine BMC

    Lumbar spine BMD

    Femoral neck BMC

    Femoral neck BMD

    Trochanteric BMCTrochanteric BMD

    Proximal femur BMC

    Proximal femur BMD

    ›   1.5b

    ›   1.3

    ›   0.72 0

    ›   0.22 0

    ›   1.3

    ›   1.2

    ›   1.1b

    Johannsen et al.[46] 54 children (age: 3 – 18 y; 31 girls):

    28 underwent a training intervention;

    RCT

    Jump training (25 jumps)

    performed 5  ·/wk for 12 wk

    Total body BMC

    Legs BMC

    Spine BMCSpine BMD

    Femoral neck BMCFemoral neck BMD

    Distal tibia BMC

    Distal tibia BMD

    ›   1.1b

    ›   1.7b

    2 0›   0.6

    ›   1.5

    ›   1.2fl   1.3fl   1.5

    Iuliano-Burns

    et al.[47]36 pre-pubertal and early pubertal

    girls: 18 underwent a training

    intervention; RCT

    Jump training performed 3  ·/wk

    for 8.5 mo

    Total body BMC

    Lumbar spine BMC

    Femur BMC

    Tibia/fibula BMC

    ›   1.4fl   2.5fl   1.5›   2.0b

    MacKelvie et al.[48] 75 girls (age: 9.9y): 32 underwent a

    training intervention; RCT

    Jump training programme

    (50 – 132 jumps) performed

    3  ·/wk for 20 mo

    Total body BMC

    Lumbar spine BMC

    Femoral neck BMCTrochanteric BMC

    Proximal femur BMC

    ›   2.3

    ›   6.0b

    ›   3.9b

    fl   3.1

    ›   0.6

    MacKelvie et al.[49] 64 pre-pubertal or early pubertal

    boys: 31 underwent a training

    intervention; RCT

    Jump training programme

    (50 – 132 jumps) performed

    3  ·/wk for 20 mo

    Total body BMC

    Lumbar spine BMC

    Femoral neck BMC

    Trochanteric BMC

    Proximal femur BMC

    ›   1.7›   2.0›   3.9b

    fl   3.1›   4.3

    Vainionpää et al.[50] 80 pre-menopausal women: 39

    underwent a training intervention;RCT

    Jump training combined with

    walking, running and stampingperformed 3  ·/wk for 12 mo

    Lumbar spine BMD

    Femoral neck BMDTrochanter BMD

    Intertrochanter BMD

    Ward’s triangle BMD

    ›   0.3›   1.4b

    ›   0.9›   1.0b

    ›   1.7

    Continued next page 

    Physiological Adaptation to Plyometric Training 863

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    8/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    Table I. Contd

    Study No. of subjects; design Training protocol Measures Relative

    effectsa(%)

    McKay et al.[51] 124 children (age: 10.1 y): 51 (23

    boys and 28 girls) underwent a

    training intervention; non-RCT

    CMJ training (10 jumps)

    performed 3  ·/wk for 8 mo

    Total body BMC

    Total body BA

    Lumbar spine BMC

    Lumbar spine BA

    Proximal femur BMD

    Proximal femur BA

    Intertrochanter BMC

    Intertrochanter BA

    Trochanter BMC

    Trochanter BA

    Femoral neck BMC

    Femoral neck Area

    fl   1.3b

    fl   1.5b

    fl   0.8

    fl   0.3

    ›   2.6b

    ›   1.3

    ›   2.9b

    ›   2.2

    ›   1.9›   0.6

    fl   0.2fl   0.3

    Kato et al.[32] 36 female college students (age:20.7 y): 18 underwent a training

    programme; RCT

    CMJ training (10 jumps)performed 3  ·/wk for 6 mo

    Lumbar spine BMDProximal femur BMD

    Femoral neck BMD

    Ward’s triangle BMD

    Trochanter BMD

    ›   1.7b

    ›   1.8›   3.6b

    ›   2.6

    ›   1.5

    Gunter et al.[52] 199 children (94 boys, 105 girls):

    101 underwent a training intervention;

    RCT

    Jump training (~100 jumps)

    performed 3  ·/wk for 7 mo

    Total body BMC

    Lumbar spine BMC

    Femoral neck BMC

    Trochanter BMC

    ›   7.3b

    ›   7.9b

    ›   7.7b

    ›   8.4b

    Weeks et al.[53] 81 adolescents (37 boys, 44 girls):

    43 underwent a training intervention;RCT

    Jump training (~300 jumps)

    performed 2  ·/wk for 8 mo

    Boys:

    Total body BMCFemoral neck BMC

    Femoral neck BATrochanter BMC

    Lumbar spine BMC

    Lumbar spine BA

    Girls:

    Total body BMC

    Femoral neck BMCFemoral neck BA

    Trochanter BMC

    Lumbar spine BMC

    Lumbar spine BA

    ›   4.2b

    ›   2.1

    ›   1.1›   6.7b

    ›   3.6b

    ›   1.7

    ›   1.9

    ›   7.8b

    ›   0.3›   6.9

    fl   1.9›   1.7

    Guadalupe-Grau

    et al.[54]66 physical education students (43

    males, 23 females): 28 underwent a

    training intervention; RCT

    PLY (40 – 70 jumps) combined

    with WT performed 3  ·/wk for

    9 wk

    Men:

    Total body BMC

    Total body BMD

    Lumbar spine BMC

    Lumbar spine BMD

    Lower limbs BMC

    Lower limbs BMD

    Femoral neck BMC

    Femoral neck BMD

    Ward’s triangle BMD

    Trochanter BMD

    Intertrochanter BMD

    Women:

    Total body BMC

    Total body BMD

    Lumbar spine BMCLumbar spine BMD

    Lower limbs BMC

    ›   0.3

    ›   0.8

    ›   1.9

    ›   0.92 02 0

    ›   1.5b

    fl   2.8

    ›   1.0

    fl   2.22 0

    ›   1.0

    fl   0.9›   0.72 0

    ›  0.6

    Continued next page 

    864   Markovic & Mikulic

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    9/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    Bone adaptation to PLY in adults has beenmuch less studied (table I). The available data sug-gest that PLY effects on bone mass in women areage specific. More precisely, significant positivegains in bone mass (1 – 4%) following PLY havebeen observed in young and pre-menopausal women,but not in post-menopausal women.[32,39,40,50,54,56]

    Taken together, these results suggest that PLY, per-formed three to five times a week over 5 – 24 months,

    represents an effective training method for enhan-cing bone mass in prepubertal and early pubertalchildren, young women and premenopausal women.More studies are needed to test the effectivenessof PLY on bone mass in other populations (e.g.athletes and the elderly).

    2.1.2 Muscle-Tendon Complex and Joint 

    Adaptations to PLY 

    In SSC movements, the elastic behaviour of muscles, ligaments and tendons plays a decisive

    role.[57-59] In that regard, the importance of stiff-ness characteristics of the muscle-tendon complexin SSC exercise performance has been particularlystressed in scientific literature. Indeed, many au-thors have suggested that a stiff muscle-tendoncomplex is optimal for performance of SSC acti-vities since it allows a rapid and more efficienttransmission of muscle force to skeleton and, con-sequently, higher rates of force development.[60-63]

    However, a number of cross-sectional studies haveproven otherwise by showing that the stiffness of 

    the muscle-tendon complex correlates negativelyto the augmentation of performance in concen-tric motion during SSC exercises.[64-68] Further-

    more, Stafilidis and Arampatzis[69] recently showedthat faster sprinters have significantly lower stiff-ness of vastus lateralis tendon and aponeurosiscompared with slower sprinters. The authors alsoreported that maximum elongation of vastus la-teralis tendon and aponeurosis (i.e. lower stiff-ness) was significantly correlated (r=-0.57) with100 m sprint performance time. Finally, Wilsonet al.[70] have observed that flexibility training in-

    creased performance in upper-body SSC exercisewith a reduction in the muscle-tendon complexstiffness. The authors suggested that a more com-pliant muscle-tendon unit can store and releasemore elastic energy, which in turn could improveSSC performance. A more compliant muscle-tendon unit could also improve SSC performanceby allowing the muscle fibres to operate at a moreoptimal length over the first part of their short-ening range. Collectively, these findings suggestthat a more compliant muscle-tendon complex

    could be advantageous for SSC performance andthat training could change the elastic behaviourof joint sub-components.

    In that regard, our literature review revealedseveral human studies that examined the effects of short-term (6 – 15 weeks) PLY on stiffness of variousanatomical structures and/or their combinationsas follows: joint stiffness,[34] musculo-articularstiffness[71,72] or the stiffness of particular elasticcomponents within the Hill’s three-componentmodel  –  parallel elastic component (i.e. passive

    muscles),[72,73] serial elastic component[19,35,74] or just passive part of the serial elastic component(i.e. tendons).[34,72,75,76] For example, Kubo et al.[34]

    Table I. Contd

    Study No. of subjects; design Training protocol Measures Relative

    effectsa(%)

    Lower limbs BMD

    Femoral neck BMC

    Femoral neck BMD

    Ward’s triangle BMD

    Trochanter BMD

    Intertrochanter BMD

    2 0

    ›   4.2b

    fl   1.0

    fl   2.32 02 0

    a [(Post-training –  pre-training) –  (post-control –  pre-control)]/pre-control.

    b Significantly (p< 0.05) greater increase in the exercise vs control group.

    BA= bone area;   BMC=bone mineral content;   BMD=bone mineral density;   CMJ= countermovement jump;   PLY=plyometric training;

    RCT= randomized controlled trial;  WT =weight training;  ·/wk = sessions times per week;   ››   indicates increase in performance;   flfl   indicates

    decrease in performance;2 indicates no change in performance.

    Physiological Adaptation to Plyometric Training 865

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    10/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    reported an increase of 63.4%   in ankle jointstiffness assessed during drop jumps (DJs) withno significant changes in Achilles tendon stiffnessfollowing 12 weeks of PLY. Notably, the authorsalso observed that PLY significantly increased(i) the maximal Achilles tendon elongation and theamount of stored elastic energy; and (ii) the SSC-type jumping performance. No change in Achillestendon stiffness and a significant increase in theSSC-type jumping performance following 8 weeksof PLY was also observed by Foure et al.[72] Inaddition, Wu et al.[76] recently reported a signif-

    icant increase in jump performance and Achillestendon elastic energy storage and release follow-ing 8 weeks of PLY; however, the authors alsoreported a significant increase in Achilles tendonstiffness following PLY intervention.[76] Similarly,Burgess et al.[75] also reported that 6 weeks of PLY significantly increased the Achilles tendonstiffness by 29% in young adults, together with asignificant increase in concentric-only explosivemuscular performance.

    Furthermore, several research groups focused

    on the entire serial elastic component of plantarflexor muscles and observed either a significantincrease[19,74] or a decrease[35] in its stiffness follow-ing PLY. Interestingly, the two studies that re-ported conflicting findings regarding PLY effectson the serial elastic component stiffness also re-ported significant increases in the same SSC jumpperformance.[19,35] Two studies from the same re-search group focused on the musculo-articularstiffness of the ankle joint and showed either sig-nificant increase,[71] or no change[72] in musculo-

    articular stiffness of the ankle joint followingPLY. Notably, in these two experiments the au-thors used different techniques for determinationof the global musculo-articular stiffness. Finally,Malisoux et al.[73] observed that PLY inducedincreases in passive stiffness of fast-twitch musclefibres, and Foure et al.[72] reported a significantincrease in the passive stiffness of the gastrocnemii(i.e. predominantly fast-twitch muscle) after 8 weeksof PLY.

    Overall, these studies showed that PLY has the

    potential to change the various elastic compon-ents of the muscle-tendon complex. However, thecited studies provided conflicting findings that

    are difficult to interpret, particularly if we takeinto account the complexity of the relationshipsbetween the elastic properties at different anatom-ical levels[66,77] and methodological limitations of certain approaches in studying stiffness of biolo-gical tissues.[78] The recently reported results byFoure et al.[72] shed some light on this complexissue by showing that 8 weeks of PLY induced asignificant relative increase of 33% in the passivestiffness of the gastrocnemii without changes inthe Achilles tendon stiffness or global passivemusculo-articular stiffness of the ankle joint. As a

    possible explanation of the results, the authorsput forward a hypothesis that the muscle-tendoncomplex of gastrocnemii (bi-articular muscle) andsoleus (mono-articular muscle) may have a dif-ferent response to PLY. Further studies are need-ed to test this hypothesis, as well as to focus onthe specific effects of PLY on particular elasticcomponents of the muscle-tendon complex, andthe overall joint behaviour during SSC movements.

    2.2 Neuromuscular Adaptations to PLY

    2.2.1 Muscle Fibre Type 

    Several animal studies have shown that PLYcould induce fibre type transition in trainedmuscles. Specifically, in the soleus muscle of a rat,PLY induces a significant relative increase in typeII fibres.[79-82] In humans, only three studies ex-amined the muscle fibre transition as a result of PLY.[83-85] Similar to the results of animal stud-ies, Malisoux et al.[83] also found a significantincrease in the proportion of type IIa fibres of the

    vastus lateralis muscle. In contrast, Kyrolainenet al.[84] and Potteiger et al.[85] did not observe anysignificant changes in fibre-type composition of the lateral gastrocnemius and vastus lateralismuscles, respectively. When PLY was combinedwith WT, Perez-Gomez et al.[86] observed a sig-nificant increase in percentage of type IIa fibresin vastus lateralis, whereas Hakkinen and co-workers[16,87] found no changes in fibre com-position. Combination of PLY with endurancetraining also had no effect on fibre composition

    of vastus lateralis muscle.[85] Collectively, the re-sults of a limited number of human studies areinconclusive regarding the effects of PLY on

    866   Markovic & Mikulic

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    11/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    human muscle fibre-type composition. When takinginto account the results of animal studies, it ispossible that PLY-induced fibre-type transitionin leg extensor muscles could be muscle specific.Future studies should test this hypothesis.

    2.2.2 Whole Muscle and Single Fibre Contractile 

    Performance 

    Numerous previous studies examined the effectsof various training paradigms such as resistancetraining, endurance training and sprint trainingon whole muscle or single fibre contractile per-

    formance.

    [88-91]

    Surprisingly, however, we foundonly three studies published in peer-reviewed jour-nals that examined the effects of PLY on humanmuscle contractile performance.[34,35,73] Grossetet al.[35] recently showed that 10 weeks of PLYincreased twitch peak torque and rate of torquedevelopment in the gastrocnemius muscle. Theauthors also observed a slight decrease in contrac-tion time. In another study, Kubo et al.[34] observ-ed that 12 weeks of PLY significantly decreasedplantar flexors contraction time, with no changes

    in twitch peak torque and rate of torque devel-opment. These data generally suggest that PLYcan increase the contractility of plantar flexormuscles. Malisoux et al.,[73] on the other hand,focused on the contractile properties of singlefibres of vastus lateralis muscle and reported that8 weeks of PLY induced significant increases inpeak force and maximal shortening velocity intype I, IIa and hybrid IIa/IIx fibres, while peakpower increased significantly in all fibre types.Note that these changes in a single fibre function

    were accompanied by significant improvementsin the whole muscle strength and power. Thelatter results are particularly important since theysuggest that PLY-induced improvements in mus-cle function and athletic performance could bepartly explained by changes in the contractileapparatus of the muscle fibres, at least in kneeextensor muscles. Further studies are needed toexamine whether PLY induces similar adaptivechanges in single fibres of plantar flexors.

    2.2.3 Whole Muscle and Single Fibre Hypertrophy 

    The effects of strength and endurance trainingon human muscle and/or fibre size are well docu-

    mented in the literature. Regarding PLY effectson human muscle size, we found one study thatfocused on the whole muscle[34] and three studiesthat focused on single muscle fibres.[73,84,85] Kuboet al.[34] used the MRI technique and showed that12 weeks of PLY induced a significant increase inplantar flexor muscle volume (~5%), and this ef-fect was similar to the effect induced by WT of similar duration. Furthermore, Malisoux et al.[73]

    reported significant increases in a cross-sectionalarea of type I (+23%), type IIa (+22%) and typeIIa/IIx fibres (+30%) in vastus lateralis muscle

    following 8 weeks of PLY. Potteiger et al.[85]

    alsoreported significant increases in a type I and typeII fibre cross-sectional area of the vastus lateralismuscle, but these effects were of smaller magnitude(+6 – 8%). In contrast, Kyrolainen and co-workers[84]

    observed no changes in a fibre cross-sectional areaof gastrocnemius muscle following 15 weeks of PLY. When PLY was combined with WT, Hakkinenet al.[87] observed no changes in a fibre cross-sectional area of the vastus lateralis muscle inwomen. However, a similar training protocol did

    induce a significant increase (~20%) in the meanarea of fast-twitch fibres in men.[16] Furthermore,Perez-Gomez et al.[86] reported that combined PLYand WT increased lower-limb lean mass (+4.3%),as determined by dual energy x-ray absorptiometry.Finally, an 8-week combined PLY and endurancetraining also resulted in a significant fibre hyper-trophy (~6 – 7%) in vastus lateralis muscle.[85]

    Overall, these data suggest that short-term PLY,alone or in combination with WT, has the po-tential to induce a moderate hypertrophy of both

    type I and type II muscle fibres; however, theseeffects (i) are generally lower compared withthose induced by WT; and (ii) appear to be morepronounced in knee extensors than in plantarflexors.

    2.2.4 Muscle Geometry 

    It is well known that a muscle’s geometrystrongly influences its force and power outputand that it can be changed with WT.[92] To ourknowledge, only one study examined muscle ar-

    chitectural adaptations to PLY, and it was com-bined with sprint training.[93] The authors showedthat 5 weeks of combined PLY and sprint training

    Physiological Adaptation to Plyometric Training 867

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    12/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    intervention decreased fascicle angle and increasedfascicle length in knee extensor muscles. Differ-ential muscle architectural adaptations were ob-served when WT was added to PLY and sprinttraining; however, both training groups improvedathletic performance to a similar extent.[93] Ob-viously, more studies are needed before any firmconclusions can be drawn regarding PLY effectson muscle geometry.

    2.2.5 Neural Adaptation 

    The neural control, including central and peri-

    pheral components, plays a key role in forcepotentiation during the SCC-type exercises. Of particular importance are muscle activation priorto the ground impact (pre-activation) and reflexfacilitation during the late eccentric and earlyconcentric phase.[94] Thus, it is reasonable to as-sume that PLY-induced changes in human musclefunction and performance have a neural origin.Our literature search revealed six PLY stud-ies[28,34,76,84,95,96] and three combined PLY andWT studies[87,97,98] that focused on neural adap-

    tation. Notably, most research groups used onlysurface electromyography (EMG) during max-imal voluntary contractions (MVC) or duringvertical jumps to detect changes in muscle activityfollowing an intervention.

    Regarding PLY, several studies focused onchanges in leg muscle activation during verti-cal jumping and provided conflicting findings.Chimera et al.[28] reported that adductor musclepre-activation and adductor and abductor co-activation both increased after PLY during DJ

    performance. No changes in the EMG activity of quadriceps and hamstrings muscles were observ-ed. Kyrolainen and co-workers[95,96] showed thatleg muscle activity patterns during DJ did notchange following an intervention; however, inone of these studies the authors did observe asignificant increase in the pre-activity of leg ex-tensors during DJ performance.[95] Kubo et al.[34]

    observed no changes in plantar flexor musclesactivity during pre-landing and eccentric phasesof vertical jumps following PLY. However, they

    reported a significant increase in plantar flexormuscles activity during the concentric phase of allstudied vertical jumps. Moreover, using the

    twitch interpolation technique, these authors alsoassessed the activation level of plantar flexorsprior to and after PLY, and reported a signifi-cant increase in both MVC (+17.3%) and activa-tion level (+5.6%) of plantar flexor muscles. Wuet al.[76] used another technique –  root mean squareEMG –  that was normalized to the respective M-wave, and showed that soleus (but not gastroc-nemius) normalized EMG increased significantlyafter PLY, without any change in maximal M-waveamplitude. Furthermore, Kyrolainen et al.[84]

    reported that PLY significantly increased both

    MVC and muscular activity of plantar flexors,but not of knee extensors. Finally, there is limitedevidence from both human[99] and animal[82] ex-periments that PLY may change the stretch reflexexcitability. These findings suggest that neuro-muscular adaptation to PLY is not only limitedto the motor pathways to the muscle, but alsoconcerns its sensory part. Regarding studies thatcombined PLY with WT, all of them reportedsignificant training-induced increases in leg ex-tensor muscle activity during either maximal iso-

    metric contractions[16,87]

    or during vertical jumpperformance.[97,98]

    Taken together, the reviewed studies generallysuggest that PLY alone can increase MVC andvoluntary activation of plantar flexors. This en-hanced voluntary activity of plantar flexors couldbe accounted for by an increase in motor unitrecruitment or discharge rate,[76,100] both medi-ated by changes in descending cortical outflow.Other possible aspects of neural adaptation toPLY include (i) changes in leg muscle activa-

    tion strategies (or inter-muscular coordination)during vertical jumping, particularly during thepreparatory (i.e. pre-landing) jump phase; and(ii) changes in the stretch reflex excitability.When PLY was combined with WT, a greaterpotential for increasing the EMG activity of legextensors was observed compared with whenPLY was the only training modality. However,one should use considerable caution in inter-preting the EMG amplitude following training,as changes in EMG amplitude can be attributed

    to alterations in central neural drive, muscle fac-tors such as muscle hypertrophy or a variety of technical factors not reflective of physiological

    868   Markovic & Mikulic

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    13/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

    changes.[101] Although some of these problemscan be overcome by using EMG normalizationprocedures, single motor unit recording tech-niques and measurements of evoked reflex re-sponses (Hoffman reflex, F-wave   –   an electro-physiological variant of the Hoffman reflex),[56]

    these methods have rarely been used in humanPLY studies. Therefore, our current knowledgeabout PLY-induced changes in neural function islimited.

    2.2.6 Muscle Strength and Power 

    Numerous previous studies have examined theeffects of short-term PLY on the strength andpower of lower-extremity muscles (table II) andhave reported variable results. Specifically, re-lative changes in maximal strength of lower-ex-tremity muscles induced by PLY ranged from+3.2%   to   +45.1%; however, most (i.e. 12 of 25)studies reported positive effects and these weremainly  ‡10%. For ‘explosive’ muscle strength orrate of force/torque development, these relativeeffects were more variable (range -22.3% to+33.0%;

    table II). Still, most (i.e. 8 of 10) studies did observea relative increase in ‘explosive’ muscle strengthfollowing a PLY intervention. Finally, PLY pro-duced a relative increase in muscle power in 13of 16 studies, and these positive effects rangedbetween   +2.4%   and   +31.3%. Importantly, posi-tive strength and power gains as a result of PLYwere observed in both athletes and non-athletes,and in both males and females. A recent meta-analytical review supports this conclusion by show-ing that PLY significantly improves strength

    performance and that PLY gains are independentof the fitness level or sex of the subject. [127]

    Although numerous studies examined the ef-fects of PLY on muscle strength and power, onlyfour studies actually focused on the possibleneuromuscular mechanisms behind these effects.Kyrolainen et al.[84] showed that 15 weeks of PLYimproves the strength of plantar flexors but notthe rate of force development, and these changeswere accompanied by a significant increase inmuscle activity without any changes in muscle-

    fibre distributions and areas. The authors foundno change in maximal strength and muscle acti-vation for knee extensor muscles but reported a

    significant increase in the rate of force develop-ment. In contrast, Kubo et al.[34] showed thatPLY-induced changes in plantar flexors strengthwere accompanied by both significant hyper-trophy and an increase in the activation level of those muscles. Furthermore, Potteiger et al.[85]

    showed that PLY increased leg extensors musclepower (+3 – 5%), and these changes were accom-panied by a significant increase in the cross-sec-tional area of vastus lateralis type I (+4.4%) andtype II (+7.8%) muscle fibres. Finally, Malisouxet al.[73] showed that PLY significantly increased

    leg extensors strength and power by  +

    12 – 

    13%

    ,and these changes in performance were accom-panied by significant increases in single-fibre dia-meter, peak force, shortening velocity and power.Collectively, these data, together with the datapresented in previous sections (see sections 2.2.1 – 2.2.5), suggest that increases in muscle strengthand power after PLY could have both a neuraland muscular origin. Note, however, that some of these changes could be different from the changesinduced by other resistance training modalities,

    namely (i) changes in muscle architecture (i.e. adecrease in fascicle angle and an increase in fas-cicle length of knee extensors[93]); (ii) changes inthe stiffness of various elastic components of themuscle-tendon complex of plantar flexors;[35,66,71,72]

    and (iii) changes in single fibre mechanics of kneeextensors (i.e. enhanced force, velocity and, con-sequently, power of slow and fast muscle fibres[90]).

    When PLY is combined with WT, its potentialfor augmenting human muscle strength and poweris further increased (table III). Indeed, all studies

    that compared PLY with combined PLY and WTreported significantly greater relative changes inmuscle strength and power after combined PLYand WT.[10,15,102] This conclusion is further sup-ported by the results of a recent meta-analyticalreview that showed significantly higher strengthgains after combined PLY and WT comparedwith after PLY alone.[127] The relative increase inmaximal strength and power after combinedPLY and WT is present in all published studiesand it ranges from   +5 – 43%, and from   +2 – 37%,

    respectively (table III). Limited data exist re-garding the effects of combined PLY and WT onthe rate of force/torque development (table III).

    Physiological Adaptation to Plyometric Training 869

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    14/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

        T   a    b    l   e    I    I .

        C    h   r   o   n   o    l   o   g    i   c   a    l   s   u   m   m   a   r   y   o    f   s    t   u    d    i   e   s   e   x   a   m

        i   n    i   n   g    t    h   e   e    f    f   e   c    t   s   o    f   p    l   y   o   m   e    t   r    i   c    t   r   a    i   n    i   n   g    (    P

        L    Y    )   o   n   s    k   e    l   e    t   a    l   m   u   s   c    l   e    f   u   n   c    t    i   o   n   a   n    d   a    t    h    l   e    t    i   c   p   e   r    f   o   r   m   a   n   c   e

        S    t   u    d   y

        N   o .   o    f   s   u    b    j   e   c    t   s   ;   s   e   x   ;

        P    L    Y

        R   e    l   a    t    i   v   e   e    f    f   e   c    t   s    (     %    )

        f    i    t   n   e   s   s    l   e   v   e    l   ;   c   o   n    t   r   o    l

       g   r   o   u   p

        i   n    t   e

       r   v   e   n    t    i   o   n

       e   x   e

       r   c    i   s   e

        (   w    k

         /   s   e   s   s    i   o   n   s    )

       m   a   x    i   m   a    l   s    t   r   e   n   g    t    h

        (   p   e   r    f   o   r   m   a   n   c   e

       v   a   r    i   a    b    l   e    )

       e   x   p    l   o

       s    i   v   e

       s    t   r   e   n   g    t    h

       m   u   s   c    l   e

       p   o   w   e   r

        j   u   m   p    i   n   g

       p   e   r    f   o   r   m   a   n   c   e

        (    j   u   m   p    t   y   p   e    )

       s   p   r    i   n

        t    i   n   g

       p   e   r    f   o

       r   m   a   n   c   e

        (    d    i   s    t   a   n   c   e ,   m

        [   y    d    ]    a

        )

       a   g    i    l    i    t   y

       p   e   r    f   o   r   m   a   n   c   e

       e   n    d   u   r   a   n   c   e

       p   e   r    f   o   r   m   a   n

       c   e

        (   m   e   a   s   u   r   e    )

        B    l   a    t    t   n   e   r   a   n    d    N   o    b    l   e     [     5     ]

        2    6   ;    M   ;    N  -    A   ;   y   e   s

        D    J    T    (    8     /    2    4    )

             ›

        8 .    5    (    C    M    J    A    )

        D   v    i   r     [     8     ]

        1    6   ;    M   ;    N  -    A   ;   y   e   s

        D    J    T    (    8     /    2    4    )

             ›

        6 .    4

             ›

        1    3 .    0    (    C    M    J    A    )

             ›

        6 .    9    (    C    M    J    A    )

        C    M

        J    T    (    8     /    2    4    )

             ›

        5 .    7

        H   a    k    k    i   n   e   n

       a   n    d    K   o   m    i     [     9     7     ]

        1    0   ;    M   ;    N  -    A   ;   n   o

        C    O

        M    B    (    2    4     /    7    2    )

             ›

        2    1 .    2    (    S    J    )

             ›

        1    7 .    6    (    C    M    J    )

             ›

        2    5 .    0    (    D    J    )

             ›

        2    6 .    8    (    D    J    )

             ›

        3    2 .    4    (    D    J    )

        B   r   o   w   n   e    t   a    l .     [     9     ]

        2    6   ;    M   ;    A   ;   y   e   s

        D    J    T    (    1    2     /    3    4    )

             ›

        5 .    0    (    C    M    J    )

             ›

        6 .    0    (    C    M    J    A    )

        H   o   r    t   o    b   a   g   y

        i   e    t   a    l .     [     1     2     ]

        2    5   ;    M   ;    N  -    A   ;   y   e   s

        C    O

        M    B    (    1    0     /    2    0    )

             ›

        6 .    1    (    C    M    J    A    )

             ›

        1    2 .    1    (    C    M    J    A    )

             ›

        2 .    9    (    H    J    )

             ›

        1 .    4    (    H    J    )

        B   a   u   e   r   e    t   a

        l .     [     1     0     2     ]

        8    N    S   ;    N  -    A   ;   n   o

        C    O

        M    B    (    1    0     /    3    0    )

             ›

        1    5 .    1    (    F     /    T    )

             ›

        5 .    7    (    F     /    T    )

             ›

        7 .    1    (    F     /    T    )

             ›

        5 .    5    (    C    M    J    A    )

        H   a    k    k    i   n   e   n

       e    t   a    l .     [     8     7     ]

        1    4   ;    F   ;    N  -    A   ;   y   e   s

        C    O

        M    B    (    1    6     /    4    8    )

             ›

        2    7 .    5    (    F     /    T    )

             ›

        8 .    2

        H   o   r    t   o    b   a   g   y

        i   e    t   a    l .     [     1     1     ]

        1    9   ;    M   ;    N  -    A   ;   y   e   s

        C    O

        M    B    (    1    0     /    3    0    )

             fl

        3 .    2    (    F     /    T    )

             ›

        3 .    9    (    H    J    )

             ›

        2 .    7    (    H    J    )

             fl

        0 .    6    (    3    0    )

        W    i    l   s   o   n   e    t

       a    l .     [     1     0     3     ]

        2    7   ;    M   ;    N  -    A   ;   y   e   s

        D    J    T    (    5     /    1    0    )

             ›

        3 .    3    (    F     /    T    )

             ›

        2 .    4

        D    J    T    (    1    0     /    2    0    )

             ›

        0 .    2    (    F     /    T    )

             ›

        1 .    1

             ›

        6 .    7    (    S    J    )

             ›

        7 .    8    (    C    M    J    )

             ›

        1 .    1    (    3    0    )

        H   o    l   c   o   m    b   e    t   a    l .     [     1     0     4     ]

        1    9   ;    M   ;    N  -    A   ;   y   e   s

        C    M

        J    (    8     /    2    4    )

             fl

        0 .    9

             ›

        7 .    2

             ›

        3 .    3    (    S    J    )

             ›

        6 .    7    (    C    M    J    )

        D    J    T    (    8     /    2    4    )

             ›

        4 .    6

             ›

        1    0 .    2

             ›

        7 .    3    (    S    J    )

             ›

        9 .    4    (    C    M    J    )

        D    J    T    (    8     /    2    4    )

             ›

        3 .    1

             ›

        7 .    7

             ›

        6 .    4    (    S    J    )

             ›

        6 .    9    (    C    M    J    )

         C    o    n     t     i    n    u    e     d    n    e    x     t

        p    a    g    e

    870   Markovic & Mikulic

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    15/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

        T   a    b    l   e    I    I .    C

       o   n    t    d

        S    t   u    d   y

        N   o .   o    f   s   u    b    j   e   c    t   s   ;   s   e   x   ;

        P    L    Y

        R   e    l   a    t    i   v   e   e    f    f   e   c    t   s    (     %    )

        f    i    t   n   e   s   s    l   e   v   e    l   ;   c   o   n    t   r   o    l

       g   r   o   u   p

        i   n    t   e

       r   v   e   n    t    i   o   n

       e   x   e

       r   c    i   s   e

        (   w    k

         /   s   e   s   s    i   o   n   s    )

       m   a   x    i   m   a    l   s    t   r   e   n   g    t    h

        (   p   e   r    f   o   r   m   a   n   c   e

       v   a   r    i   a    b    l   e    )

       e   x   p    l   o

       s    i   v   e

       s    t   r   e   n   g    t    h

       m   u   s   c    l   e

       p   o   w   e   r

        j   u   m   p    i   n   g

       p   e   r    f   o   r   m   a   n   c   e

        (    j   u   m   p    t   y   p   e    )

       s   p   r    i   n

        t    i   n   g

       p   e   r    f   o

       r   m   a   n   c   e

        (    d    i   s    t   a   n   c   e ,   m

        [   y    d    ]    a

        )

       a   g    i    l    i    t   y

       p   e   r    f   o   r   m   a   n   c   e

       e   n    d   u   r   a   n   c   e

       p   e   r    f   o   r   m   a   n

       c   e

        (   m   e   a   s   u   r   e    )

        W    i    l   s   o   n   e    t

       a    l .     [     1     0     5     ]

        2    7   ;    M    N  -    A   ;   y   e   s

        D    J    T    (    8     /    1    6    )

             fl

        2 .    4    (    1    R    M    )

             fl

        6 .    9

             ›

        1    2 .    2    (    C    M    J    )

        H   e   w   e    t    t   e    t

       a    l .     [     2     5     ]

        1    1   ;    F   ;    A   ;   n   o

        C    O

        M    B    (    6     /    1    8    )

             ›

        1    2 .    2    (    F     /    T    )

             ›

        2    4 .    3    (    F     /    T    )

             ›

        4    3 .    6

             ›

        2    2 .    3

        C   o   r   n   u   e    t   a

        l .     [     7     1     ]

        1    9   ;    M   ;    N  -    A   ;   y   e   s

        C    O

        M    B    (    7     /    1    4    )

             ›

        1    4 .    3    (    F     /    T    )

        W   a   g   n   e   r   a   n    d

        K   o   c   a    k     [     1     0     6     ]

        4    0   ;    M   ;    A   ;   y   e   s

        C    O

        M    B    (    6     /    1    2    )

             ›

        2    3 .    2

             ›

        2 .    2    (    C    M    J    A    )

             ›

        1 .    7    (    5    0    )

             ›

        1 .    3    (    5    0    )

        4    0   ;    M   ;    N  -    A   ;   y   e   s

        C    O

        M    B    (    6     /    1    2    )

             ›

        1    9 .    8

             ›

        2 .    7    (    C    M    J    A    )

        G   e    h   r    i   e    t   a

        l .     [     1     0     7     ]

        1    0   ;    M   :    1    1   ;    F   ;

        D    J    T    (    1    2     /    2    4    )

             ›

        1    0 .    8    (    S    J    )

        N  -    A   ;   y   e   s

             ›

        1    0 .    8    (    C    M    J    )

             ›

        1    0 .    1    (    D    J    )

        9   ;    M   :    8   ;    F   ;    N  -    A   ;   y   e   s

        C    M

        J    T    (    1    2     /    2    4    )

             ›

        1    0 .    8    (    S    J    )

             ›

        9 .    0    (    C    M    J    )

             ›

        8 .    6    (    D    J    )

        Y   o   u   n   g   e    t   a    l .     [     1     0     8     ]

        1    4   ;    M   ;    N  -    A   ;   y   e   s

        D    J    T    (    6     /    1    8    )

             ›

        6 .    1    (    F     /    T    )

             fl

        1 .    7    (    S    J    )

             ›

        4 .    3    (    C    M    J    A    )

             ›

        9 .    0    (    D    J    )

        2    0   ;    M   ;    N  -    A   ;   y   e   s

        D    J    T    (    6     /    1    8    )

             ›

        0 .    8    (    F     /    T    )

             fl

        3 .    7    (    S    J    )

             ›

        1 .    6    (    C    M    J    A    )

             ›

        7 .    4    (    D    J    )

        P   o    t    t   e    i   g   e   r   e    t   a    l .     [     8     5     ]

        8   ;    M   ;    N  -    A   ;   n   o

        C    O

        M    B    (    8     /    2    4    )

             ›

        2 .    9

             ›

        5 .    8

             ›

        4 .    6    (    C    M    J    A    )

             ›

        1    3 .    8    ( .   V    O     2    m    a    x    )

        P   a   a   v   o    l   a    i   n

       e   n   e    t   a    l .     [     1     0     9     ]

        1    8   ;    M   ;    A   ;   y   e   s

        C    O

        M    B    (    9     /    0    )

             ›

        2    0 .    4    (    F     /    T    )

             ›

        6 .    0    (    H    J    )

             ›

        5 .    7    (    2    0    )

             fl

        5 .    8    ( .   V    O

         2    m    a    x    )

             ›

        0 .    8    (    L    T    )

        F   a    t   o   u   r   o   s   e    t   a    l .     [     1     5     ]

        2    1   ;    M   ;    N  -    A   ;   y   e   s

        C    O

        M    B    (    1    2     /    3    6    )

             ›

        8 .    2    (    1    R    M    )

             ›

        1    1 .    4    (    1    R    M    )

             ›

        2    5 .    9

             ›

        1    0 .    3    (    C    M    J    A    )

        R    i   m   m   e   r   a   n    d

        S    l   e    i   v   e   r    t     [     1     1

         0     ]

        1    7   ;    M   ;    A   ;   y   e   s

        C    O

        M    B    (    8     /    1    5    )

             ›

        2 .    2    (    4    0    )

             ›

        1 .    8    (    3    0    )

             ›

        1 .    6    (    2    0    )

             ›

        2 .    6    (    1    0    )

         C    o    n     t     i    n    u    e     d    n    e    x     t

        p    a    g    e

    Physiological Adaptation to Plyometric Training 871

    ª 2010 Adis Data Information BV. All rights reserved. Sports Med 2010; 40 (10)

  • 8/19/2019 Markovic, G. (2010). Neuro-musculoskeletal and Performance Adaptations to Lower-extremity Plyometric Training.

    16/39

    This material is

    the copyright of the

    original publisher.

    Unauthorised copyingand distribution

    is prohibited.

        T   a    b    l   e    I    I .    C

       o   n    t    d

        S    t   u    d   y

        N   o .   o    f   s   u    b    j   e   c    t   s   ;   s   e   x   ;

        P    L    Y

        R   e    l   a    t    i   v   e   e    f    f   e   c    t   s    (     %    )

        f    i    t   n   e   s   s    l   e   v   e    l   ;   c   o   n    t   r   o    l

       g   r   o   u   p

        i   n    t   e

       r   v   e   n    t    i   o   n

       e   x   e

       r   c    i   s   e

        (   w    k

         /   s   e   s   s    i   o   n   s    )

       m   a   x    i   m   a    l   s    t   r   e   n   g    t    h

        (   p   e   r    f   o   r   m   a   n   c   e

       v   a   r    i   a    b    l   e    )

       e   x   p    l   o

       s    i   v   e

       s    t   r   e   n   g    t    h

       m   u   s   c    l   e

       p   o   w   e   r

        j   u   m   p    i   n   g

       p   e   r    f   o   r   m   a   n   c   e

        (    j   u   m   p    t   y   p   e    )

       s   p   r    i   n

        t    i   n   g

       p   e   r    f   o

       r   m   a   n   c   e

        (    d    i   s    t   a   n   c   e ,   m

        [   y    d    ]    a

        )

       a   g    i    l    i    t   y

       p   e   r    f   o   r   m   a   n   c   e

       e   n    d   u   r   a   n   c   e

       p   e   r    f   o   r   m   a   n

       c   e

        (   m   e   a   s   u   r   e    )

        D    i   a    l    l   o   e    t   a

        l .     [     1     1     1     ]

        2    0   ;    M   ;    A   ;   y   e   s

        C    O

        M    B    (    1    0     /    3    0    )

             ›

        1    6 .    6

             ›

        1    4 .    3    (    S    J    )

             ›

        2    0 .    0    (    C    M    J    )

        M   a    t   a   v   u    l    j   e

        t   a    l .     [     1     7     ]

        2    2   ;    M   ;    A   ;   y   e   s

        D    J    T    (    6     /    1    8    )

             ›

        1    1 .    5    (    F     /    T    )

             ›

        1    0 .    7    (    F     /    T    )

             ›

        2 .    0    (    F     /    T    )

             fl

        1 .    8    (    F     /    T    )

             fl

        6 .    6         fl

        3 .    0         fl

        2    2 .    7

             fl

        1    8 .    2

             ›

        1    5 .    6    (    C    M    J    )

             ›

        1    3 .    8    (    C    M    J    )

        M    i    l    l   e   r   e    t   a    l .     [     1     1     2     ]

        2    7    N    S   ;    N  -    A   ;   y   e   s

        C    O

        M    B    (    8     /    1    6    )

             ›

        2 .    2    (    F     /    T    )

             ›

        0 .    9    (    F     /    T    )

             ›

        7 .    9    (    F     /    T    )

             fl

        1 .    7    (    F     /    T    )

             ›

        2 .    8    (    F     /    T    )

             ›

        2 .    9    (    F     /    T    )

             ›

        0 .    4

             fl

        0 .    2    (    C    M    J    A    )

        S   p   u   r   r   s   e    t   a    l .     [     1     9     ]

        1    7   ;    M   ;    A   ;   y   e   s

        C    O

        M    B    (    6     /    1    5    )

             ›

        1    3 .    3    (    F     /    T    )

             ›

        1    5 .    4    (    F     /    T    )

             ›

        3    1 .    3

             ›

        2    1 .    0

             ›

        1    8 .    2    (    C    M    J    )

             ›

        7 .    0    (    H    J    )

             ›

        7 .    8    (    R    E

        )

             ›

        6 .    4    (    R    E

        )

             ›

        5 .    1    (    R    E

        )

             ›

        1 .    2    (    E    R

        P    T    )

             fl

        3 .    1    ( .   V    O

         2    m    a    x    )

        T   u   r   n   e   r   e    t   a    l .     [     1     1     3     ]

        8   ;    M   :    1    0   ;    F   ;    A   ;   y   e   s

        C    O

        M    B    (    6     /    1    8    )

       2

        0 .    0    (    S    J    )

             ›

        4 .    8    (    C    M    J    )

             fl

        0 .    4    ( .   V    O

         2    m    a    x    )

        L   u   e    b    b   e   r   s

       e    t   a    l .     [     1     1     4     ]

        1    9   ;    M   ;    N  -    A   ;   n   o

        C    O

        M    B    (    4     /    1    2    )

             fl

        1 .    4

             ›

        3 .    7

             fl

        3 .    5    (    C    M    J    A    )

        C    O

        M    B    (    7     /    2    1    )

             ›

        0 .    3

             ›

        6 .    3

             fl

        0 .    3    (    C    M    J    A    )

        C   a   n   a   v   a   n   a   n    d

        V   e   s   c   o   v    i     [     1     1     5     ]

        2    0   ;    F   ;    N  -    A   ;   y   e   s

        C    O

        M    B    (    6     /    1    8    )

             fl

        5 .    2

             ›

        2 .    9    (    C    M    J    )

        C    h    i   m   e   r   a   e

        t   a    l .     [     2     8     ]

        1    6   ;    F   ;    A   ;   y   e   s

        C    O

        M    B    (    6     /    1    2    )

             ›

        3 .    7    (    D    J    )

             fl

        0 .    3    (    3    7    [    4    0   y    d    ]    )

        I   r   m    i   s   c    h   e   r

       e    t   a    l .     [     2     6     ]

        2    8   ;    F   ;    N  -    A   ;   y   e   s

        C    O

        M    B    (    9     /    1    8    )

             ›

        1    5 .    4

             ›

        5 .    7    (    C    M    J    A    )

        R   o    b    i   n   s   o   n

       e    t   a    l .     [     1     1     6     ]

        1    6   ;    F   ;    N  -    A   ;   n   o

        C    O

        M    B    (    8     /    2    4    )

             ›

        2    5 .    2    (    F     /    T    )

             ›

        4    5 .    1    (    F     /    T    )

             ›

        4    4 .    5    (    F     /    T    )

             ›

        2    4 .    3    (    F     /    T    )

             ›

        3    2 .    5    (    C    M    J    A    )

             ›

        6 .    2    (    4    0    )

        K   a    t   o   e    t   a    l .     [

         3