71
MAT 127 2.0 Calculus II Dr. G.H.J. Lanel Lecture 2 Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 1 / 22

MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

MAT 127 2.0 Calculus II

Dr. G.H.J. Lanel

Lecture 2

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 1 / 22

Page 2: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Outline

Outline

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 2 / 22

Page 3: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Basic Series that Converge

Outline

1 Basic Series that Converge

2 Basic Series that Diverge

3 Harmonic series

4 Necessary Condition for Convergent

5 Positive Terms Series

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 3 / 22

Page 4: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Basic Series that Converge

Geometric series:∞∑

n=1arn−1, if |r | < 1.

p-series:∞∑

n=1

1np , if p > 1.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 4 / 22

Page 5: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Basic Series that Converge

Geometric series:∞∑

n=1arn−1, if |r | < 1.

p-series:∞∑

n=1

1np , if p > 1.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 4 / 22

Page 6: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Basic Series that Diverge

Outline

1 Basic Series that Converge

2 Basic Series that Diverge

3 Harmonic series

4 Necessary Condition for Convergent

5 Positive Terms Series

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 5 / 22

Page 7: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Basic Series that Diverge

Geometric series:∞∑

n=1arn−1, if |r | ≥ 1.

p-series:∞∑

n=1

1np , if p ≤ 1.

Any series:∞∑

n=1an, for which limn→∞ an 6= 0.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 6 / 22

Page 8: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Basic Series that Diverge

Geometric series:∞∑

n=1arn−1, if |r | ≥ 1.

p-series:∞∑

n=1

1np , if p ≤ 1.

Any series:∞∑

n=1an, for which limn→∞ an 6= 0.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 6 / 22

Page 9: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Basic Series that Diverge

Geometric series:∞∑

n=1arn−1, if |r | ≥ 1.

p-series:∞∑

n=1

1np , if p ≤ 1.

Any series:∞∑

n=1an, for which limn→∞ an 6= 0.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 6 / 22

Page 10: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Outline

1 Basic Series that Converge

2 Basic Series that Diverge

3 Harmonic series

4 Necessary Condition for Convergent

5 Positive Terms Series

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 7 / 22

Page 11: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Definition

The series 1, 12 ,

13 ,

14 , · · · is known as Harmonic series (the p-series

when p = 1).

Claim:

Harmonic series∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 8 / 22

Page 12: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Definition

The series 1, 12 ,

13 ,

14 , · · · is known as Harmonic series (the p-series

when p = 1).

Claim:

Harmonic series∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 8 / 22

Page 13: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Definition

The series 1, 12 ,

13 ,

14 , · · · is known as Harmonic series (the p-series

when p = 1).

Claim:

Harmonic series∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 8 / 22

Page 14: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Proof

Sn = 1 + 12 + 1

3 + 14 + · · ·+ 1

n

Then S1 = 1

S21=S2=1 + 12

S22=S4=1 + 12 +

(13 + 1

4

)> 1 + 1

2 +(1

4 + 14

)= 1 + 2

2

S23=S8=1 + 12 +

(13 + 1

4

)+(1

5 + 16 + 1

7 + 18

)> 1 + 1

1 +(1

4 + 14

)+(1

8 + 18 + 1

8 + 18

)= 1 + 3

2

Hence S2n > 1 + n2 for all n ∈ N.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 9 / 22

Page 15: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Proof

Sn = 1 + 12 + 1

3 + 14 + · · ·+ 1

n

Then S1 = 1

S21=S2=1 + 12

S22=S4=1 + 12 +

(13 + 1

4

)> 1 + 1

2 +(1

4 + 14

)= 1 + 2

2

S23=S8=1 + 12 +

(13 + 1

4

)+(1

5 + 16 + 1

7 + 18

)> 1 + 1

1 +(1

4 + 14

)+(1

8 + 18 + 1

8 + 18

)= 1 + 3

2

Hence S2n > 1 + n2 for all n ∈ N.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 9 / 22

Page 16: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Proof

Sn = 1 + 12 + 1

3 + 14 + · · ·+ 1

n

Then S1 = 1

S21=S2=1 + 12

S22=S4=1 + 12 +

(13 + 1

4

)> 1 + 1

2 +(1

4 + 14

)= 1 + 2

2

S23=S8=1 + 12 +

(13 + 1

4

)+(1

5 + 16 + 1

7 + 18

)> 1 + 1

1 +(1

4 + 14

)+(1

8 + 18 + 1

8 + 18

)= 1 + 3

2

Hence S2n > 1 + n2 for all n ∈ N.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 9 / 22

Page 17: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Proof

Sn = 1 + 12 + 1

3 + 14 + · · ·+ 1

n

Then S1 = 1

S21=S2=1 + 12

S22=S4=1 + 12 +

(13 + 1

4

)> 1 + 1

2 +(1

4 + 14

)= 1 + 2

2

S23=S8=1 + 12 +

(13 + 1

4

)+(1

5 + 16 + 1

7 + 18

)> 1 + 1

1 +(1

4 + 14

)+(1

8 + 18 + 1

8 + 18

)= 1 + 3

2

Hence S2n > 1 + n2 for all n ∈ N.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 9 / 22

Page 18: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Proof

Sn = 1 + 12 + 1

3 + 14 + · · ·+ 1

n

Then S1 = 1

S21=S2=1 + 12

S22=S4=1 + 12 +

(13 + 1

4

)> 1 + 1

2 +(1

4 + 14

)= 1 + 2

2

S23=S8=1 + 12 +

(13 + 1

4

)+(1

5 + 16 + 1

7 + 18

)> 1 + 1

1 +(1

4 + 14

)+(1

8 + 18 + 1

8 + 18

)= 1 + 3

2

Hence S2n > 1 + n2 for all n ∈ N.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 9 / 22

Page 19: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Proof

Sn = 1 + 12 + 1

3 + 14 + · · ·+ 1

n

Then S1 = 1

S21=S2=1 + 12

S22=S4=1 + 12 +

(13 + 1

4

)> 1 + 1

2 +(1

4 + 14

)= 1 + 2

2

S23=S8=1 + 12 +

(13 + 1

4

)+(1

5 + 16 + 1

7 + 18

)> 1 + 1

1 +(1

4 + 14

)+(1

8 + 18 + 1

8 + 18

)= 1 + 3

2

Hence S2n > 1 + n2 for all n ∈ N.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 9 / 22

Page 20: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Proof

Sn = 1 + 12 + 1

3 + 14 + · · ·+ 1

n

Then S1 = 1

S21=S2=1 + 12

S22=S4=1 + 12 +

(13 + 1

4

)> 1 + 1

2 +(1

4 + 14

)= 1 + 2

2

S23=S8=1 + 12 +

(13 + 1

4

)+(1

5 + 16 + 1

7 + 18

)> 1 + 1

1 +(1

4 + 14

)+(1

8 + 18 + 1

8 + 18

)= 1 + 3

2

Hence S2n > 1 + n2 for all n ∈ N.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 9 / 22

Page 21: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Proof

Sn = 1 + 12 + 1

3 + 14 + · · ·+ 1

n

Then S1 = 1

S21=S2=1 + 12

S22=S4=1 + 12 +

(13 + 1

4

)> 1 + 1

2 +(1

4 + 14

)= 1 + 2

2

S23=S8=1 + 12 +

(13 + 1

4

)+(1

5 + 16 + 1

7 + 18

)> 1 + 1

1 +(1

4 + 14

)+(1

8 + 18 + 1

8 + 18

)= 1 + 3

2

Hence S2n > 1 + n2 for all n ∈ N.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 9 / 22

Page 22: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Harmonic series

Proof

Sn = 1 + 12 + 1

3 + 14 + · · ·+ 1

n

Then S1 = 1

S21=S2=1 + 12

S22=S4=1 + 12 +

(13 + 1

4

)> 1 + 1

2 +(1

4 + 14

)= 1 + 2

2

S23=S8=1 + 12 +

(13 + 1

4

)+(1

5 + 16 + 1

7 + 18

)> 1 + 1

1 +(1

4 + 14

)+(1

8 + 18 + 1

8 + 18

)= 1 + 3

2

Hence S2n > 1 + n2 for all n ∈ N.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence∞∑

n=1

1n is divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 9 / 22

Page 23: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Necessary Condition for Convergent

Outline

1 Basic Series that Converge

2 Basic Series that Diverge

3 Harmonic series

4 Necessary Condition for Convergent

5 Positive Terms Series

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 10 / 22

Page 24: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Necessary Condition for Convergent

Theorem

If∞∑

n=1an is convergent, then limn→∞ an = 0.

Proof

Suppose∞∑

n=1an is convergent.

Let Sn be the nth partial sum of the series∞∑

n=1an.

Then, an = Sn − Sn−1, for all n ∈ N.

Since the series∞∑

n=1an is convergent, limn→∞ Sn = L, for some

L ∈ R.

Hence limn→∞ an = limn→∞ (Sn − Sn−1)

= limn→∞ Sn − limn→∞ Sn−1 = L− L = 0.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 11 / 22

Page 25: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Necessary Condition for Convergent

Theorem

If∞∑

n=1an is convergent, then limn→∞ an = 0.

Proof

Suppose∞∑

n=1an is convergent.

Let Sn be the nth partial sum of the series∞∑

n=1an.

Then, an = Sn − Sn−1, for all n ∈ N.

Since the series∞∑

n=1an is convergent, limn→∞ Sn = L, for some

L ∈ R.

Hence limn→∞ an = limn→∞ (Sn − Sn−1)

= limn→∞ Sn − limn→∞ Sn−1 = L− L = 0.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 11 / 22

Page 26: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Necessary Condition for Convergent

Theorem

If∞∑

n=1an is convergent, then limn→∞ an = 0.

Proof

Suppose∞∑

n=1an is convergent.

Let Sn be the nth partial sum of the series∞∑

n=1an.

Then, an = Sn − Sn−1, for all n ∈ N.

Since the series∞∑

n=1an is convergent, limn→∞ Sn = L, for some

L ∈ R.

Hence limn→∞ an = limn→∞ (Sn − Sn−1)

= limn→∞ Sn − limn→∞ Sn−1 = L− L = 0.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 11 / 22

Page 27: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Necessary Condition for Convergent

Theorem

If∞∑

n=1an is convergent, then limn→∞ an = 0.

Proof

Suppose∞∑

n=1an is convergent.

Let Sn be the nth partial sum of the series∞∑

n=1an.

Then, an = Sn − Sn−1, for all n ∈ N.

Since the series∞∑

n=1an is convergent, limn→∞ Sn = L, for some

L ∈ R.

Hence limn→∞ an = limn→∞ (Sn − Sn−1)

= limn→∞ Sn − limn→∞ Sn−1 = L− L = 0.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 11 / 22

Page 28: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Necessary Condition for Convergent

Theorem

If∞∑

n=1an is convergent, then limn→∞ an = 0.

Proof

Suppose∞∑

n=1an is convergent.

Let Sn be the nth partial sum of the series∞∑

n=1an.

Then, an = Sn − Sn−1, for all n ∈ N.

Since the series∞∑

n=1an is convergent, limn→∞ Sn = L, for some

L ∈ R.

Hence limn→∞ an = limn→∞ (Sn − Sn−1)

= limn→∞ Sn − limn→∞ Sn−1 = L− L = 0.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 11 / 22

Page 29: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Necessary Condition for Convergent

Note:

If limn→∞ an = 0 does not exists or limn→∞ an 6= o, then∞∑

n=1an is

divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 12 / 22

Page 30: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Necessary Condition for Convergent

Note:

If limn→∞ an = 0 does not exists or limn→∞ an 6= o, then∞∑

n=1an is

divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 12 / 22

Page 31: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Necessary Condition for Convergent

Note:

If limn→∞ an = 0 does not exists or limn→∞ an 6= o, then∞∑

n=1an is

divergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 12 / 22

Page 32: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Outline

1 Basic Series that Converge

2 Basic Series that Diverge

3 Harmonic series

4 Necessary Condition for Convergent

5 Positive Terms Series

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 13 / 22

Page 33: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Definition

The series∞∑

n=1an is said to be a positive terms series, if an > 0 for all

n ∈ N.

TheoremA positive terms series convergent if and only if the sequence of

partial sums is bounded above.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 14 / 22

Page 34: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Definition

The series∞∑

n=1an is said to be a positive terms series, if an > 0 for all

n ∈ N.

TheoremA positive terms series convergent if and only if the sequence of

partial sums is bounded above.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 14 / 22

Page 35: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof: (⇐)

Let∞∑

n=1an be a positive terms series and {Sn}∞n=1 be the sequence of

partial sums.

Suppose {Sn}∞n=1 is bounded above · · · (I)

Since an > 0 for all n ∈ N, {Sn}∞n=1 is a monotonically increasingsequence · · · (II)

By (I) and (II), {Sn}∞n=1 is a convergent sequence.

Hence∞∑

n=1an is convergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 15 / 22

Page 36: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof: (⇐)

Let∞∑

n=1an be a positive terms series and {Sn}∞n=1 be the sequence of

partial sums.

Suppose {Sn}∞n=1 is bounded above · · · (I)

Since an > 0 for all n ∈ N, {Sn}∞n=1 is a monotonically increasingsequence · · · (II)

By (I) and (II), {Sn}∞n=1 is a convergent sequence.

Hence∞∑

n=1an is convergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 15 / 22

Page 37: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof: (⇐)

Let∞∑

n=1an be a positive terms series and {Sn}∞n=1 be the sequence of

partial sums.

Suppose {Sn}∞n=1 is bounded above · · · (I)

Since an > 0 for all n ∈ N, {Sn}∞n=1 is a monotonically increasingsequence · · · (II)

By (I) and (II), {Sn}∞n=1 is a convergent sequence.

Hence∞∑

n=1an is convergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 15 / 22

Page 38: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof: (⇐)

Let∞∑

n=1an be a positive terms series and {Sn}∞n=1 be the sequence of

partial sums.

Suppose {Sn}∞n=1 is bounded above · · · (I)

Since an > 0 for all n ∈ N, {Sn}∞n=1 is a monotonically increasingsequence · · · (II)

By (I) and (II), {Sn}∞n=1 is a convergent sequence.

Hence∞∑

n=1an is convergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 15 / 22

Page 39: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof: (⇐)

Let∞∑

n=1an be a positive terms series and {Sn}∞n=1 be the sequence of

partial sums.

Suppose {Sn}∞n=1 is bounded above · · · (I)

Since an > 0 for all n ∈ N, {Sn}∞n=1 is a monotonically increasingsequence · · · (II)

By (I) and (II), {Sn}∞n=1 is a convergent sequence.

Hence∞∑

n=1an is convergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 15 / 22

Page 40: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof: (⇐)

Let∞∑

n=1an be a positive terms series and {Sn}∞n=1 be the sequence of

partial sums.

Suppose {Sn}∞n=1 is bounded above · · · (I)

Since an > 0 for all n ∈ N, {Sn}∞n=1 is a monotonically increasingsequence · · · (II)

By (I) and (II), {Sn}∞n=1 is a convergent sequence.

Hence∞∑

n=1an is convergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 15 / 22

Page 41: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Example:∞∑

n=1

1n!

Let an = 1n! , for all n ∈ N and Sn be the nth partial sum of the series.

a1 = 11! = 1

a2 = 12! =

12

a3 = 13! =

11·2·3 < 1

22

an = 1n! =

11·2·3·····n < 1

2n−1

Hence Sn < 1 + 12 + 1

22 + · · ·+ 12n−1 =

1−( 12)

n

1− 12

= 2(1− 1

2n

)< 2

Hence {Sn}∞n=1 is bounded above.

Since an = 1n! > 0, for all n ∈ N and {Sn}∞n=1 is convergent,

∞∑n=1

1n! is

cgt.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 16 / 22

Page 42: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Example:∞∑

n=1

1n!

Let an = 1n! , for all n ∈ N and Sn be the nth partial sum of the series.

a1 = 11! = 1

a2 = 12! =

12

a3 = 13! =

11·2·3 < 1

22

an = 1n! =

11·2·3·····n < 1

2n−1

Hence Sn < 1 + 12 + 1

22 + · · ·+ 12n−1 =

1−( 12)

n

1− 12

= 2(1− 1

2n

)< 2

Hence {Sn}∞n=1 is bounded above.

Since an = 1n! > 0, for all n ∈ N and {Sn}∞n=1 is convergent,

∞∑n=1

1n! is

cgt.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 16 / 22

Page 43: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Example:∞∑

n=1

1n!

Let an = 1n! , for all n ∈ N and Sn be the nth partial sum of the series.

a1 = 11! = 1

a2 = 12! =

12

a3 = 13! =

11·2·3 < 1

22

an = 1n! =

11·2·3·····n < 1

2n−1

Hence Sn < 1 + 12 + 1

22 + · · ·+ 12n−1 =

1−( 12)

n

1− 12

= 2(1− 1

2n

)< 2

Hence {Sn}∞n=1 is bounded above.

Since an = 1n! > 0, for all n ∈ N and {Sn}∞n=1 is convergent,

∞∑n=1

1n! is

cgt.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 16 / 22

Page 44: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Example:∞∑

n=1

1n!

Let an = 1n! , for all n ∈ N and Sn be the nth partial sum of the series.

a1 = 11! = 1

a2 = 12! =

12

a3 = 13! =

11·2·3 < 1

22

an = 1n! =

11·2·3·····n < 1

2n−1

Hence Sn < 1 + 12 + 1

22 + · · ·+ 12n−1 =

1−( 12)

n

1− 12

= 2(1− 1

2n

)< 2

Hence {Sn}∞n=1 is bounded above.

Since an = 1n! > 0, for all n ∈ N and {Sn}∞n=1 is convergent,

∞∑n=1

1n! is

cgt.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 16 / 22

Page 45: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Example:∞∑

n=1

1n!

Let an = 1n! , for all n ∈ N and Sn be the nth partial sum of the series.

a1 = 11! = 1

a2 = 12! =

12

a3 = 13! =

11·2·3 < 1

22

an = 1n! =

11·2·3·····n < 1

2n−1

Hence Sn < 1 + 12 + 1

22 + · · ·+ 12n−1 =

1−( 12)

n

1− 12

= 2(1− 1

2n

)< 2

Hence {Sn}∞n=1 is bounded above.

Since an = 1n! > 0, for all n ∈ N and {Sn}∞n=1 is convergent,

∞∑n=1

1n! is

cgt.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 16 / 22

Page 46: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Example:∞∑

n=1

1n!

Let an = 1n! , for all n ∈ N and Sn be the nth partial sum of the series.

a1 = 11! = 1

a2 = 12! =

12

a3 = 13! =

11·2·3 < 1

22

an = 1n! =

11·2·3·····n < 1

2n−1

Hence Sn < 1 + 12 + 1

22 + · · ·+ 12n−1 =

1−( 12)

n

1− 12

= 2(1− 1

2n

)< 2

Hence {Sn}∞n=1 is bounded above.

Since an = 1n! > 0, for all n ∈ N and {Sn}∞n=1 is convergent,

∞∑n=1

1n! is

cgt.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 16 / 22

Page 47: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Theorem∞∑

n=1

1np is convergent if and only if p > 1.

Proof:(⇐)

Suppose p > 1. Let Sn =n∑

r=1

1rp , for all n ∈ N.

S2n−1 = 11p +

( 12p + 1

3p

)+( 1

4p + 15p + 1

6p + 17p

)+( 1

8p + · · ·+ 115p

)+ · · ·+(

1(2n−1)

p + · · ·+ 1(2n−1)p

)

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 17 / 22

Page 48: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Theorem∞∑

n=1

1np is convergent if and only if p > 1.

Proof:(⇐)

Suppose p > 1. Let Sn =n∑

r=1

1rp , for all n ∈ N.

S2n−1 = 11p +

( 12p + 1

3p

)+( 1

4p + 15p + 1

6p + 17p

)+( 1

8p + · · ·+ 115p

)+ · · ·+(

1(2n−1)

p + · · ·+ 1(2n−1)p

)

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 17 / 22

Page 49: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Theorem∞∑

n=1

1np is convergent if and only if p > 1.

Proof:(⇐)

Suppose p > 1. Let Sn =n∑

r=1

1rp , for all n ∈ N.

S2n−1 = 11p +

( 12p + 1

3p

)+( 1

4p + 15p + 1

6p + 17p

)+( 1

8p + · · ·+ 115p

)+ · · ·+(

1(2n−1)

p + · · ·+ 1(2n−1)p

)

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 17 / 22

Page 50: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Theorem∞∑

n=1

1np is convergent if and only if p > 1.

Proof:(⇐)

Suppose p > 1. Let Sn =n∑

r=1

1rp , for all n ∈ N.

S2n−1 = 11p +

( 12p + 1

3p

)+( 1

4p + 15p + 1

6p + 17p

)+( 1

8p + · · ·+ 115p

)+ · · ·+(

1(2n−1)

p + · · ·+ 1(2n−1)p

)

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 17 / 22

Page 51: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Theorem∞∑

n=1

1np is convergent if and only if p > 1.

Proof:(⇐)

Suppose p > 1. Let Sn =n∑

r=1

1rp , for all n ∈ N.

S2n−1 = 11p +

( 12p + 1

3p

)+( 1

4p + 15p + 1

6p + 17p

)+( 1

8p + · · ·+ 115p

)+ · · ·+(

1(2n−1)

p + · · ·+ 1(2n−1)p

)

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 17 / 22

Page 52: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

S2n−1 = 11p +

( 12p + 1

3p

)+( 1

4p + 15p + 1

6p + 17p

)+( 1

8p + · · ·+ 115p

)+ · · ·+(

1(2n−1)

p + · · ·+ 1(2n−1)p

)< 1

1p +( 1

2p + 12p

)+( 1

4p + 14p + 1

4p + 14p

)+( 1

8p + · · · 18p

)+ ...+(

1(2n−1)

p + · · ·+ 1(2n−1)

p

)= 1

1p + 2 · 12p + 4 · 1

4p + 8 · 18p + · · ·+ 2n−1 · 1

(2n−1)p

= 11p + 2 · 1

2p + 22 · 1(2p)2 + 23 · 1

(2p)3 + · · ·+ 2n−1 · 1(2p)n−1

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 18 / 22

Page 53: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

S2n−1 = 11p +

( 12p + 1

3p

)+( 1

4p + 15p + 1

6p + 17p

)+( 1

8p + · · ·+ 115p

)+ · · ·+(

1(2n−1)

p + · · ·+ 1(2n−1)p

)< 1

1p +( 1

2p + 12p

)+( 1

4p + 14p + 1

4p + 14p

)+( 1

8p + · · · 18p

)+ ...+(

1(2n−1)

p + · · ·+ 1(2n−1)

p

)= 1

1p + 2 · 12p + 4 · 1

4p + 8 · 18p + · · ·+ 2n−1 · 1

(2n−1)p

= 11p + 2 · 1

2p + 22 · 1(2p)2 + 23 · 1

(2p)3 + · · ·+ 2n−1 · 1(2p)n−1

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 18 / 22

Page 54: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

S2n−1 = 11p +

( 12p + 1

3p

)+( 1

4p + 15p + 1

6p + 17p

)+( 1

8p + · · ·+ 115p

)+ · · ·+(

1(2n−1)

p + · · ·+ 1(2n−1)p

)< 1

1p +( 1

2p + 12p

)+( 1

4p + 14p + 1

4p + 14p

)+( 1

8p + · · · 18p

)+ ...+(

1(2n−1)

p + · · ·+ 1(2n−1)

p

)= 1

1p + 2 · 12p + 4 · 1

4p + 8 · 18p + · · ·+ 2n−1 · 1

(2n−1)p

= 11p + 2 · 1

2p + 22 · 1(2p)2 + 23 · 1

(2p)3 + · · ·+ 2n−1 · 1(2p)n−1

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 18 / 22

Page 55: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

S2n−1 = 11p +

( 12p + 1

3p

)+( 1

4p + 15p + 1

6p + 17p

)+( 1

8p + · · ·+ 115p

)+ · · ·+(

1(2n−1)

p + · · ·+ 1(2n−1)p

)< 1

1p +( 1

2p + 12p

)+( 1

4p + 14p + 1

4p + 14p

)+( 1

8p + · · · 18p

)+ ...+(

1(2n−1)

p + · · ·+ 1(2n−1)

p

)= 1

1p + 2 · 12p + 4 · 1

4p + 8 · 18p + · · ·+ 2n−1 · 1

(2n−1)p

= 11p + 2 · 1

2p + 22 · 1(2p)2 + 23 · 1

(2p)3 + · · ·+ 2n−1 · 1(2p)n−1

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 18 / 22

Page 56: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

S2n−1 = 11p +

( 12p + 1

3p

)+( 1

4p + 15p + 1

6p + 17p

)+( 1

8p + · · ·+ 115p

)+ · · ·+(

1(2n−1)

p + · · ·+ 1(2n−1)p

)< 1

1p +( 1

2p + 12p

)+( 1

4p + 14p + 1

4p + 14p

)+( 1

8p + · · · 18p

)+ ...+(

1(2n−1)

p + · · ·+ 1(2n−1)

p

)= 1

1p + 2 · 12p + 4 · 1

4p + 8 · 18p + · · ·+ 2n−1 · 1

(2n−1)p

= 11p + 2 · 1

2p + 22 · 1(2p)2 + 23 · 1

(2p)3 + · · ·+ 2n−1 · 1(2p)n−1

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 18 / 22

Page 57: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

= 1 + 12p−1 + 1

(2p−1)2 + 1

(2p−1)3 + · · ·+ 1

(2p−1)n−1

=1−

(1

2p−1

)n

1− 12p−1

< 11− 1

2p−1, for all n ∈ N.

Since n ≤ 2n − 1, for all n ∈ N and {Sn}∞n=1 is an increasing sequencewe have,

0 < Sn ≤ S2n−1.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 19 / 22

Page 58: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

= 1 + 12p−1 + 1

(2p−1)2 + 1

(2p−1)3 + · · ·+ 1

(2p−1)n−1

=1−

(1

2p−1

)n

1− 12p−1

< 11− 1

2p−1, for all n ∈ N.

Since n ≤ 2n − 1, for all n ∈ N and {Sn}∞n=1 is an increasing sequencewe have,

0 < Sn ≤ S2n−1.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 19 / 22

Page 59: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

= 1 + 12p−1 + 1

(2p−1)2 + 1

(2p−1)3 + · · ·+ 1

(2p−1)n−1

=1−

(1

2p−1

)n

1− 12p−1

< 11− 1

2p−1, for all n ∈ N.

Since n ≤ 2n − 1, for all n ∈ N and {Sn}∞n=1 is an increasing sequencewe have,

0 < Sn ≤ S2n−1.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 19 / 22

Page 60: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

= 1 + 12p−1 + 1

(2p−1)2 + 1

(2p−1)3 + · · ·+ 1

(2p−1)n−1

=1−

(1

2p−1

)n

1− 12p−1

< 11− 1

2p−1, for all n ∈ N.

Since n ≤ 2n − 1, for all n ∈ N and {Sn}∞n=1 is an increasing sequencewe have,

0 < Sn ≤ S2n−1.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 19 / 22

Page 61: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Therefore Sn ≤ 11− 1

2p−1for all n ∈ N

Hence , {Sn}∞n=1 is bounded above.

Thus,∞∑

n=1

1np is convergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 20 / 22

Page 62: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Therefore Sn ≤ 11− 1

2p−1for all n ∈ N

Hence , {Sn}∞n=1 is bounded above.

Thus,∞∑

n=1

1np is convergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 20 / 22

Page 63: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Therefore Sn ≤ 11− 1

2p−1for all n ∈ N

Hence , {Sn}∞n=1 is bounded above.

Thus,∞∑

n=1

1np is convergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 20 / 22

Page 64: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Therefore Sn ≤ 11− 1

2p−1for all n ∈ N

Hence , {Sn}∞n=1 is bounded above.

Thus,∞∑

n=1

1np is convergent.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 20 / 22

Page 65: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Now Suppose p ≤ 1,

S2n = 1 + 12p +

( 13p + 1

4p

)+( 1

5p + 16p + 1

7p + 18p

)+ · · ·+(

1(2n−1+1)

p + · · ·+ 1(2n)p

)

Since p ≤ 1, np ≤ n, for all n,⇒ 1np ≥ 1

n , for all n.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 21 / 22

Page 66: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Now Suppose p ≤ 1,

S2n = 1 + 12p +

( 13p + 1

4p

)+( 1

5p + 16p + 1

7p + 18p

)+ · · ·+(

1(2n−1+1)

p + · · ·+ 1(2n)p

)

Since p ≤ 1, np ≤ n, for all n,⇒ 1np ≥ 1

n , for all n.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 21 / 22

Page 67: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Now Suppose p ≤ 1,

S2n = 1 + 12p +

( 13p + 1

4p

)+( 1

5p + 16p + 1

7p + 18p

)+ · · ·+(

1(2n−1+1)

p + · · ·+ 1(2n)p

)

Since p ≤ 1, np ≤ n, for all n,⇒ 1np ≥ 1

n , for all n.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 21 / 22

Page 68: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Now Suppose p ≤ 1,

S2n = 1 + 12p +

( 13p + 1

4p

)+( 1

5p + 16p + 1

7p + 18p

)+ · · ·+(

1(2n−1+1)

p + · · ·+ 1(2n)p

)

Since p ≤ 1, np ≤ n, for all n,⇒ 1np ≥ 1

n , for all n.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 21 / 22

Page 69: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Hence,

S2n ≥(

1 +12

)+

(14+

14

)+

(18+ · · ·+ 1

8

)+ · · ·+

(12n + · · ·+ 1

2n

)= 1 +

12+ 2 · 1

4+ 4 · 1

8+ · · ·+ 2n−1 · 1

2n

= 1 +12+

12+

12+ · · ·+ 1

2= 1 +

n2, for all n.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence,∞∑

n=1

1np is divergent, if p ≤ 1.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 22 / 22

Page 70: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Hence,

S2n ≥(

1 +12

)+

(14+

14

)+

(18+ · · ·+ 1

8

)+ · · ·+

(12n + · · ·+ 1

2n

)= 1 +

12+ 2 · 1

4+ 4 · 1

8+ · · ·+ 2n−1 · 1

2n

= 1 +12+

12+

12+ · · ·+ 1

2= 1 +

n2, for all n.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence,∞∑

n=1

1np is divergent, if p ≤ 1.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 22 / 22

Page 71: MAT 127 2.0 Calculus IIstaffweb.sjp.ac.lk/sites/default/files/ghjlanel/files/lecture_2_3.pdf · Basic Series that Converge Outline 1 Basic Series that Converge 2 Basic Series that

Positive Terms Series

Proof Contd.

Hence,

S2n ≥(

1 +12

)+

(14+

14

)+

(18+ · · ·+ 1

8

)+ · · ·+

(12n + · · ·+ 1

2n

)= 1 +

12+ 2 · 1

4+ 4 · 1

8+ · · ·+ 2n−1 · 1

2n

= 1 +12+

12+

12+ · · ·+ 1

2= 1 +

n2, for all n.

Since, S2n →∞ as n→∞, {Sn}∞n=1 is divergent.

Hence,∞∑

n=1

1np is divergent, if p ≤ 1.

Dr. G.H.J. Lanel (USJP) MAT 127 2.0 Calculus II Lecture 2 22 / 22