21
MAT 3730 Complex Variables Section 1.4 The Complex Exponential http://myhome.spu.edu/lauw

MAT 3730 Complex Variables

  • Upload
    cian

  • View
    38

  • Download
    1

Embed Size (px)

DESCRIPTION

MAT 3730 Complex Variables. Section 1.4 The Complex Exponential. http://myhome.spu.edu/lauw. Preview. Extension of the exponential function to the complex numbers The Euler’s Formula The De Moivre’s Formula (du mwA´vru ). The Complex Exponential. The Complex Exponential. - PowerPoint PPT Presentation

Citation preview

Page 1: MAT 3730 Complex Variables

MAT 3730Complex Variables

Section 1.4

The Complex Exponential

http://myhome.spu.edu/lauw

Page 2: MAT 3730 Complex Variables

Preview

Extension of the exponential function to the complex numbers

The Euler’s Formula The De Moivre’s Formula

(du mwA´vru )

Page 3: MAT 3730 Complex Variables

The Complex Exponential

?zx ee

CR

xe

xdtt

x

x

x

ln of inverse

0 ,1

ln1

Page 4: MAT 3730 Complex Variables

The Complex Exponential

?zx ee

CR

xe

xdtt

x

x

x

ln of inverse

0 ,1

ln1

function" lexponentia

real theas properties

of kind same theHave"

:IDEA

Page 5: MAT 3730 Complex Variables

Basic Property

iyxiyx

zzzz

eee

Ryx

eee

,for ,particularIn

2121

Page 6: MAT 3730 Complex Variables

Basic Property

iyxiyx

zzzz

eee

Ryx

eee

,for ,particularIn

2121

real exponentialdefine toneed

Page 7: MAT 3730 Complex Variables

Definition of eiy

There are 2 ways to look at the definition of

1. Through the Maclaurin Series

2. Through the property

iye

zz eedz

d

Page 8: MAT 3730 Complex Variables

Definition of eiy

There are 2 ways to look at the definition of

1. Through the Maclaurin Series

2. Through the property

iye

zz eedz

d

Page 9: MAT 3730 Complex Variables

Through the Maclaurin Series

432

!4

1

!3

1

!2

11 , xxxxeRx x

Suppose we want eiy to have the same Maclaurin series, then

Page 10: MAT 3730 Complex Variables

Through the Maclaurin Series

432

!4

1

!3

1

!2

11 , xxxxeRx x

Suppose we want eiy to have the same Maclaurin series, then

2 3 41 1 11 ( ) ( ) ( )

2! 3! 4!iye iy iy iy iy

Page 11: MAT 3730 Complex Variables

Through the Maclaurin Series

2 3 41 1 11 ( ) ( ) ( )

2! 3! 4!

cos sin

iye iy iy iy iy

y i y

Page 12: MAT 3730 Complex Variables

The Euler’s Formula

yiyeiy sincos

Page 13: MAT 3730 Complex Variables

Definition of Complex Exponential

)sin(cos yiyee xz

iyxz

Page 14: MAT 3730 Complex Variables

Example 1

Zke ik for 12

Page 15: MAT 3730 Complex Variables

Example 2

i

ee

ee

ii

ii

2sin

2cos

Page 16: MAT 3730 Complex Variables

Properties of Complex Exponential

1 2 1 2

1 2 1 2

1.

2. /

3. , for

4. 1,

z z z z

z z z z

nz nz

iy

e e e

e e e

e e n

e y

1,3&4

Page 17: MAT 3730 Complex Variables

Polar Form (Revisit)

)arg( and , where

sincos

zzr

re

irzi

Page 18: MAT 3730 Complex Variables

Example 3

Page 19: MAT 3730 Complex Variables

(du mwA´vru) Example 4 De Moivre’s Formula

cos sin cos sin n

i n i n n N

Page 20: MAT 3730 Complex Variables

Example 5

Express cos3 in terms of cos and sin .

Page 21: MAT 3730 Complex Variables

Next Class

Read Section 1.5 We will look at how to find:Powers zn

Roots z1/m