59
Materials characterization and testing HTMSTM(A)A class 2007 George Popescu Prof. Neil Gershenfeld MIT Media Lab

Material Charecterization

Embed Size (px)

Citation preview

Page 1: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 1/59

Materials characterization andtesting

HTMSTM(A)A class 2007George PopescuProf. Neil Gershenfeld

MIT Media Lab

Page 2: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 2/59

SummaryMaterials

Introduction

States of matter and phases

Eutectics

Heat treatment

Solid mechanics

Tunable materials ( Polymers, Meta materials, Digital Materials)Active materials (Waves and Patterns)

Granular materials

CharacterizationMechanic characterization

Thermo characterization (melting point)

Optical characterization (diffraction angle)

NMR (and other resonances)

Spectroscopy

Electrical characterization

Page 3: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 3/59

Material science

Page 4: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 4/59

Some vocabulary

• σ : stress sensor (think : pressure)

• ε : strain sensor (think : displacement)

• E : Young modulus (scalar ? no! )• v : Poisson ration (scalar ? No !)

•  ΔT : temperature change.

• k* = bulk modulus (pressure increase needed to effect agiven relative decrease in volume )

σ=EεF=-kx

Page 5: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 5/59

States of matter 

vs

phasesDifferent states of matter must be different phases

However, the reverse is not true.

The most common state of matter in the universe is plasma

Less familiar phases include•Quark-gluon plasma•Bose Einstain condensates•Fermionic condensates•Strange matter •Superfluids•Supersolids.

Page 6: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 6/59

Plasma…

Page 7: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 7/59

Phase transitions

first-order phase transitions :involve latent heat

second-order phase transitions :no

associated latent heat

(example : superfluid transition)

Ehrenfest classification :

First-order phase transitions exhibit a

discontinuity in the first derivative of the

free energy.

Second-order phase transitions have a

discontinuity in a second derivative of the free energy 

What if derivative of free energy

diverges ?

Page 8: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 8/59

Phases

Page 9: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 9/59

Supercritical CO2

Page 10: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 10/59

You thought you knew ice ?

Page 11: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 11/59

Si/Au alloy look like this :

Page 12: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 12/59

Eutectics

Page 13: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 13/59

Lead/tin

Page 14: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 14/59

Defects in Crystals

Page 15: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 15/59

Strength vs defect density

Page 16: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 16/59

Heat Treatment

Tradeoff between ductility and brittleness

• Annealing,

• Case hardening

• Precipitation strengthening,

• Tempering• Quenching

Page 17: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 17/59

Tempering

The average unit cell of austenite

is, on average, a perfect little cube,

the transformation to martensite

sees this cube distorted by

interstitial carbon

atoms that do not have time to

diffuse out during displacive

transformation,

so that it is a tiny bit longer thanbefore in one dimension and a little

bit shorter 

in the other two. 

Page 18: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 18/59

For this class : solids

Hooke's law :

Poisson's ratio :

F= -kx

Elasticity

ViscoelasticityPlasticityThermoelasticity

Page 19: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 19/59

Isotropy / anisotropy : birefringence

Page 20: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 20/59

Deformations

stress

Normal to

surface

Tangential

to surface

compression

tension

 Young modulus

strain

Page 21: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 21/59

Elastic/plastic : instantaneous

Page 22: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 22/59

Viscoelastic : viscous deformation

Purely elastic Viscoelastic

Page 23: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 23/59

 

Composites

+Matrix Materials

AsphaltPortland Cement

PolymersPolyester ResinVinyl Ester Resin

EpoxyBismaleimide

PolyimideMetals

Titanium

Ceramics

ReinforcementSteel Reinforcing Bar 

Glass FibersPolymer Fibers

Nylon BasedNatural Fibers

HempCarbon Fibers

Rayon Based

Ceramic Fibers 

Page 24: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 24/59

Thermo elastic properties

the resulting strain of a material allowed to expand freely

βC is the stress per degree K in the material constrained not to expand

Page 25: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 25/59

Engineer thermoelastic properties

Left : Optimal microstructures composedof hypothetical phases. Red is

high expansion phase, blue is low

expansion phase and white is void

a. Minimization of alpha*

b. Maximization of thermal k * for zero

thermal expansionc. Maximization of beta*

Right : Invar is blue, Nickel is red and

void is white.

c. Minimization of b*d. Maximization of contractive vertical

stress

e. Maximization of vertical strain.

Invar : Fe–36%Ni

Page 26: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 26/59

Tunable materials

• Polymers

• Meta Materials

• Digital Materials

Page 27: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 27/59

Polymers

organic/inorganic

Homopolymer/copolymer 

Linear/branched

Page 28: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 28/59

Epoxy

Epoxy or polyepoxide is a thermosetting polymer thatcures (polymerizes and crosslinks) when mixed with acatalyze agent or "hardener"

The oxygen on the epoxy monomers is "flipped." A matrixwith a high stress tolerance is formed, and "glues" thematerials together.

Page 29: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 29/59

Page 30: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 30/59

Hydrogels

Capillary forces osmotic forces 

Page 31: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 31/59

Meta Materials

• material that gains its properties from its structurerather than directly from its composition

• properties not found in naturally-formed

substances• Electromagnetism (especially optics and

photonics)

• Microwave (new types of beam steerer,modulator, band pass filter, lenses, microwavecouplers, and antenna radomes).

Page 32: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 32/59

Negative refractive index

• ε = permittivity (how anelectric field affects and isaffected by a dielectricmedium )

• μ = permeability ( how amaterial is affected by amagnetic field)

• ε>0 μ>0 in most materials

• ε<0 μ>0 : opaque

• Engineered : ε<0 μ<0

Page 33: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 33/59

Meta Material

Photograph of the left-handedmetamaterial (LHM) sample. The

LHM sample consists of square

copper split ring resonators and

copper wire strips on fiber glass

circuit board material. The rings

and wires are on opposite sidesof the boards, and the boards

have been cut and assembled

into an interlocking lattice.

Page 34: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 34/59

Digital Materials

Digital

Tuneable

Active

Page 35: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 35/59

Error reduction

Page 36: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 36/59

Error detection

S  Final  5ns 2 n s

Measured sizeExpectedsize

Standard deviation

Page 37: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 37/59

Error tolerance

Page 38: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 38/59

Tuneability

Page 39: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 39/59

Active materials

• Piezzoelectricity : generate voltage in response toapplied stress

• Piezzoresistive : change in resistance in responseto applied stress

• Magnetostriction : change in shape asconsequence of applied magnetic field

• Magnetoresistance : change in electrical resistivity

in response to applied stress• Semiconductors : gap in the electric band

structure

Page 40: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 40/59

Patterns and waves : crystals

1 nm 1 nm wavelength

electronic waves

Page 41: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 41/59

Photonic crystals

1 micrometer Infrared light

Page 42: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 42/59

Granular materials

• Sand• Portland cement

• Plaster 

Macroscopic particles characterized by a loss of energywhenever the particles interact (mostly friction)

• Brazil nut effect (big on top)

• Salt cellar effect (clog)• Compacted granular material must expand (or dilate) before it can deform• No turbulence is almost impossible to achieve in granular materials• Granular materials can support (small) shear stresses indefinitely• Granular materials are often inhomogeneous and anisotropic• Granular materials exhibit avalanches

Page 43: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 43/59

Cements

• Hydraulic cements (Portland cement)

Harden after combining with water, as a

result of chemical reaction with the mixing

water and, after hardening, retain strengthand stability even under water.

• Non Hydraulic cements set by reaction

with atmospheric carbon dioxide.

Page 44: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 44/59

Building with cement

• Dry sand : no cohesion

• Wet sand : cohesion bycapillary forces

• In concrete : dissolutionreaction generatingcalcium silicate andaluminate ions : calciumsilicate hydrate (C-S-H)

Page 45: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 45/59

Plaster (gypsum)

• When the dry plaster powder is mixed with

water, it re-forms into gypsum, initially as

a paste but eventually hardening into a

solid. The structure consists of sheets of Ca²+ and SO4²- ions held together by

hydrogen bonds in the water molecules.

The grip between these sheets is easilybroken, so plaster is fairly soft.

Page 46: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 46/59

Material science

Page 47: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 47/59

Mechanic characterization

Thermo characterization (melting point)

Optical and electromagnetic characterization

(refractive index)NMR (and other resonances)

Spectroscopy

Electrical characterization

Characterization

Page 48: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 48/59

 

Material characterization

Idea :

 – Probe a material

 – And measure its response

• Probe : mechanically, electro-magnetically,temperature, waves, particles, vary directions,vary frequencies …

EXTREMELY COMPLEXI’ll give here some very simple examples

Page 49: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 49/59

 

Instron :mechanical testing

Impose : constant speed

Measures :Force necessary to apply theconstant speed ( precision 0.1N)

Measures positions (precision :0.01 mm)

E th k

Page 50: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 50/59

 Extension (mm)

Earth quake

Page 51: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 51/59

 

What do you measure ?

• Stress strain and surface :

Page 52: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 52/59

 

How to measure Poisson’s ratio

• Poisson's Ratio :

1 - 2(VT ÷ VL)2 ÷ 2 - 2(VT ÷ VL)2

VT = Shear (transverse) Velocity

VL = Longitudinal Velocity

You need to measure sound speed in 2directions simultaneously …

M lti i t

Page 53: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 53/59

 

Melting point

Kofler bench (for powders ! ):

Page 54: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 54/59

 

Refractive index

r r 

ii

 µ ε η 

η η 

=

=

2211

sinsin

Page 55: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 55/59

 

Spectroscopy

• Study of matter and its properties by investigatinglight, sound, or particles that are emitted,absorbed or scattered by the matter under investigation.

• Example of probes : – IR light – Visible light – Magnetic Field

 – Inelastic scattering of light to analyse vibrational androtational modes of molecules (Raman)

 – Neutrons

Page 56: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 56/59

 

Visible absorption spectra

Page 57: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 57/59

 

Example of IR spectrum

Page 58: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 58/59

 

Case study : Resistance measuring

Input impedance !

Page 59: Material Charecterization

8/8/2019 Material Charecterization

http://slidepdf.com/reader/full/material-charecterization 59/59

Experimental work

• Build a model to have estimates• Everything is an approximation

• Nothing is really linear, it’s linear by

domain• Contacts/joints/interfaces : always a

problem

• Everything varies with frequency !

• Everything depends of the time scale youare using.