10
First e principles calculations on stability and mechanical properties of various ABO 3 and their alloys B. Akgenc a, b, * , A. Kinaci c , C. Tasseven d , T. Cagin b a Department of Physics, Kirklareli University, Kirklareli, 39960, Turkey b Department of Material Science and Engineering, Texas A&M University, College Station, TX 77845, USA c Argonne Natl Lab, Nanoscale Mat, Lemont, IL 60439, USA d Department of Physics, Yildiz Technical University, Istanbul, 34210, Turkey highlights graphical abstract Structure, elastic and dielectric properties of ABO 3 type ceramics were calculated. Composition and atomic congura- tion are effected on pizeoelectric properties. Our computations highlighted that developed small polarization even if cubic form. article info Article history: Received 31 May 2017 Received in revised form 5 November 2017 Accepted 12 November 2017 Available online 16 November 2017 Keywords: Piezoelectric ceramics ABO3 type perovskites Mechanical properties Structural properties Piezoelectric properties Density functional theory abstract In this study, we perform rsteprinciple calculations based on density functional theory (DFT) to obtain the ground state structural, elastic and dielectric properties of various ABO 3 type ceramics and their {A x A 0 (1-x) }BO 3 and A{B x B 0 (1-x) }O 3 alloys. To represent alloy perovskites, we employ supercells with species A, A¼ Ba, Sr, Pb; B, B¼ Ti, Zr. The effects of composition and atomic conguration/order on lattice structure, thermodynamics, elastic constants and dielectric properties are evaluated. In calculations, we have used linear response and homogeneous eld methods and we have also provided an assessment of the performance of these approaches in the determination of aforementioned properties. We have computed dielectric and piezoelectric properties for the cubic form of alloy perovskites. Even though cubic form of alloy perovskites does not have any piezoelectric properties, owing to crystallo- graphic site occupied by different type of atoms, the inversion symmetry breaks down and the structures develop a small tetragonality, in turn a small polarization and non-zero but quite small piezoelectric coefcients emerge as expected. For instance the observed maximum piezoelectric constant for BaZr ð1xÞ Ti x O 3 is 0:554x10 15 C=N. The magnitudes are smaller than the feasible ranges for actual application needs, but they may increase substantially upon phase to lower symmetry tetragonal forms transformation. © 2017 Elsevier B.V. All rights reserved. 1. Introduction ABO 3 type pure perovskite crystals have been extensively studied; however, the structural, elastic, dielectric and piezoelectric * Corresponding author. Department of Physics, Kirklareli University, Kirklareli, 39960, Turkey. E-mail address: [email protected] (B. Akgenc). Contents lists available at ScienceDirect Materials Chemistry and Physics journal homepage: www.elsevier.com/locate/matchemphys https://doi.org/10.1016/j.matchemphys.2017.11.026 0254-0584/© 2017 Elsevier B.V. All rights reserved. Materials Chemistry and Physics 205 (2018) 315e324

Materials Chemistry and Physics - KLUpersonel.klu.edu.tr/dosyalar/kullanicilar/berna.akgenc/... · 2018. 1. 24. · KNa0.5Nb0.5O3 perovskite ceramic based on first principle calcula-tions

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

  • lable at ScienceDirect

    Materials Chemistry and Physics 205 (2018) 315e324

    Contents lists avai

    Materials Chemistry and Physics

    journal homepage: www.elsevier .com/locate/matchemphys

    First e principles calculations on stability and mechanical propertiesof various ABO3 and their alloys

    B. Akgenc a, b, *, A. Kinaci c, C. Tasseven d, T. Cagin b

    a Department of Physics, Kirklareli University, Kirklareli, 39960, Turkeyb Department of Material Science and Engineering, Texas A&M University, College Station, TX 77845, USAc Argonne Natl Lab, Nanoscale Mat, Lemont, IL 60439, USAd Department of Physics, Yildiz Technical University, Istanbul, 34210, Turkey

    h i g h l i g h t s

    * Corresponding author. Department of Physics, Ki39960, Turkey.

    E-mail address: [email protected] (B. Akgen

    https://doi.org/10.1016/j.matchemphys.2017.11.0260254-0584/© 2017 Elsevier B.V. All rights reserved.

    g r a p h i c a l a b s t r a c t

    � Structure, elastic and dielectricproperties of ABO3 type ceramicswere calculated.

    � Composition and atomic configura-tion are effected on pizeoelectricproperties.

    � Our computations highlighted thatdeveloped small polarization even ifcubic form.

    a r t i c l e i n f o

    Article history:Received 31 May 2017Received in revised form5 November 2017Accepted 12 November 2017Available online 16 November 2017

    Keywords:Piezoelectric ceramicsABO3 type perovskitesMechanical propertiesStructural propertiesPiezoelectric propertiesDensity functional theory

    a b s t r a c t

    In this study, we perform firsteprinciple calculations based on density functional theory (DFT) to obtainthe ground state structural, elastic and dielectric properties of various ABO3 type ceramics and their{AxA0(1-x)}BO3 and A{BxB0(1-x)}O3 alloys. To represent alloy perovskites, we employ supercells with speciesA, A’ ¼ Ba, Sr, Pb; B, B’ ¼ Ti, Zr. The effects of composition and atomic configuration/order on latticestructure, thermodynamics, elastic constants and dielectric properties are evaluated. In calculations, wehave used linear response and homogeneous field methods and we have also provided an assessment ofthe performance of these approaches in the determination of aforementioned properties.

    We have computed dielectric and piezoelectric properties for the cubic form of alloy perovskites. Eventhough cubic form of alloy perovskites does not have any piezoelectric properties, owing to crystallo-graphic site occupied by different type of atoms, the inversion symmetry breaks down and the structuresdevelop a small tetragonality, in turn a small polarization and non-zero but quite small piezoelectriccoefficients emerge as expected. For instance the observed maximum piezoelectric constant forBaZrð1�xÞTixO3 is 0:554x10�15C=N. The magnitudes are smaller than the feasible ranges for actualapplication needs, but they may increase substantially upon phase to lower symmetry tetragonal formstransformation.

    © 2017 Elsevier B.V. All rights reserved.

    rklareli University, Kirklareli,

    c).

    1. Introduction

    ABO3 type pure perovskite crystals have been extensivelystudied; however, the structural, elastic, dielectric and piezoelectric

    mailto:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.matchemphys.2017.11.026&domain=pdfwww.sciencedirect.com/science/journal/02540584http://www.elsevier.com/locate/matchemphyshttps://doi.org/10.1016/j.matchemphys.2017.11.026https://doi.org/10.1016/j.matchemphys.2017.11.026https://doi.org/10.1016/j.matchemphys.2017.11.026

  • B. Akgenc et al. / Materials Chemistry and Physics 205 (2018) 315e324316

    properties of their alloys are still a subject of inquiry [1e6]. Thesolid solutions of perovskites, owing to their tunable dielectric andpiezoelectric responses, are of great technological interest for in-dustrial and commercial applications such as high-dielectric con-stant capacitors, ferroelectric thin film memory devices, sensors,switches, actuators, piezoelectric sonars, atomic microscopes, ul-trasound generators, piezoelectric motors, ink-jet printers and fuelinjectors [7e12]. There are two ideal ways of tuning physicalproperties of these ABO3 type perovskite alloys by adjusting theconcentration and configuration/order of doped atoms [13e15].

    The elastic constants are used to characterize the mechanicalresponse of materials to external macroscopic stress. These con-stants are closely related to interatomic bonding, mechanical sta-bility, thermal relaxation and internal strain. Studying elasticconstants is essential to understand the electromechanicalresponse of perovskite oxide ferroelectrics [16]. Especially today'shighly efficient density functional theory (DFT) calculations, being afast alternative to experiments, can be utilized to scan throughmany materials for required properties. Elastic constants andrelated mechanical properties i.e. bulk modulus, shear modulus,Young's modulus, and Poisson's ratio of a large number of complexceramic crystals with different crystal symmetries have beencalculated by means of density functional theory [17]. The mainchallenge in estimating elastic constants from first principles re-quires an accurate method to calculate the total energy [18e20].The results presented here are obtained within the generalizedgradient approximation (GGA).

    Density functional perturbation theory (DFPT) is anothermethod, which provides the desired response properties in auto-mated, systematic and reliable fashion [21]. Therefore, it has beenwidely used in calculations of structural, mechanical and electronicproperties of perovskite materials and their alloys. DFT study ofATiO3 compounds, where A represents the atoms Ca, Sr, Ba, Ra, Cd,Mg, Ge, Sn and Pb, have revealed that the geometrical size and theconfiguration of outer electronic shell of A atoms are responsiblefor determining the off-center positioning of the A atoms [1].Gonzalez-Garcia et al. have investigated the effect of substituentconcentration on structural parameter, band gap energy, mixingenthalpy and phase diagram of In1-xBxP semiconductor alloys. It hasbeen found that the lattice parameters of the In1-xBxP alloysdecrease with x, B-concentration, showing a negative deviationfrom Vegard's law, while the bulk modulus increases withcomposition x, showing a large deviation from the linear concen-tration dependence [22]. Theoretical analysis has been carried outin InxAl1-xN alloys on the applicability of Vegard's linear rule anddeviations from its linearity with respect to composition, inpiezoelectric polarization, surface orientation and degree of strain.To determine and estimate these properties correctly is of vitalimportance in technological applications of these materials [23]. Ithas been found that Bi(Zn1/2Ti1/2)O3 and PZT solid solution displayextremely large cation displacements and leading to tetragonality.The displacements on A site are more pronounced than B-sitedisplacements [24]. J. Bennett et al. have investigated ground statestructural properties of Sn(Al1/2Nb1/2)O3 (SAN) solid solution anddemonstrated that these alloys can be synthesized due to theirfavorable thermodynamics, and they possess enhanced ferroelec-tric, and piezoelectric properties [25]. Halilov et al. have investi-gated the main instabilities in CdTiO3 and Cd0.5Pb0.5TiO3 to showthe piezoelectric potential of this perovskite alloy which mayprovide much larger energy density than traditional composition[26]. Majority work in the field, which has mainly focused on B-sitealloying, we have investigated on A-site alloying in addition to B-site. We have constructed {AxA01-x}BO3 and A{BxB01-x}O3 alloys forwhich x is varied from 0 to 1 with the species A, A’ ¼ Ba, Sr, Pb; B,B’ ¼ Ti, Zr. We have shown the effects substitutions at A-atom site

    and B-atom site by quantifying properties of these alloys namelytheir structural properties, elastic constants, dielectric constants,and Born effective charges.

    In recent years, researchers have focused on lead-free ABO3 typeperovskite ceramics for technological applications [27e29]. Sub-stantial effort spent on elucidating the influence of alloying onemerging structures and associated enhanced physical properties.As an example, Yang et al. reported the effects of B-site cations onthe structure, elastic and thermodynamic properties ofKNa0.5Nb0.5O3 perovskite ceramic based on first principle calcula-tions [30]. Pontes et al. have investigated effect of A-site chemicaldoping on the different properties of Pb(Ca,Ba)TiO3, Pb(Sr,Ba)TiO3and Pb(Sr,Ca)TiO3 perovskite ceramics through combined experi-mental and theoretical studies [31]. Riborino et al. conducted acomputational mapping of structural, electronic and dielectricproperties of lead-free SZT [27]. In the light of these very recentstudies, there is still need for a comprehensive DFT study onAA’BB’O3 perovskite structure. Hence, in this work, we study theeffects of A-site and B-site cations of AA’BB’O3 type perovskites forwide concentration/configurations. The specific aim of this study isto investigate the effects of alloying (concentration and structural/chemical anisotropy) on their thermodynamic, structural, me-chanical, and electromechanical properties for broad concentrationranges rather than providing comprehensive data for pure ABO3compounds for various existing polymorphs.

    2. Computational method

    The first-principles calculations are performed by employinggeneralized gradient approximation (GGA) based on density func-tional theory (DFT) which allows ground-state and mechanicalproperty calculations and density functional perturbation theory(DFPT) that lets to calculate of Born-effective charges, dielectric andpiezoelectric tensors as implemented in Vienna abinitio SimulationPackage (VASP) program [32]. The 5s5p and 6s of Ba, 3s;3p;3dand4s of Ti, 2sand 2p of O, 5d;6sand 6pof Pb, 4s;4pand 5s of Sr and4s;4p;5s and 4d of Zr are considered as valence states in the con-struction of the pseudopotentials. In any accurate first principlesimulation, it is necessary to test the accuracy of exchange-correlation potential forms, and sufficiently large k-point meshesand energy cut-off value [33]. Energy convergence tests have beencarried out to determine the cut-off energy and the number ofk-points for all structures. The total energy is converged at the cut-off energy of 520 eV for all structures. The Brillouin-zone integra-tion is done using special k-points sampled within the Monkhorst-Pack scheme. It is found that a mesh of 8x8x8 k-points is required todescribe well stability and mechanical properties in the cubicstructures. In order to optimize computational cost, a (2 � 2 � 2)supercell, which contains 40 atoms (eight formula units) isemployed. As the system size doubled in each direction the k-pointmesh is reduced to 4x4x4in reciprocal space. In order to makecomparisons standard all results for extensive variables such asvolume, energy, etc. are reported for one formula unit. All calcu-lations are performed on charge neutral systems and with thefollowing common parameters: (1) a high accuracy for electronicground-state convergence (10�4eV); (2) a small tolerance for ionicrelaxation convergence (�10�3eV); and (3) maximum ionic steps of100 for all cases. While using energy minimization, the unit cellparameters and atomic coordinates are allowed to relax.

    2.1. Construction of alloys

    The prototype of ABO3 type perovskite structure has a spacegroup of Pm30m space group (No: 225). Ba, Sr, Pb are considered foratoms of A-sites; Ti and Zr are considered for atoms of B-sites. We

  • B. Akgenc et al. / Materials Chemistry and Physics 205 (2018) 315e324 317

    choose 2 � 2 � 2 super-cells with periodic boundary conditionscontaining 40 atoms for the creation of {AxA0(1-x)}BO3 and A{BxB0(1-x)}O3 alloys in which some equivalent crystallographic sites areoccupied by different atoms. We studied the alloys varying con-centration from 01 for A-site and B-site in steps of 0.125. The eight Aand A0 atoms, eight B and B0 atoms are situated on a simple cubicsublattice. {AxA0(1-x)}BO3 and A{BxB0(1-x)}O3 alloys can be classifiedas homovalent and heterovalent alloys from the chemicalperspective. Homovalent alloys are defined as A atoms belonging tothe same column of periodic table, while heterovalent alloys belongto different column of periodic table. {BaPb}TiO3, {SrPb}TiO3, {SrBa}TiO3, Pb{ZrTi}O3, Ba{ZrTi}O3, and Sr{ZrTi}O3 alloys are studied inthis work. We model our supercell with different concentrations ofx ¼ 0.875, 0.75, 0.625, 0.50, 0.375, 0.25 and 0.125 as all the valuesallowed for a 2x2x2 supercell.

    To the best of our knowledge, there are no reports on structur-eeproperty relationship in A-site and B-site mixed perovskites forthe compounds we considered. All possible local chemical orderingof A-ions, B-ions and their influence on the mixing energy areinvestigated by first-principles calculations based on densityfunctional theory. The number of crystallographic sites is altered

    Fig. 1. All possible arrangements for 2x2x2 supercell used in different concentration.The dopant and host atoms are represented by red and green atoms, respectively. (Forinterpretation of the references to colour in this figure legend, the reader is referred tothe web version of this article.)

    Fig. 2. 40 atoms in Pb8ZrxTi8-xO24 cell with (a) 0.125:0.875 and (b) 0.250:0.750 stoichiometspheres represent Pb atoms (A-site), green spheres represent Zr atoms (B-site), blue spheresalloys is visualized using the program VESTA. (For interpretation of the references to colou

    from one to eight with different stoichiometric ratio. All possiblearrangements for 2x2x2 supercells are shown in Fig. 1. The0.125:0.875 stoichiometric ratio of A and A0 in {AxA0(1-x)}BO3 has aminimum energy without any position limit, as the symmetry ofthe structure does not change. The 0.25:0.75 ratio that two crys-tallographic site are occupied by different atoms, can break thesymmetry. We have shown that minimum energy changed withdifferent configurations when atoms are placed at corners andsurface positions, due to a slight change in symmetry. We havescanned all possible configurations for each stoichiometric ratiostudied; and used symmetry equivalent ones in Fig. 1 and incalculations.

    The initial lattice parameters of 40-atom super cells are chosenaccording to Vegard's law at different contents for structural opti-mization and energy minimization. For instance, the lattice pa-rameters of PbZrxTi1-xO3 alloys can be calculated by the followingformula:

    aPbZrxTi1�xO3 ¼ xaPbZrO3 þ ð1� xÞaPbTiO3 (1)

    where aPbZrO3 and aPbTiO3 are the lattice constants of PbZrO3 andPbTiO3 compounds, respectively. Different types of cations arereplaced by the element from the base component at the corre-sponding crystallographic site. Replacement of different typescations influences the chemical ordering, hence may induce abreaking of centro-symmetry and furthermore at some concen-trations different configurationmay also break the cubic symmetry.In turn, the structure influences energetics, mechanical, dielectric,though probably small piezoelectric properties. The symmetricallyunique structural motifs shown in Fig. 1 are analyzed for energetics,structure, mechanical and electrical properties. Furthermore, themixing energies of the alloys for all concentrations are determined.The detailed all atom structures for two stoichiometric ratios0.125:0.875 and 0.250:0.750 are shown in 2x2x2 supercells as anexample of Pb8ZrxTi8-xO24 in Fig. 2.

    3. Results and discussions

    3.1. Equation of state

    The calculated total energies as a function of a primitive cellvolume (5 atoms) for ABO3 are used to determine structural andmechanical properties of the pure systems by a least-squares fit tothe third-order Birch-Murnaghan equation of state:

    ric ratio with three different configurations of Zr-Ti placement, respectively. The blackrepresent Ti atoms (B0-site) and red spheres represent O atoms. The crystal structure ofr in this figure legend, the reader is referred to the web version of this article.)

  • B. Akgenc et al. / Materials Chemistry and Physics 205 (2018) 315e324318

    EðVÞ ¼ E0 þ9V0B016

    ("�V0V

    �2=3� 1#3

    B00 þ

    "�V0V

    �2=3� 1

    #2"6

    � 4�V0V

    �2=3#);

    (2)

    where, E0 is the total energy, V0 is the equilibriumvolume, B0 is thebulk modulus at 0 GPa pressure and B

    00 is the first derivative of bulk

    modulus with respect to pressure. All of these are treated as freeparameters during the least-square fitting. The equilibrium latticeparameter a0 is determined as from the value of V0, the volume atthe minimum total energy.

    To assess the experimental accuracy of our DFT calculations, wehave selected the cubic phase of six pure compounds and comparedtheir calculated lattice parameters and bulk modulus with theavailable experimental data. In Table 1, we present the parametersobtained after the fitting procedure along with the experimentallattice parameters and bulkmodulus. As it can be seen, the errors inlattice parameters and bulk modulus are less than 2% and 6%respectively.

    DFT calculations on pristine ABO3 perovskites have been re-ported in literature earlier, eg. Ref. [42-45] On the other hand, theeffects of alloying on the mechanical and structural properties havenot been fully explored. Total energy versus volume behavior(Equations of State) of different types of {AxA0(1-x)}BO3 and A{BxB0(1-x)}O3 are shown in Fig. 3, where volume and energy are per singleABO3 formula unit is used in all cases. Dashed line Fig. 3 representsthe fit of data to Birch-Murnaghan equation of state. For each alloyconcentration, it is sought to find the energetically favorablearrangement. Doped perovskites {AxA0(1-x)}BO3 and A{BxB0(1-x)}O3have intermediate formation energies between those of the pureforms in accordance to the degree of doping. This behavior supportsthe idea that the difference between the groups depends on theoxidation states. The calculated equation of states parameters,namely the equilibrium lattice constants, the equilibrium volume,bulk modulus, the pressure derivative of bulk modulus and cohe-sive energy for the PZT are listed in Table 2. We have generated theresults for all different concentrations of the other perovskitescompounds as well. The rest of them have been given inSupplementary Material.

    We have shown that E0 does not change with respect to the

    Table 1The calculated equilibrium total energies (E0 in eV), the lattice parameters (a in Å), the bulhere with other theoretical and available experimental data for pure perovskites.

    Equation of State Parameters

    Eo(eV) a(Å)

    This work Expt. Theory

    BaTiO3 �40.21 4.03 4.00a 4.00bPbTiO3 �38.01 3.96 3.97c 3.96dSrTiO3 �40.29 3.94 3.91f 3.95dBaZrO3 �41.67 4.25 4.19h 4.21 hPbZrO3 �39.11 4.20 4.13 gSrZrO3 �41.23 4.19 4.10 h 4.17ia Ref. [33].b Ref. [34].c Ref. [35].d Ref. [36].e Ref. [37].f Ref. [38].g Ref. [39].h Ref. [40].i Ref. [41].

    symmetry equivalent positions, the symmetry non-equivalent po-sitions generate a very small change in total energy. Due to theatom size difference in alloys, the structures deviate from cubicform to tetragonal form, which is an indication that alloying leadsto emergence of permanent dipole moments/polarization in ABO3systems. Therefore, we may provide the first step for an avenue toimprove polarization properties: concentration specific, orderspecific alloy-compounds. Hence, assessing the observedenhancement in electromechanical response in these well knownwidely used ABO3 materials. The calculated magnitude of dielectricand piezoelectric coefficients and the details on dielectric andpiezoelectric properties will be described in section 3.4.

    In order to assess the influence on the structural parameters inequilibrium using different possible equilibrium configurationswith different ordering for various alloys, the structural parametersare computed for different values of concentration x of AxA0(1-x)BO3alloys, specific results for PZT alloys are given in Table 2 and shownin Fig. 3 as lattice parameters and c/a ratio.

    3.2. Calculation of elastic constants

    Two closely related approaches can be used to calculate theelastic constants from the first principles calculations. The first isrelated to analysis of the calculated total energy of a crystal as afunction of applied strain, and the second is based on the analysis ofthe changes in the calculated stress values arising from the varia-tion in the strain [8]. In our calculation, we have chosen the firstmethod to determine the elastic constants. At the same time, theelastic constants are calculated with stress-strain relationship is touse IBRION ¼ 6 and ISIF ¼ 3 that is implemented in the VASP andthe results are compared with the former. The elastic tensor isdetermined by performing six finite distortions of the lattice andderiving the elastic constants from the stress-strain relationship. Inthis way, calculated elastic constants include both the contributionsfor distortions with rigid ions and the contributions from the ionicrelaxation [21].

    To obtain the elastic constants, we calculate the total energy forseveral values of lattice parameters of the cubic cell that corre-sponds to the isotropic dilatational strain -expanding and con-tracting up to %10% with respect to zero stress state for all the pureand alloyed structures. For ABO3 alloys, each structure which cor-responds to a different concentration, we deformed the lattice byvarying the strain parameter d from -0.07 to 0.07 in steps of 0.005 to

    k modulus (B in GPa), and the pressure derivative of bulk modulus (B0) are presented

    B(GPa) B00

    This work Expt. Theory This work

    163.64 162a 172b 4.55176.68 144e 140d 4.51171.51 174g 170d 4.42149.47 - 157i 4.45156.94 4.39152.74 - 160i 4.35

  • Fig. 3. Total energies as a function of primitive cell volume for cubic (PbxBa8-x)Ti8O24, (SrxPb8-x)Ti8O24, (SrxBa8-x)Ti8O24, Ba8(ZrxTi(8-x))O24, Pb8(ZrxTi(8-x))O24 and Sr8(ZrxTi(8-x))O24from ab-initio calculations for 2x2x2 unit cell.

    B. Akgenc et al. / Materials Chemistry and Physics 205 (2018) 315e324 319

    obtain the total minimum energies as a function of strain. Thedeformation energy of a crystal can be expressed as a Taylor seriesin strain:

    E�V ; εij

    � ¼ EðV0;0Þ þ V0 X3i;j¼1

    sijεij þ12!V0

    X6i;j;k;l¼1

    Cijklεijεkl þ…

    (3)

    where, ε and s are the strain and stress tensors, respectively. V0 isthe volume of unstrained state, EðV0;0Þ is the corresponding un-strained total energy, and Cij are the second order elastic constants.The second order elastic constants are defined as

    Cijkl ¼vsijvεij

    ¼ 1V0

    "d2EðV0; εÞdεijdεkl

    #z¼0

    (4)

    The Voight notation is used in Equation (4) that replaces xx, yy,zz, yz, xz and xy components with indices: 1, 2, 3, 4, 5 and 6,respectively. Eq. (3) becomes

    EðV ; εÞ ¼ EðV0;0Þ þ V0X6i¼1

    siεi þ12!V0X6i;j¼1

    Cijεiεj þ… (5)

    The elasticity of the cubic crystal is completely described bythree independent constants C11, C12 and C44 and they are obtainedby the three strains (C1, C2, C3) given in Table 3. The elastic

  • Table 2Calculated equilibrium lattice parameters (a in Å), bulk modulus (B in GPa), and the pressure derivative of the bulk modulus (B0) together with the theoretical and availableexperimental values for PZT perovskites. (a, b, c corresponds to different positions shown in Fig. 1).

    Eo(eV) V0 (Å3) B(GPa) B0 Lattice parameter(Å) c=a

    PZT Pb8Zr7Ti1O24 �38.94 72.60 157.81 4.47 4.170 1.0000Pb8Zr6Ti2O24a �38.77 71.22 158.13 4.51 a ¼ c ¼ 4.136, b ¼ 4.157 1.0052Pb8Zr6Ti2O24b �38.78 71.01 160.53 4.45 4.139 1.0000Pb8Zr6Ti2O24c �38.79 71.04 159.25 4.53 a ¼ b ¼ 4.140, c ¼ 4.138 1.0004Pb8Zr5Ti3O24a �38.62 69.76 159.25 4.59 a ¼ b ¼ 4.122, c ¼ 4.099 1.0056Pb8Zr5Ti3O24b �38.63 69.54 161.01 4.58 a ¼ c ¼ 4.103, b ¼ 4.125 1.0054Pb8Zr5Ti3O24c �38.67 69.40 162.46 4.50 4.108 1.0000Pb8Zr4Ti4O24a �38.46 68.40 160.37 4.61 a ¼ b ¼ 4.104, c ¼ 4.054 1.0123Pb8Zr4Ti4O24b �38.49 67.96 165.34 4.47 a ¼ c ¼ 4.063, b ¼ 4.112 1.0121Pb8Zr4Ti4O24c �38.57 67.67 165.02 4.48 4.073 1.0000Pb8Zr4Ti4O24d �38.48 68.19 161.17 4.66 a ¼ c ¼ 4.083, b ¼ 4.084 1.0003Pb8Zr4Ti4O24e �38.50 68.00 163.42 4.53 b ¼ c ¼ 4.088, a ¼ 4.063 1.0061Pb8Zr4Ti4O24f �38.49 68.22 161.65 4.60 4.084 1.0000Pb8Zr3Ti5O24a �38.34 66.75 163.58 4.63 a ¼ b ¼ 4.064, c ¼ 4.037 1.0065Pb8Zr3Ti5O24b �38.36 66.52 165.02 4.66 a ¼ c ¼ 4.041, b ¼ 4.068 1.0068Pb8Zr3Ti5O24c �38.40 66.37 167.26 4.54 4.047 1.0000Pb8Zr2Ti6O24a �38.22 65.20 167.43 4.60 a ¼ c ¼ 4.013, b ¼ 4.042 1.0073Pb8Zr2Ti6O24b �38.24 64.96 170.63 4.49 4.018 1.0000Pb8Zr2Ti6O24a �38.25 65.00 168.06 4.65 a ¼ b ¼ 4.019, c ¼ 4.020 1.0002Pb8Zr1Ti7O24 �38.11 63.56 171.43 4.56 3.989 1.0000

    Table 3Applied strains εi (or strain parameter d) and corresponding energy densitiesEðV ; εÞ � EðV0 ;0ÞV0 (or corresponding mechanical response constant) for the cubicperovskites.

    Strain Parameters EðV ; εÞ � EðV0 ;0ÞV0C1 ε1 ¼ ε2 ¼ ε3 ¼ d 3=2ðC11 þ 2C12ÞC2

    ε1 ¼ d; ε2 ¼ �d; ε3 ¼ d2=1� d2 ðC11 � C12Þd2C3

    ε1 ¼ d2=1� d2; ε6 ¼ d ð2C44Þd2

    Table 4The calculated elastic constants (Cij in GPa) for pure perovskites.

    C11 C12 C44 Methods

    BaTiO3 281.67 103.75 119.78 Stress- Strain281.38 104.23 119.68 Energy-Strain

    PbTiO3 288.21 122.52 96.64 Stress- Strain287.67 119.05 96.94 Energy-Strain

    SrTiO3 316.69 103.79 111.93 Stress- Strain316.47 99.33 108.44 Energy-Strain

    BaZrO3 293.18 76.08 84.44 Stress- Strain293.18 77.61 82.06 Energy-Strain

    SrZrO3 317.18 70.52 71.92 Stress- Strain315.37 71.57 70.37 Energy-Strain

    PbZrO3 301.27 84.91 58.94 Stress- Strain303.12 85.13 61.48 Energy-Strain

    B. Akgenc et al. / Materials Chemistry and Physics 205 (2018) 315e324320

    constants are identified by the constants in the quadratic term d (inthe polynomial fit to the total energy as a function of the strainparameter) in Table 4.

    The elastic constants are calculated with two different ap-proaches: i) energy-strain and ii) stress-strain relationship. Theyobey the following mechanical stability conditions for instance inthe cubic structure, they are given as;

    C11 � jC12j>0

    C44 >0 (6)

    C11 þ 2C12 >0More relevant to the objective of the work here, we have

    calculated elastic constants tensor for all alloys, all concentrations

    and all unique symmetry configurations corresponding these con-centrations. In Table 5, we present the elastic constants for cubicand non-cubic cases (due to emergence of a small tetragonalstructure in some structures where 6 independent elastic constantsarise) for PZT. The results for complete set of alloys with uniquesymmetry configurations for all concentration were given indetailed tables (in Supplementary material).

    It is a point of interest to investigate the behavior of elasticconstants as a function concentration and different symmetryunique configuration is to apply Vegard's rule for the property andcalculate the deviation from this value to note if the property in-crease or decreases as a result of mixing. In Fig. 4 we have plottedthe deviation of the calculated elastic constants from the Vegard'srule (dot-dash line is 0) for PZT, BZT and SZTas examples. The y-axison each constant is the amount of difference in GPa. We willcomment not only on magnitude but on fractional or percentagedeviation from the Vegard's rule. For C44 for all compounds and allconfigurations show a negative deviation, hence the alloys PZT, BZTand SZT all weakens for pure shear response of the resulting ma-terial which in many cases this represents a weakening ca. 10%. Thevariation in C12 values display similar behavior in almost all con-centrations as decrease with respect to Vegard's Rule result rangingfrom 2% to 6%, except in 50-50 case in only one configuration eachBZT and SZT shows around 1% increase. However for C11 values fordifferent concentrations and corresponding unique configurationsshow both negative and positive deviations, distribution tending tobe heavily positive. In these calculations, for slightly tetragonalsupercells, we assumed systems are pseudo cubic. This assumptionis reasonable, since the largest c/a ratio is 1.015.

    3.3. Calculation of Born effective charges

    In order to obtain Born effective charges, we perform the cor-responding linear response computations. The technical details ofcomputation of responses to atomic displacements, homogeneouselectric fields, and strains are based on density functional pertur-bation theory (DFPT). The Born effective charge (BEC) tensorsrepresent the coupling of a macroscopic field to relative sub-latticedisplacements in the crystal structure. They relate the macroscopicpolarization to the atomic scale displacements by the followingequation

  • Table 5The calculated elastic constants (Cij in GPa) for PZT.

    C11 C12 C44 C13 C33 C66

    PZT Pb8Zr7Ti1O24 300.44 86.23 63.01 e e ePb8Zr6Ti2O24a 300.65 88.79 65.61 88.94 297.69 65.73Pb8Zr6Ti2O24b 299.86 91.45 66.62 e e ePb8Zr6Ti2O24c 298.64 90.71 67.11 90.22 300.51 65.92Pb8Zr5Ti3O24a 296.42 92.04 69.44 91.38 300.55 68.46Pb8Zr5Ti3O24b 299.06 94.27 69.51 95.48 296.39 70.09Pb8Zr5Ti3O24c 298.29 96.07 70.65 e e ePb8Zr4Ti4O24a 293.59 94.13 73.23 93.32 302.50 72.99Pb8Zr4Ti4O24b 301.35 98.51 73.45 102.76 291.01 76.03Pb8Zr4Ti4O24c 296.44 101.84 76.53 e e ePb8Zr4Ti4O24d 294.90 95.47 73.47 94.18 295.73 70.84Pb8Zr4Ti4O24e 299.67 98.68 74.39 97.80 294.77 74.10Pb8Zr4Ti4O24f 297.43 96.52 73.11 e e ePb8Zr3Ti5O24a 288.23 93.15 74.09 92.97 291.74 50.61Pb8Zr3Ti5O24b 296.53 100.72 75.93 103.12 290.09 73.66Pb8Zr3Ti5O24c 294.03 102.97 51.56 e e ePb8Zr2Ti6O24a 289.44 103.58 82.78 104.30 295.47 69.69Pb8Zr2Ti6O24b 295.29 108.40 84.23 e e ePb8Zr2Ti6O24c 293.62 106.91 75.32 105.62 292.01 69.30Pb8Zr1Ti7O24 292.29 110.67 87.34 e e e

    Fig. 4. The variation of elastic constants as a function of concentration and dependence on symmetry inequivalent configurations at each concentration in PZT, BZT and SZTdisplayed through deviation from the values that are obtained via application of Vegard's rule of combination.

    B. Akgenc et al. / Materials Chemistry and Physics 205 (2018) 315e324 321

  • Fig. 5. Dielectric constants of Pb1�xBaxTiO3 according to Ba concentration at 0 K.

    B. Akgenc et al. / Materials Chemistry and Physics 205 (2018) 315e324322

    Pf ¼ eU

    XZiabduib: (7)

    where, i denotes the ith atom and a and b are the components ofthe polarization and atomic displacement vectors, respectively. Instrongly ferroelectric materials the BEC's are significantly differentfrom the anticipated nominal electric charge ossn the ion. BECsemphasize why some charges are larger than nominal charges, andis also an indicator of long-range Coulomb interactions that help toclarify origin of polarization in the material. Resta et al. [46] havesuggested that strong variations of BECs relative to nominal ionicvalues are due to the large in-equivalence of the O ions.

    The present calculations of BECs values for all pure perovskitesare given in Table 6. It is seen that the BECs of these materials aremuch larger than formal charges as expected [47e49]. For proto-type of cubic perovskite structure, the metal atoms A or B sit at thecenter of cubic symmetry that results in the isotropic effectivecharges along the diagonal of charge tensor. Oxygen atoms that sitat the face centers have two independent components of effectivecharge, which are arising from displacement of oxygen ion along B-O direction or perpendicular. It is well understood that the largevalue of B charges (Ti and Zr) resulting from the effect of covalentbonding with O atoms. The acoustic sum rule of Born effectivecharges is well satisfied in our calculations:Xi

    Zi ¼ ZA þ ZB þ ZOk þ 2ZO⊥ (8)

    3.4. Calculation of dielectric and piezoelectric constants

    The dielectric properties of the alloys for various concentrationsare determined using linear response theory as implemented inVASP. This method computes the components of ion-clamped staticdielectric tensor from the change in the electronic dipole momentdue to electric field.

    εij ¼ dij þ4pε0

    vPivEj

    ði; j ¼ x; y; zÞ (9)

    For some concentrations where structure slightly deviates into atetragonal form show this character in dielectric constants, as adeviation from cubic symmetry ε11 ¼ ε22 ¼ ε33. The deviation islower than 1%, which is comparable with the deviations in latticeparameters. As seen from Fig. 5, the variation in dielectric constantsis linear with respect to concentration. We made pseudo cubicassumption for slightly tetragonal phases, and plotted only one(average of nonzero components of dielectric tensor). Fig. 5 displaysquite a close agreement with Vegard's law (εalloy¼ xεAþ (1-x)εB) forall concentrations. The variation of dielectric constants for the otheralloys are given in Supplementary Materials and they exhibit prettyclose agreement with Vegard's law as well.

    Dielectrics can have polarization contribution due to the elec-trons, ions and molecular dipoles contribution. Each of these

    Table 6Comparative Born effective charges for different ABO3 perovskites.

    Perovskites Z*A Z*B Z

    *O;k Z

    *O;⊥

    BaTiO3 2.745 7.488 �5.943 �2.144PbTiO3 3.852 7.338 �6.076 �2.555SrTiO3 2.545 7.448 �5.928 �2.033BaZrO3 2.741 6.213 �4.905 �2.024PbZrO3 3.913 6.045 �4.957 �2.499SrZrO3 2.577 6.107 �4.935 �1.874

    polarization contributions causes piezoelectricity. In this study, wehave calculated the dielectric constants under zero stress at 0 K. Wehave also investigated piezoelectric properties of alloys withdifferent ratios of mixing within the density-functional perturba-tion theory (DFPT). Basically, the piezoelectric effect stems fromchanging of polarization upon a deformation.

    We have calculated piezoelectric constants tensor for all alloys,all concentrations and all unique symmetry configurations corre-sponding concentrations. We present the results of piezoelectriccoefficient for BaZrð1�xÞTixO3 cubic form of perovskite structures inTable 7. According to symmetries of tensors, there are maximum 18dij components for lowest symmetry case. dij is a 3x6matrix. As it iswell known, the cubic form of perovskite structures does not showany piezoelectric effect because of high symmetry. But in this sce-nario, owing to the fact that crystallographic site is occupied bydifferent type of atoms, the inversion symmetry breaks down andthe structures developed a small tetragonality. Our result showsthat these alloys have non-zero piezoelectric coefficients on theorder of 10�15C=N magnitude. The chemical/configuration inducedpiezoelectricity exists in pseudo cubic structures as well. Theirmagnitude is smaller than the feasible ranges for actual applicationneeds, but it can be significantly improved upon phase trans-forming to tetragonal symmetry at various temperatures.

    4. Concluding remarks

    We studied structural and mechanical properties of some pureperovskites and their alloys using first principle DFT calculations.The elastic constants were obtained using the energy-strain andstress-strain relations.We conclude that in linewith our theoreticalpredictions on the considered properties some perovskites andtheir alloys would be serving as a reliable reference for the future.

    The results on prototype alloy structures indicate the potentialfor improvement of piezoelectric response through alloying as itmanifests itself as changes in structural and energetic form in thepreliminary results we provided in the previous section.

    Beside the effects of alloying/doping and deformation in thecrystal lattice, another intrinsic mechanism that may lead to po-larization is through the emergence of oxygen vacancies. This isquite common for most oxides due to volatility of Oxygen.Furthermore there are other mechanisms one can develop

  • Table 7Calculated piezoelectric

    dijin 10

    �15CN

    !coefficients for BaZrð1�xÞTixO3cubic form of perovskite structures.

    d11 d12 d13 d21 d22 d23 d31 d32 d33

    Ba8Zr7Ti1O24 �0.157 0.176 0.176 0.201 �0.210 0.201 0.180 0.107 �0.164Ba8Zr6Ti2O24a 0.080 0.554 0.330 0.119 �0.200 0.119 0.326 0.546 0.083Ba8Zr6Ti2O24b �0.173 �0.037 �0.037 �0.018 �0.110 �0.018 �0.021 �0.021 �0.158Ba8Zr6Ti2O24c �0.171 0.127 0.158 0.136 �0.171 0.151 0.327 0.327 �0.280Ba8Zr5Ti3O24a �0.144 0.186 0.175 0.170 �0.132 0.152 0.155 0.155 �0.043Ba8Zr5Ti3O24b �0.131 0.167 0.086 0.167 �0.181 0.167 0.095 0.164 �0.151Ba8Zr5Ti3O24c �0.469 0.294 0.294 0.298 �0.472 0.298 0.293 0.293 �0.466Ba8Zr4Ti4O24a �0.228 0.199 0.109 0.189 �0.213 0.098 0.049 0.049 �0.218Ba8Zr4Ti4O24b �0.503 �0.409 �0.561 0.150 �0.215 0.150 �0.560 �0.394 �0.492Ba8Zr4Ti4O24c �0.571 0.256 0.256 0.250 �0.524 0.250 0.266 0.266 �0.569Ba8Zr4Ti4O24d �0.226 0.358 0.038 0.090 �0.460 0.090 0.036 0.348 �0.204Ba8Zr4Ti4O24e �0.370 0.124 0.124 0.111 �0.195 0.115 0.116 0.091 �0.181Ba8Zr4Ti4O24f �0.278 0.237 0.237 0.225 �0.262 0.225 0.228 0.228 �0.282Ba8Zr3Ti5O24a �0.479 0.3844 0.147 0.4232 �0.451 0.197 0.094 0.094 �0.249Ba8Zr3Ti5O24b �0.163 0.267 0.382 0.101 �0.269 0.101 0.378 0.274 �0.139Ba8Zr3Ti5O24c �0.196 0.124 0.124 0.110 �0.210 0.110 0.125 0.125 �0.232Ba8Zr2Ti6O24a 0.509 0.252 0.365 0.204 �0.276 0.204 0.387 0.233 �0.518Pb8Zr2Ti6O24b �0.552 �0.158 �0.158 0.106 �0.289 0.106 �0.149 �0.149 �0.541Pb8Zr2Ti6O24c �0.323 0.210 0.176 0.222 �0.323 0.164 0.073 0.073 �0.261Ba8 Zr1Ti8O24 �0.451 0.266 0.266 0.269 �0.443 0.269 0.252 0.252 �0.495

    B. Akgenc et al. / Materials Chemistry and Physics 205 (2018) 315e324 323

    materials systems with Oxygen vacancies (for instance through theintroduction of aliovalent elements to base oxide). These vacancies,both charged and neutral, may have substantial effect on the values ofpolarization and piezoelectric response of the materials as well as onthermal, mechanical and dynamic properties. Hence, understand-ing the influence of vacancies is essential for engineering perfor-mance of ABO3 type perovskites. Systematic theoretical studiesalong these lines are quite recent. Some recent calculations worthto mention are on orbital reconstruction [50], on carrier density[51] and on ferromagnetism [52] induced by oxygen vacancies. Liet al. have shown that Nb-doped SrTiO3 can deform the crystallattice and increased deformation observed in the presence of ox-ygen vacancies. They have also investigated that Ti 3d electrons inSrTiO3 originating from oxygen vacancies are naturally more inac-tive and localized [52]. Yildiz et al. have shown that lattice strainaffects the vacancy formation energy of SrTiO3 in Ref. [53]. Inanother theoretical work they have investigated the relationshipbetween defect chemistry and vacancy concentration [54].

    Acknowledgement

    This work was partially supported by The Scientific and Tech-nological Research Council of Turkey (TUBITAK) and Council ofHigher Education of Turkey (YOK) for fellowship to conductresearch in Texas A&M University. T.C acknowledges the supportfrom the International Institute of Materials for Energy Conversion(IIMEC) at Texas A&M University, an NSF International MaterialsInstitute (DMR 0844082) and also support provided by Scientificand Technological Research Council of Turkey (TUBITAK-BIDEB) forhis visit to initiate the project in 2013. All calculations are per-formed at the facilities of Supercomputing Center of Texas A&MUniversity, and computing facilities of Laboratory of ComputationalEngineering of Nanomaterials directed by TC.

    Appendix A. Supplementary data

    Supplementary data related to this article can be found athttps://doi.org/10.1016/j.matchemphys.2017.11.026.

    References

    [1] A. Lebedev, Ab initio calculations of phonon spectra in ATiO3 perovskitecrystals (A¼ Ca, Sr, Ba, Ra, Cd, Zn, Mg, Ge, Sn, Pb), Phys. Solid State 51 (2009)362e372.

    [2] Ph Ghosez, E. Cockayne, U.V. Waghmare, K.M. Rabe, Lattice dynamics ofBaTiO3, PbTiO3 and PbZrO3: a comparative first-principles study, Phys. Rev. B60 (1999) 836.

    [3] Y. Duan, G. Tang, C. Chen, T. Lu, Z. Wu, First-principles investigations offerroelectricity and piezoelectricity in BaTiO3/PbTiO3 superlattices, Phys. Rev.B 85 (2012) 054108.

    [4] A. Erba, K.E. El-Kelany, M. Ferrero, I. Baraille, M. Rerat, Piezoelectricity ofSrTiO3: an ab initio description, Phys. Rev. B 88 (2013) 035102.

    [5] P. Ghosez, X. Gonze, J.P. Michenaud, Lattice dynamics of BaTiO3, PbTiO3, andPbZrO3: a comparative first-principles study, Phys. Rev. B 60 (1999) 836.

    [6] M. Uludogan, P.D. Guarin, Z.E. Gomez, T. Cagin, W.A. Goddard, CMES-ComptModel. Eng. Sci. 24 (2008) 215e238.

    [7] W. Guyton Candy, Piezoelectricty, McGraw-Hill Book Company, New York,1946.

    [8] J.F. Nye, Physical Properties of Crystals, Clarendon, Oxford, 1957.[9] A.W. Hewat, Structure of rhombohedral ferroelectric barium titanate, Ferro-

    electrics 6 (1973) 215e218.[10] M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and

    Related Materials, Oxford university press, 1977.[11] J.F. Scott, Ferroelectric Memories, Vol. 3, Springer Science & Business Media,

    2013.[12] R. Waser, H. Keller, U. Erb, Nanoelectronics and Information Technology:

    Advanced Electronic Materials and Novel Devices, MRS BULLETIN, 2004.[13] F. Calle- Vallejo, J. I.Martinez, J.M. Garcia e Lastra, M. Mogensen, J. Rossmeisl,

    Angew. Chem. Int. Ed. 49 (2010) 1e4.[14] L. Bellaiche, J. Padilla, D. Vanderbilt, Phys. Rev. B 59 (1998).[15] D. Damjanovic, Piezoelectric properties of perovskite ferroelectrics: unsolved

    problems and future research, Annales de Chimie Science des Materiaux. Vol.26. No. 1, No longer published by Elsevier, 2001.

    [16] G. Rohrer, M. Affatigato, M. Backhaus, R. Bordia, K. Scott Weil, Challenges inceramic science: a report from the workshop on emerging research areas inceramic science, J. Am. Ceram. Soc. 95 (2012) 3699e3712.

    [17] H. Yao, L. Ouyang, W.Y. Ching, Ab initio calculation of elastic constants ofceramic crystals, J. Am. Ceram. Soc. 90 (2007) 3194e3204.

    [18] P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, O. Eriksson, J. Appl.Phys. 84.9 (1998) 4891e4904.

    [19] M. Kalay, H.H. Kart, S. Ozdemir Kart, T. Cagin, Elastic properties and pressureinduced transitions of ZnO polymorphs from first-principle calculations,J. Alloys Compd. 484 (2009) 431e438.

    [20] I. Erdem, H.H. Kart, T. Cagin, High pressure phase transitions in SnO2 poly-morphs by first-principles calculations, J. Alloys Compd. 587 (2014) 638e645.

    [21] X. Wu, D. Vanderbilt, D.R. Hamaann, Systematic treatment of displacements,strains, and electric fields in density-functional perturbation theory, Phys.Rev. B 72 (2005) 035105.

    [22] A. Gonzalez-Garcia, W. Lopez-Perez, R. Palacio-Mozo, R. Gonzalez- Hernandez,J. Comp. Mat. Sci. 91 (2014) 279e284.

    [23] M.-Y. Xie, F. Tasnadi, I.A. Abrikosov, L. Hultman, V. Darakchieva, Elastic

    https://doi.org/10.1016/j.matchemphys.2017.11.026http://refhub.elsevier.com/S0254-0584(17)30905-7/sref1http://refhub.elsevier.com/S0254-0584(17)30905-7/sref1http://refhub.elsevier.com/S0254-0584(17)30905-7/sref1http://refhub.elsevier.com/S0254-0584(17)30905-7/sref1http://refhub.elsevier.com/S0254-0584(17)30905-7/sref1http://refhub.elsevier.com/S0254-0584(17)30905-7/sref1http://refhub.elsevier.com/S0254-0584(17)30905-7/sref2http://refhub.elsevier.com/S0254-0584(17)30905-7/sref2http://refhub.elsevier.com/S0254-0584(17)30905-7/sref2http://refhub.elsevier.com/S0254-0584(17)30905-7/sref2http://refhub.elsevier.com/S0254-0584(17)30905-7/sref2http://refhub.elsevier.com/S0254-0584(17)30905-7/sref2http://refhub.elsevier.com/S0254-0584(17)30905-7/sref3http://refhub.elsevier.com/S0254-0584(17)30905-7/sref3http://refhub.elsevier.com/S0254-0584(17)30905-7/sref3http://refhub.elsevier.com/S0254-0584(17)30905-7/sref3http://refhub.elsevier.com/S0254-0584(17)30905-7/sref3http://refhub.elsevier.com/S0254-0584(17)30905-7/sref4http://refhub.elsevier.com/S0254-0584(17)30905-7/sref4http://refhub.elsevier.com/S0254-0584(17)30905-7/sref4http://refhub.elsevier.com/S0254-0584(17)30905-7/sref5http://refhub.elsevier.com/S0254-0584(17)30905-7/sref5http://refhub.elsevier.com/S0254-0584(17)30905-7/sref5http://refhub.elsevier.com/S0254-0584(17)30905-7/sref5http://refhub.elsevier.com/S0254-0584(17)30905-7/sref5http://refhub.elsevier.com/S0254-0584(17)30905-7/sref6http://refhub.elsevier.com/S0254-0584(17)30905-7/sref6http://refhub.elsevier.com/S0254-0584(17)30905-7/sref6http://refhub.elsevier.com/S0254-0584(17)30905-7/sref7http://refhub.elsevier.com/S0254-0584(17)30905-7/sref7http://refhub.elsevier.com/S0254-0584(17)30905-7/sref8http://refhub.elsevier.com/S0254-0584(17)30905-7/sref9http://refhub.elsevier.com/S0254-0584(17)30905-7/sref9http://refhub.elsevier.com/S0254-0584(17)30905-7/sref9http://refhub.elsevier.com/S0254-0584(17)30905-7/sref10http://refhub.elsevier.com/S0254-0584(17)30905-7/sref10http://refhub.elsevier.com/S0254-0584(17)30905-7/sref11http://refhub.elsevier.com/S0254-0584(17)30905-7/sref11http://refhub.elsevier.com/S0254-0584(17)30905-7/sref11http://refhub.elsevier.com/S0254-0584(17)30905-7/sref12http://refhub.elsevier.com/S0254-0584(17)30905-7/sref12http://refhub.elsevier.com/S0254-0584(17)30905-7/sref13http://refhub.elsevier.com/S0254-0584(17)30905-7/sref13http://refhub.elsevier.com/S0254-0584(17)30905-7/sref13http://refhub.elsevier.com/S0254-0584(17)30905-7/sref13http://refhub.elsevier.com/S0254-0584(17)30905-7/sref14http://refhub.elsevier.com/S0254-0584(17)30905-7/sref15http://refhub.elsevier.com/S0254-0584(17)30905-7/sref15http://refhub.elsevier.com/S0254-0584(17)30905-7/sref15http://refhub.elsevier.com/S0254-0584(17)30905-7/sref16http://refhub.elsevier.com/S0254-0584(17)30905-7/sref16http://refhub.elsevier.com/S0254-0584(17)30905-7/sref16http://refhub.elsevier.com/S0254-0584(17)30905-7/sref16http://refhub.elsevier.com/S0254-0584(17)30905-7/sref17http://refhub.elsevier.com/S0254-0584(17)30905-7/sref17http://refhub.elsevier.com/S0254-0584(17)30905-7/sref17http://refhub.elsevier.com/S0254-0584(17)30905-7/sref18http://refhub.elsevier.com/S0254-0584(17)30905-7/sref18http://refhub.elsevier.com/S0254-0584(17)30905-7/sref18http://refhub.elsevier.com/S0254-0584(17)30905-7/sref19http://refhub.elsevier.com/S0254-0584(17)30905-7/sref19http://refhub.elsevier.com/S0254-0584(17)30905-7/sref19http://refhub.elsevier.com/S0254-0584(17)30905-7/sref19http://refhub.elsevier.com/S0254-0584(17)30905-7/sref20http://refhub.elsevier.com/S0254-0584(17)30905-7/sref20http://refhub.elsevier.com/S0254-0584(17)30905-7/sref20http://refhub.elsevier.com/S0254-0584(17)30905-7/sref20http://refhub.elsevier.com/S0254-0584(17)30905-7/sref21http://refhub.elsevier.com/S0254-0584(17)30905-7/sref21http://refhub.elsevier.com/S0254-0584(17)30905-7/sref21http://refhub.elsevier.com/S0254-0584(17)30905-7/sref22http://refhub.elsevier.com/S0254-0584(17)30905-7/sref22http://refhub.elsevier.com/S0254-0584(17)30905-7/sref22http://refhub.elsevier.com/S0254-0584(17)30905-7/sref23

  • B. Akgenc et al. / Materials Chemistry and Physics 205 (2018) 315e324324

    constants, composition, and piezolectric polarization in InxAl1-xN : from abinitio calculations to experimental implications for the applicability ofVegard's rule, Phys. Rev. B 86 (2012) 155310.

    [24] T. Qi, I. Grinberg, M. Rappe, First-principles investigation of the highlytetragonal ferroelectric material Bi (Zn1/2Ti1/2)O3, Phys. Rev. B 79 (2009)094114.

    [25] J. Bennett, I. Grinberg, P. Davies, A.M. Rappe, Pb-free ferroelectrics investi-gated with density functional theory: SnAl1/2Nb1/2O3 perovskites, Phys. Rev.B 83 (2011) 144112.

    [26] S.V. Halilov, M. Fornari, D.J. Singh, Lattice instabilities in (Pb,Cd)TiO3 alloys,Appl. Phys. Lett. 81 (2002) 3443e3445.

    [27] R.A.P. Ribeir, S.R. de Lazaro, DFT/PBE0 study on structural, electronic anddielectric properties of SnZr0.5Ti0.5O3 lead-free ferroelectric material, J. AlloysCompd. 714 (2017) 553e559.

    [28] J. Zhou, Z. Xia, M.S. Molokeev, X. Zhang, D. Peng, Q. Liu, Composition design,optical gap and stability investigations of lead-free halide double perovskiteCs2AgInCl6, J. Mater. Chem. A 5 (2017) 15031e15037.

    [29] S. Mehmood, Z. Ali, I. Khan, I. Ahmad, Effects of cobalt substitution on thephysical properties of the perovskite strontium ferrite, Mater. Chem. Phys.196 (2017) 222e228.

    [30] W. Yang, J. Han, L. Wang, Y. Shen, L. Li, Y. Yang, H. Li, L. Chen, Effect of orderedB-site cations on the structure, elastic and thermodynamic properties ofKTa0.5Nb0.5O3 crystal, Appl. Phys. A 123.7 (461) (2017).

    [31] D.S.L. Pontes, W.B. Bastos, A.J. Chiquito, E. Longo, F.M. Pontes, Combinedtheoretical and nanoscale experimental study of Pb(Ca,Ba)TiO3, Pb(Sr,Ba)TiO3,and Pb(Sr,Ca)TiO3 complex perovskite structures: an investigation of theferroelectric and electronic properties, J. Alloys Compd. 702 (2017) 327e337.

    [32] G. Kresse, M. Marsman, J. Furtmuller, Vienna Ab-initio Simulation PackageWien, Austria, 2001.

    [33] K.H. Hellwege, A.M. Hellwege, Ferroelectrics and Related Substances, Landolt-B€ornstein, New Series, 1969.

    [34] J.J. Wang, F.Y. Meng, X.Q. Ma, X. Xu, L.Q. Chen, Lattice, elastic, polarization, andelectrostrictive properties of BaTiO3 from first-principles, J. Appl. Phys. 108(2010) 034107.

    [35] H. Landolt, R. Bornstein, Numerical Data and Functional Relationship in Sci-ence and Technology, Springer, 1987.

    [36] S. Piskonov, E. Heifets, R.I. Eglitis, G. Bornstel, J. Comp. Mat. Sci. 29.2 (2004)165e178.

    [37] Z. Li, M. Grimsditch, C.M. Foster, S.K. Chan, Dielectric and elastic properties offerroelectric materials at elevated temperature, J. Phys. Chem. Solids 57(1996) 1433e1438.

    [38] L. Cao, E. Sozontov, J. Zegenhagen, Cubic to tetragonal phase transition ofSrTiO3 under epitaxial stress: an X-ray backscattering study, Phys. status solidi(a) 181.2 (2000) 387e404.

    [39] S. Yamanaka, H. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda,S. Kobayashi, K. Kurosaki, Thermophysical properties of BaZrO3 and BaCeO3,

    J. Alloys Compd 359 (2003) 109.[40] R. Terki, H. Feraoun, G. Bertrand, H. Aourag, Full potential calculation of

    structural, elastic and electronic properties of BaZrO3 and SrZrO3, Phys. StatusSolidi B 242.5 (2005) 1054e1062.

    [41] B.J. Kennedy, C.J. Howard, B.C. Chakooumakos, High-temperature phasetransitions in SrZrO3, Phys. Rev. B 59 (1999) 4023.

    [42] M.D. Fontana, G. Metrat, J.L. Servoin, F. Gervais, Infrared spectroscopy inKNbO3 through the successive ferroelectric phase transitions, J. Phys. C SolidState Phys. 17 (1984) 483.

    [43] Ph Sciau, A. Kania, B. Dkhil, E. Suard, A. Ratuzna, Structural investigation ofAgNbO3 phases using x-ray and neutron diffraction, J. Phys. Condens. Matter16 (2004) 2795.

    [44] J.C. Chervin, J.P. Itie, D. Gourdain, Ph Pruzan, Energy dispersive X-raydiffraction study of KNbO3 up to 19GPa at room temperature, Solid stateCommun. 110 (1999) 247e251.

    [45] A. Mahmood, S.M. Ramay, H.M. Rafique, Y. Al-Zaghayer, U. Khan, First-prin-ciples study of electronic, optical and thermoelectric properties in cubicperovskite materials AgMO3 (M¼ V, Nb, Ta), Mod. Phys. Lett. B 28 (2014)1450077.

    [46] R. Resta, M. Posternak, A. Baldereschi, Towards a quantum theory of polari-zation in ferroelectrics: the case of KNbO3, Phys. Rev. Lett. 70 (1993) 1010.

    [47] W. Zhong, R.D. King-Smith, D. Vanderbilt, Giant LO-TO splittings in perovskiteferroelectrics, Phys. Rev. Lett. 72 (1994) 3618.

    [48] M. Posternak, R.Resta, A. Baldereschi, Role of covalent bonding in the polari-zation of perovskite oxides: the case of KNbO3, Phys. Rev. B 50 (1994) 8911.

    [49] G. Henkelman, A. Arnaldsson, H. Jonsson, A fast and robust algorithm forBader decomposition of charge density, Comput. Mater. Sci. 36 (2006)354e360.

    [50] Z.Q. Liu, W. Lu, S.W. Zeng, J.W. Deng, Z. Huang, C.J. Li, M. Motapothula,W.M. Lu, L. Sun, K. Han, J.Q. Zhong, P. Yang, N.N. Bao, W. Chen, J.S. Chen,Y.P. Feng, J.M.D. Coey, T. Venkatesan, Ariando, Bandgap control of the oxygen-vacancy-induced two dimensional electron gas in SrTiO3, Adv. Mater. In-terfaces 1 (2014) 1400155.

    [51] Z.Q. Liu, D.P. Leusink, W.M. Lu, X. Wang, X.P. Wang, K. Gopinadhan, Y.T. Lin,A. Annadi, Y.L. Zhao, A.R. Barman, S. Dhar, Y.P. Feng, H.B. Su, G. Xiong,T. Venkatesan, Ariando, Reversible metal-insulator transition in LaAlO3 thinfilms mediated by intragap defects: an alternative mechanism for resistiveswitching, Phys. Rev. B 84 (2011) 165106.

    [52] Z.Q. Liu, W.M. Lu, S.L. Lim, X.P. Qiu, N.N. Bao, M. Motapothula, J.B. Yi, M. Yang,S. Dhar, T. Venkatesa, Ariando, Reversible room-temperature ferromagnetismin Nb-doped SrTiO3 single crystals, Phys. Rev. B 87 (2013) 220405.

    [53] D. Marrocchelli, L. Sun, B. Yildiz, Dislocations in SrTiO3 : easy to reduce but notso fast for oxygen transport, J. Am. Chem. Soc. 137 (2015) 4735e4748.

    [54] A. Kushima, B. Yildiz, Role of lattice strain and defect chemistry on the oxygenvacancy migration at the (8.3% Y2O3-ZrO2)/SrTiO3 hetero-interface: a firstprinciples study, ECS Trans. 25 (2009) 159e1609.

    http://refhub.elsevier.com/S0254-0584(17)30905-7/sref23http://refhub.elsevier.com/S0254-0584(17)30905-7/sref23http://refhub.elsevier.com/S0254-0584(17)30905-7/sref23http://refhub.elsevier.com/S0254-0584(17)30905-7/sref23http://refhub.elsevier.com/S0254-0584(17)30905-7/sref23http://refhub.elsevier.com/S0254-0584(17)30905-7/sref24http://refhub.elsevier.com/S0254-0584(17)30905-7/sref24http://refhub.elsevier.com/S0254-0584(17)30905-7/sref24http://refhub.elsevier.com/S0254-0584(17)30905-7/sref24http://refhub.elsevier.com/S0254-0584(17)30905-7/sref24http://refhub.elsevier.com/S0254-0584(17)30905-7/sref24http://refhub.elsevier.com/S0254-0584(17)30905-7/sref25http://refhub.elsevier.com/S0254-0584(17)30905-7/sref25http://refhub.elsevier.com/S0254-0584(17)30905-7/sref25http://refhub.elsevier.com/S0254-0584(17)30905-7/sref26http://refhub.elsevier.com/S0254-0584(17)30905-7/sref26http://refhub.elsevier.com/S0254-0584(17)30905-7/sref26http://refhub.elsevier.com/S0254-0584(17)30905-7/sref26http://refhub.elsevier.com/S0254-0584(17)30905-7/sref27http://refhub.elsevier.com/S0254-0584(17)30905-7/sref27http://refhub.elsevier.com/S0254-0584(17)30905-7/sref27http://refhub.elsevier.com/S0254-0584(17)30905-7/sref27http://refhub.elsevier.com/S0254-0584(17)30905-7/sref27http://refhub.elsevier.com/S0254-0584(17)30905-7/sref27http://refhub.elsevier.com/S0254-0584(17)30905-7/sref27http://refhub.elsevier.com/S0254-0584(17)30905-7/sref28http://refhub.elsevier.com/S0254-0584(17)30905-7/sref28http://refhub.elsevier.com/S0254-0584(17)30905-7/sref28http://refhub.elsevier.com/S0254-0584(17)30905-7/sref28http://refhub.elsevier.com/S0254-0584(17)30905-7/sref28http://refhub.elsevier.com/S0254-0584(17)30905-7/sref28http://refhub.elsevier.com/S0254-0584(17)30905-7/sref29http://refhub.elsevier.com/S0254-0584(17)30905-7/sref29http://refhub.elsevier.com/S0254-0584(17)30905-7/sref29http://refhub.elsevier.com/S0254-0584(17)30905-7/sref29http://refhub.elsevier.com/S0254-0584(17)30905-7/sref30http://refhub.elsevier.com/S0254-0584(17)30905-7/sref30http://refhub.elsevier.com/S0254-0584(17)30905-7/sref30http://refhub.elsevier.com/S0254-0584(17)30905-7/sref30http://refhub.elsevier.com/S0254-0584(17)30905-7/sref30http://refhub.elsevier.com/S0254-0584(17)30905-7/sref30http://refhub.elsevier.com/S0254-0584(17)30905-7/sref31http://refhub.elsevier.com/S0254-0584(17)30905-7/sref31http://refhub.elsevier.com/S0254-0584(17)30905-7/sref31http://refhub.elsevier.com/S0254-0584(17)30905-7/sref31http://refhub.elsevier.com/S0254-0584(17)30905-7/sref31http://refhub.elsevier.com/S0254-0584(17)30905-7/sref31http://refhub.elsevier.com/S0254-0584(17)30905-7/sref31http://refhub.elsevier.com/S0254-0584(17)30905-7/sref31http://refhub.elsevier.com/S0254-0584(17)30905-7/sref32http://refhub.elsevier.com/S0254-0584(17)30905-7/sref32http://refhub.elsevier.com/S0254-0584(17)30905-7/sref33http://refhub.elsevier.com/S0254-0584(17)30905-7/sref33http://refhub.elsevier.com/S0254-0584(17)30905-7/sref33http://refhub.elsevier.com/S0254-0584(17)30905-7/sref34http://refhub.elsevier.com/S0254-0584(17)30905-7/sref34http://refhub.elsevier.com/S0254-0584(17)30905-7/sref34http://refhub.elsevier.com/S0254-0584(17)30905-7/sref34http://refhub.elsevier.com/S0254-0584(17)30905-7/sref35http://refhub.elsevier.com/S0254-0584(17)30905-7/sref35http://refhub.elsevier.com/S0254-0584(17)30905-7/sref36http://refhub.elsevier.com/S0254-0584(17)30905-7/sref36http://refhub.elsevier.com/S0254-0584(17)30905-7/sref36http://refhub.elsevier.com/S0254-0584(17)30905-7/sref37http://refhub.elsevier.com/S0254-0584(17)30905-7/sref37http://refhub.elsevier.com/S0254-0584(17)30905-7/sref37http://refhub.elsevier.com/S0254-0584(17)30905-7/sref37http://refhub.elsevier.com/S0254-0584(17)30905-7/sref38http://refhub.elsevier.com/S0254-0584(17)30905-7/sref38http://refhub.elsevier.com/S0254-0584(17)30905-7/sref38http://refhub.elsevier.com/S0254-0584(17)30905-7/sref38http://refhub.elsevier.com/S0254-0584(17)30905-7/sref38http://refhub.elsevier.com/S0254-0584(17)30905-7/sref39http://refhub.elsevier.com/S0254-0584(17)30905-7/sref39http://refhub.elsevier.com/S0254-0584(17)30905-7/sref39http://refhub.elsevier.com/S0254-0584(17)30905-7/sref39http://refhub.elsevier.com/S0254-0584(17)30905-7/sref39http://refhub.elsevier.com/S0254-0584(17)30905-7/sref40http://refhub.elsevier.com/S0254-0584(17)30905-7/sref40http://refhub.elsevier.com/S0254-0584(17)30905-7/sref40http://refhub.elsevier.com/S0254-0584(17)30905-7/sref40http://refhub.elsevier.com/S0254-0584(17)30905-7/sref40http://refhub.elsevier.com/S0254-0584(17)30905-7/sref40http://refhub.elsevier.com/S0254-0584(17)30905-7/sref41http://refhub.elsevier.com/S0254-0584(17)30905-7/sref41http://refhub.elsevier.com/S0254-0584(17)30905-7/sref41http://refhub.elsevier.com/S0254-0584(17)30905-7/sref42http://refhub.elsevier.com/S0254-0584(17)30905-7/sref42http://refhub.elsevier.com/S0254-0584(17)30905-7/sref42http://refhub.elsevier.com/S0254-0584(17)30905-7/sref42http://refhub.elsevier.com/S0254-0584(17)30905-7/sref43http://refhub.elsevier.com/S0254-0584(17)30905-7/sref43http://refhub.elsevier.com/S0254-0584(17)30905-7/sref43http://refhub.elsevier.com/S0254-0584(17)30905-7/sref43http://refhub.elsevier.com/S0254-0584(17)30905-7/sref44http://refhub.elsevier.com/S0254-0584(17)30905-7/sref44http://refhub.elsevier.com/S0254-0584(17)30905-7/sref44http://refhub.elsevier.com/S0254-0584(17)30905-7/sref44http://refhub.elsevier.com/S0254-0584(17)30905-7/sref44http://refhub.elsevier.com/S0254-0584(17)30905-7/sref45http://refhub.elsevier.com/S0254-0584(17)30905-7/sref45http://refhub.elsevier.com/S0254-0584(17)30905-7/sref45http://refhub.elsevier.com/S0254-0584(17)30905-7/sref45http://refhub.elsevier.com/S0254-0584(17)30905-7/sref45http://refhub.elsevier.com/S0254-0584(17)30905-7/sref45http://refhub.elsevier.com/S0254-0584(17)30905-7/sref46http://refhub.elsevier.com/S0254-0584(17)30905-7/sref46http://refhub.elsevier.com/S0254-0584(17)30905-7/sref46http://refhub.elsevier.com/S0254-0584(17)30905-7/sref47http://refhub.elsevier.com/S0254-0584(17)30905-7/sref47http://refhub.elsevier.com/S0254-0584(17)30905-7/sref48http://refhub.elsevier.com/S0254-0584(17)30905-7/sref48http://refhub.elsevier.com/S0254-0584(17)30905-7/sref48http://refhub.elsevier.com/S0254-0584(17)30905-7/sref49http://refhub.elsevier.com/S0254-0584(17)30905-7/sref49http://refhub.elsevier.com/S0254-0584(17)30905-7/sref49http://refhub.elsevier.com/S0254-0584(17)30905-7/sref49http://refhub.elsevier.com/S0254-0584(17)30905-7/sref50http://refhub.elsevier.com/S0254-0584(17)30905-7/sref50http://refhub.elsevier.com/S0254-0584(17)30905-7/sref50http://refhub.elsevier.com/S0254-0584(17)30905-7/sref50http://refhub.elsevier.com/S0254-0584(17)30905-7/sref50http://refhub.elsevier.com/S0254-0584(17)30905-7/sref50http://refhub.elsevier.com/S0254-0584(17)30905-7/sref51http://refhub.elsevier.com/S0254-0584(17)30905-7/sref51http://refhub.elsevier.com/S0254-0584(17)30905-7/sref51http://refhub.elsevier.com/S0254-0584(17)30905-7/sref51http://refhub.elsevier.com/S0254-0584(17)30905-7/sref51http://refhub.elsevier.com/S0254-0584(17)30905-7/sref51http://refhub.elsevier.com/S0254-0584(17)30905-7/sref52http://refhub.elsevier.com/S0254-0584(17)30905-7/sref52http://refhub.elsevier.com/S0254-0584(17)30905-7/sref52http://refhub.elsevier.com/S0254-0584(17)30905-7/sref52http://refhub.elsevier.com/S0254-0584(17)30905-7/sref53http://refhub.elsevier.com/S0254-0584(17)30905-7/sref53http://refhub.elsevier.com/S0254-0584(17)30905-7/sref53http://refhub.elsevier.com/S0254-0584(17)30905-7/sref53http://refhub.elsevier.com/S0254-0584(17)30905-7/sref54http://refhub.elsevier.com/S0254-0584(17)30905-7/sref54http://refhub.elsevier.com/S0254-0584(17)30905-7/sref54http://refhub.elsevier.com/S0254-0584(17)30905-7/sref54http://refhub.elsevier.com/S0254-0584(17)30905-7/sref54http://refhub.elsevier.com/S0254-0584(17)30905-7/sref54http://refhub.elsevier.com/S0254-0584(17)30905-7/sref54http://refhub.elsevier.com/S0254-0584(17)30905-7/sref54

    First – principles calculations on stability and mechanical properties of various ABO3 and their alloys1. Introduction2. Computational method2.1. Construction of alloys

    3. Results and discussions3.1. Equation of state3.2. Calculation of elastic constants3.3. Calculation of Born effective charges3.4. Calculation of dielectric and piezoelectric constants

    4. Concluding remarksAcknowledgementAppendix A. Supplementary dataReferences