22
MATH 105 921 Solutions to Integration Exercises MATH 105 921 Solutions to Integration Exercises 1) Z s 2 +1 s 2 - 1 ds Solution: Performing polynomial long division, we have that: Z s 2 +1 s 2 - 1 ds = Z (1 + 2 s 2 - 1 ) ds = Z ds + Z 2 s 2 - 1 ds = s + Z 2 s 2 - 1 ds Using partial fraction on the remaining integral, we get: 2 s 2 - 1 = A s - 1 + B s +1 = A(s + 1) + B(s - 1) (s + 1)(s - 1) = (A + B)s +(A - B) s 2 - 1 Thus, A + B = 0 and A - B = 2. Adding the two equations together yields 2A = 2, that is, A = 1, and B = -1. So, we have that: Z 2 s 2 - 1 ds = Z 1 s - 1 ds - Z 1 s +1 ds Therefore, Z s 2 +1 s 2 - 1 ds = s + Z 2 s 2 - 1 ds = s + Z 1 s - 1 ds - Z 1 s +1 ds = s + ln |s - 1|- ln |s +1| + C 2) Z 0 4 x 1+2x dx Solution: Using direct substitution with u =1+2x and du =2dx, we may write Page 1 of 22

MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

Embed Size (px)

Citation preview

Page 1: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

MATH 105 921 Solutions to Integration Exercises

1)

∫s2 + 1

s2 − 1ds

Solution: Performing polynomial long division, we have that:∫s2 + 1

s2 − 1ds =

∫(1 +

2

s2 − 1) ds

=

∫ds+

∫2

s2 − 1ds

= s+

∫2

s2 − 1ds

Using partial fraction on the remaining integral, we get:

2

s2 − 1=

A

s− 1+

B

s+ 1=A(s+ 1) +B(s− 1)

(s+ 1)(s− 1)=

(A+B)s+ (A−B)

s2 − 1

Thus, A+ B = 0 and A− B = 2. Adding the two equations together yields 2A = 2,that is, A = 1, and B = −1. So, we have that:∫

2

s2 − 1ds =

∫1

s− 1ds−

∫1

s+ 1ds

Therefore, ∫s2 + 1

s2 − 1ds = s+

∫2

s2 − 1ds

= s+

∫1

s− 1ds−

∫1

s+ 1ds

= s+ ln |s− 1| − ln |s+ 1|+ C

2)

∫ 0

4

x√

1 + 2x dx

Solution: Using direct substitution with u = 1 + 2x and du = 2dx, we may write

Page 1 of 22

Page 2: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

x = 12(u− 1). Moreover, when x = 4, u = 9, and when x = 0, u = 1. Thus,∫ 0

4

x√

1 + 2x dx =

∫ 1

9

1

4(u− 1)

√u du

=

∫ 1

9

1

4(u

32 − u

12 ) du

= (1

10u

52 − 1

6u

32 ) |19

= (1

10− 1

6)− (

243

10− 27

6)

=−298

15

3)

∫sin2 x cos2 x dx

Solution: Using half-angle identities sin2 x = 1−cos(2x)2

and cos2 x = 1+cos(2x)2

, we get:∫sin2 x cos2 x dx =

∫1

4(1− cos(2x))(1 + cos(2x)) dx

=

∫1

4(1− cos2(2x)) dx

=

∫1

4dx−

∫1

4cos2(2x) dx

=x

4− 1

4

∫cos2(2x) dx

On the remaining integral, we apply the half-angle identity cos2(2x) = 1+cos(4x)2

, andobtain: ∫

cos2(2x) dx =

∫1 + cos(4x)

2dx =

x

2+

1

8sin(4x) + C

Hence, ∫sin2 x cos2 x dx =

x

4− 1

4(x

2+

1

8sin(4x)) + C =

x

8− 1

32sin(4x) + C

4)

∫sin(√w) dw

Page 2 of 22

Page 3: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

Solution: Using direct substitution with t =√w, and dt = 1

2√wdw, that is, dw =

2√w dt = 2t dt, we get: ∫

sin(√w) dw =

∫2t sin t dt

Using integration by part method with u = 2t and dv = sin t dt, so du = 2 dt andv = − cos t, we get:∫

2t sin t dt = −2t cos t+

∫2 cos t dt = −2t cos t+ 2 sin t+ C

Therefore, ∫sin(√w) dw = −2

√w cos(

√w) + 2 sin(

√w) + C

5)

∫ln(x)

xdx

Solution: Using direct substitution with u = ln(x) and du = 1xdx, we get:∫

ln(x)

xdx =

∫u du =

u2

2+ C

⇒∫

ln(x)

xdx =

1

2(ln(x))2 + C

6)

∫sin t cos(2t) dt

Solution: Recall the double-angle formula that cos(2t) = 2 cos2 t− 1, we get:∫sin t cos(2t) dt =

∫sin t(2 cos2 t− 1) dt

=

∫2 sin t cos2 t dt−

∫sin t dt =

∫2 sin t cos2 t dt+ cos t

On the remaining integral, using direct substitution with u = cos t and du = − sin t dt,we have that:∫

2 sin t cos2 t dt =

∫−2u2 du = −2

3u3 + C = −2

3cos3 t+ C

Page 3 of 22

Page 4: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

Therefore, ∫sin t cos(2t) dt = −2

3cos3 t+ cos t+ C

7)

∫x+ 1

4 + x2dx

Solution: Observe that we may split the integral as follows:∫x+ 1

4 + x2dx =

∫x

4 + x2dx+

∫1

4 + x2dx

On the first integral on the right hand side, we use direct substitution with u = 4+x2,and du = 2x dx. We get:∫

x

4 + x2dx =

∫1

2udu = ln |2u|+ C = ln(8 + 2x2) + C

On the second integral on the right hand side, we use inverse trigonometric substitu-

tion with 2 tan t = x (or equivalently, t = arctan(x

2

)), so 2 sec2 t dt = dx. Thus,

∫1

4 + x2dx =

∫1

4 + 4 tan2 t2 sec2 t dt =

∫2 sec2 t

4 sec2 tdt

=

∫1

2dt =

t

2+ C =

1

2arctan

(x2

)+ C

Therefore,∫x+ 1

4 + x2dx =

∫x

4 + x2dx+

∫1

4 + x2dx = ln(8 + 2x2) +

1

2arctan

(x2

)+ C

8)

∫sin(tan θ)

cos2 θdθ

Solution: Using direct substitution with u = tan θ and du = sec2 θ dθ, we get:∫sin(tan θ)

cos2 θdθ =

∫sec2 θ sin(tan θ) dθ =

∫sinu du = − cosu+ C

⇒∫

sin(tan θ)

cos2 θdθ = − cos(tan θ) + C

Page 4 of 22

Page 5: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

9)

∫x√

3− 2x− x2 dx

Solution: Completing the square, we get 3 − 2x − x2 = 4 − (x + 1)2. Using directsubstitution with u = x+ 1 and du = dx, we get:∫

x√

3− 2x− x2 dx =

∫(u− 1)

√4− u2 du =

∫u√

4− u2 du−∫ √

4− u2 du

For the first integral on the right hand side, using direct substitution with t = 4−u2,and dt = −2u du, we get:∫

u√

4− u2 du =

∫−1

2

√t dt = −1

3t32 + C = −1

3(4− u2)

32 + C

For the second integral on the right hand side, using inverse trigonometric substitutionwith 2 sin s = u, that is, s = arcsin

(u2

), and 2 cos s ds = du, we get:∫ √

4− u2 du =

∫ √4− 4 sin2 s2 cos s ds =

∫4 cos2 s ds

=

∫(2 + 2 cos(2s)) ds (using half-angle formula cos2 s =

1 + cos(2s)

2)

= 2s+ sin(2s) + C

= 2s+ 2 sin s cos s+ C (using double-angle formula sin(2s) = 2 sin s cos s)

= 2 arcsin(u

2

)+ 2 sin(arcsin

(u2

)) cos(arcsin

(u2

)) + C

= 2 arcsin(u

2

)+ u

(√4− u2

2

)+ C

Therefore,∫x√

3− 2x− x2 dx =

∫u√

4− u2 du−∫ √

4− u2 du

= −1

3(4− u2)

32 − 2 arcsin

(u2

)− u

(√4− u2

2

)+ C

⇒∫x√

3− 2x− x2 dx = −1

3(4− (x+ 1)2)

32 − 2 arcsin

(x+ 1

2

)− (x+ 1)

(√4− (x+ 1)2

2

)+ C

10)

∫ π3

0

sin3 z cos z dz

Page 5 of 22

Page 6: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

Solution: Using direct substitution with u = sin z, and du = cos z dz, when z = 0,then u = 0, and when z = π

3, u =

√32

. We have that:

∫ π3

0

sin3 z cos z dz =

∫ √3

2

0

u3 du =u4

4|√3

20 =

9

64

⇒∫ π

3

0

sin3 z cos z dz =9

64

11)

∫1

3x2 + 2x+ 1dx

Solution: Completing the square, we get that 3x2 + 2x + 1 = 3

(x+

1

3

)2

+2

3=

2

3

(9

2

(x+

1

3

)2

+ 1

). Using direct substitution with u =

3√2

(x+

1

3

), and du =

3√2dx, we get:

∫1

3x2 + 2x+ 1dx =

∫3

2(92(x+ 1

3)2 + 1)

dx =

∫1√

2(u2 + 1)du =

1√2

arctanu+ C

⇒∫

1

3x2 + 2x+ 1dx =

1√2

arctan

(3√2

(x+

1

3

))+ C

12)

∫1

et + 1dt

Solution: Using direct substitution with u = et + 1 and du = et dt, so dt =1

etdu =

1

u− 1du. Hence, we get: ∫

1

et + 1dt =

∫1

u(u− 1)du

Using partial fraction, we get:

1

u(u− 1)=A

u+

B

u− 1=A(u− 1) +Bu

u(u− 1)=

(A+B)s+ (−A)

u(u− 1)

Page 6 of 22

Page 7: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

Thus, A+B = 0 and −A = 1. So, A = −1, and B = 1. Thus, we have that:∫1

u(u− 1)du =

∫−1

udu+

∫1

u− 1du

Therefore,∫1

u(u− 1)du =

∫−1

udu+

∫1

u− 1du = − ln |u|+ ln |u− 1|+ C

⇒∫

1

et + 1dt = − ln |et + 1|+ ln |et|+ C = − ln |et + 1|+ t+ C

13)

∫e3a cos(3a) da

Solution: Using direct substitution with t = 3a, and dt = 3 da, we get:∫e3a cos(3a) da =

∫1

3et cos t dt

Using integration by parts with u = cos t, du = − sin t dt, and dv = et dt, v = et, weget: ∫

1

3et cos t dt =

1

3et cos t+

1

3

∫et sin t dt

Using integration by parts again on the remaining integral with u1 = sin t, du1 =cos t dt, and dv1 = et dt, v1 = et, we get:

1

3

∫et sin t dt =

1

3sin tet − 1

3

∫et cos t dt

Thus, ∫1

3et cos t dt =

1

3et cos t+

1

3sin tet − 1

3

∫et cos t dt

⇒∫

1

3et cos t dt =

1

6et cos t+

1

6et sin t+ C

Therefore, ∫e3a cos(3a) da =

1

6e3a cos(3a) +

1

6e3a sin(3a) + C

Page 7 of 22

Page 8: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

14)

∫x2

1 + x6dx

Solution: Using direct substitution with u = x3, and du = 3x2 dx, we get:∫x2

1 + x6dx =

∫1

3(1 + u2)du =

1

3arctanu+ C =

1

3arctan(x3) + C

15)

∫1

t(ln t)2dt

Solution: Using direct substitution with u = ln(t) and du = 1tdt, we get:∫

1

t(ln t)2dt =

∫1

u2du = −1

u+ C

⇒∫

1

t(ln t)2dt = − 1

ln t+ C

16)

∫xe2x

(2x+ 1)2dx

Solution: Using integration by parts with u = xe2x, du = (e2x + 2xe2x) dx, anddv = (2x+ 1)−2 dx, v = − 1

2(2x+1), we get:∫

xe2x

(2x+ 1)2dx = − xe2x

2(2x+ 1)+

∫e2x + 2xe2x

2(2x+ 1)dx

On the remaining integral, using direct substitution with u = 2x+ 1, and du = 2 dx,we get:∫e2x + 2xe2x

2(2x+ 1)dx =

∫eu−1 + (u− 1)eu−1

4udu =

∫1

4eu−1 du =

1

4eu−1 + C =

1

4e2x + C

Therefore, ∫xe2x

(2x+ 1)2dx = − xe2x

2(2x+ 1)+

1

4e2x + C =

e2x

4(2x+ 1)+ C

Page 8 of 22

Page 9: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

17)

∫(tanx+ cotx)2 dx

Solution:∫(tanx+ cotx)2 dx =

∫(tan2 x+ 2 tanx cotx+ cot2 x) dx

=

∫(sec2 x− 1 + 2 + csc2 x− 1) dx (using identities for tan2 x and cot2 x)

=

∫(sec2 x+ csc2 x) dx

= tanx− cotx+ C

18)

∫tet

2

sin(t2) dt

Solution: Using direct substitution with x = t2 and dx = 2t dt, we get:∫tet

2

sin(t2) dt =1

2

∫ex sinx dx

Using integration by parts with u = sinx, du = cosx dx, and dv = ex dx, v = ex, weget: ∫

1

2ex sinx dx =

1

2ex sinx− 1

2

∫ex cosx dx

Using integration by parts again on the remaining integral with u1 = cos x, du1 =− sinx dx, and dv1 = ex dx, v1 = ex, we get:

1

2

∫ex cosx dx =

1

2ex cosx+

1

2

∫ex sinx dx

Thus, ∫1

2ex sinx dx =

1

2ex sinx− 1

2ex cosx− 1

2

∫ex sinx dx

⇒∫

1

2ex sinx dx =

1

4ex sinx− 1

4ex cosx+ C

Therefore, ∫tet

2

sin(t2) dt =1

4et

2

sin(t2)− 1

4et

2

cos(t2) + C

Page 9 of 22

Page 10: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

19)

∫2p− 4

p2 − pdp

Solution: Using partial fraction, we get:

2p− 4

p(p− 1)=A

p+

B

p− 1=A(p− 1) +Bp

p(p− 1)=

(A+B)p+ (−A)

p(p− 1)

Thus, A+B = 2 and −A = −4. So, A = 4, and B = −2. We have that:∫2p− 4

p(p− 1)dp =

∫4

pdp−

∫2

p− 1dp

⇒∫

2p− 4

p(p− 1)dp = 4 ln |p| − 2 ln |p− 1|+ C

20)

∫ 4

3

1

(3x− 7)2dx

Solution: Using direct substitution with u = 3x − 7, and du = 3 dx, when x = 3,then u = 2, and when x = 4, u = 5. We have that:∫ 4

3

1

(3x− 7)2dx =

∫ 5

2

1

3u2du =

−1

3u|52= −

1

15+

1

6=

1

10

⇒∫ 4

3

1

(3x− 7)2dx =

1

10

21)

∫t3

(2− t2) 52

dt

Solution: Using direct substitution with u = 2− t2, and du = −2t dt, we get:∫t3

(2− t2) 52

dt =

∫t2

(2− t2) 52

(t dt) =

∫−2− u

2u52

du

=

∫(−u−

52 +

1

2u−

32 ) du

=2

3u−

32 − u−

12 + C

⇒∫

t3

(2− t2) 52

dt =2

3(2− t2)−

32 − (2− t2)−

12 + C

Page 10 of 22

Page 11: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

22)

∫1

x2√

4− x2dx

Solution: Using inverse trigonometric substitution with x = 2 sin y, that is, y =arcsin

(x2

), and dx = 2 cos y dy, we get:∫

1

x2√

4− x2dx =

∫2 cos y

4 sin2 y√

4− 4 sin2 ydy =

∫2 cos y

4 sin2 y(2 cos y)dy

=

∫1

4csc2 y dy = −1

4cot y + C

Therefore, ∫1

x2√

4− x2dx = −1

4cot(arcsin

(x2

)) + C = −

√4− x24x

+ C

23)

∫ √y2 − 1 dy

Solution: Using inverse trigonometric substitution with y = secu, that is, u =

arccos(

1y

), and dy = secu tanu du, we get:∫ √

y2 − 1 dy =

∫ √sec2 u− 1(secu tanu du) =

∫tan2 u secu du

=

∫(sec2 u− 1) secu du =

∫sec3 u du−

∫secu du

For the second integral on the right hand side, we have that:∫secu du = ln | secu+ tanu|+ C

For the first integral on the right hand side, we use the reduction formula:∫sec3 u du =

1

2tanu secu+

1

2

∫secu du =

1

2tanu secu+

1

2ln | secu+ tanu|+ C

Observe that since u = arccos(

1y

), we have that tanu =

√y2 − 1. Therefore,∫

sec3 u du−∫

secu du =1

2tanu secu− 1

2ln | secu+ tanu|+ C

⇒∫ √

y2 − 1 dy =1

2y√y2 − 1− 1

2ln |y +

√y2 − 1|+ C

Page 11 of 22

Page 12: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

24)

∫x sinx cosx dx

Solution: Using the double angle identity sin(2x) = 2 sinx cosx, we have that:∫x sinx cosx dx =

1

2

∫x sin(2x) dx

Using direct substitution with t = 2x, and dt = 2 dx, we get:

1

2

∫x sin(2x) dx =

1

8

∫t sin t dt

Using integration by parts with u = t, du = dt, and dv = sin t dt, v = − cos t, we get:

1

8

∫t sin t dt = −1

8t cos t+

1

8

∫cos t dt = −1

8t cos t+

1

8sin t+ C

Therefore, ∫x sinx cosx dx = −1

4x cos(2x) +

1

8sin(2x) + C

25)

∫(1 + cos θ)2 dθ

Solution:∫(1 + cos θ)2 dθ =

∫(1 + 2 cos θ + cos2 θ) dθ

=

∫dθ + 2

∫cos θ dθ +

∫cos2 θ dθ

= θ + 2 sin θ +

∫ (1 + cos(2θ)

2

)dθ (using half-angle formula)

= θ + 2 sin θ +θ

2+

sin(2θ)

4+ C

⇒∫

(1 + cos θ)2 dθ =3

2θ + 2 sin θ +

1

4sin(2θ) + C

26)

∫1√

4x− x2dx

Page 12 of 22

Page 13: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

Solution: Completing the square yields 4x− x2 = 4− (x− 2)2. Using direct substi-tution with u = x− 2, and du = dx, we get:∫

1√4x− x2

dx =

∫1√

4− u2du

Using inverse trigonometric substitution with u = 2 sin t, that is, t = arcsin(u

2

), and

du = 2 cos t dt, we get:∫1√

4− u2du =

∫2 cos t√4− sin2 t

dt =

∫2 cos t

2 cos tdt =

∫dt = t+ C

⇒∫

1√4x− x2

dx = arcsin

(x− 2

2

)+ C

27)

∫ 1

0

1

1 + x13

dx

Solution: Using direct substitution with u = 1 + x13 , and du =

1

3x−23 dx, so dx =

3x23 du = 3(u− 1)2 du. When x = 0, u = 1 and when x = 1, u = 2. We have that:∫ 1

0

1

1 + x13

dx =

∫ 2

1

3(u− 1)2

udu =

∫ 2

1

(3u− 6 +3

u) du

= (3

2u2 − 6u+ 3 ln |u|) |21

= (6− 12 + 3 ln 2)− (3

2− 6 + 3 ln 1) = −3

2+ 3 ln 2

⇒∫ 1

0

1

1 + x13

dx = −3

2+ 3 ln 2.

28)

∫1

x3 + xdx

Solution: Using partial fractions, we have:

1

x3 + x=A

x+Bx+ C

x2 + 1=A(x2 + 1) + (Bx+ C)x

x3 + x=

(A+B)x2 + Cx+ A

x3 + x

So, A+B = 0, C = 0 and A = 1. So, B = −1 and we get:∫1

x3 + xdx =

∫1

xdx−

∫x

x2 + 1dx = ln |x| −

∫x

x2 + 1dx

Page 13 of 22

Page 14: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

On the remaining integral, using direct substitution with u = x2 + 1 and du = 2x dx,we get: ∫

x

x2 + 1dx =

∫1

2udu =

1

2ln |u|+ C =

1

2ln(x2 + 1) + C

Therefore, ∫1

x3 + xdx = ln |x| − 1

2ln(x2 + 1) + C

Remark: This involves partial fractions with non-linear factors, which you are notrequired to master in this course!

29)

∫ln(1 + t) dt

Solution: Using direct substitution with s = 1 + t, and ds = dt, we have that:∫ln(1 + t) dt =

∫ln s ds

Using integration by parts with u = ln s, du =1

sds, and dv = ds, v = s, we get:∫

ln s ds = s ln s−∫s

1

sds = s ln s−

∫ds = s ln s− s+ C

Therefore, ∫ln(1 + t) dt = (1 + t) ln(1 + t)− (1 + t) + C

30)

∫sin(3x) cos(5x) dx

Solution: Using the trigonometric identity that sin a cos b = 12(sin(a+b)+sin(a−b)),

we get:∫sin(3x) cos(5x) dx =

∫1

2(sin(8x) + sin(−2x)) dx = − 1

16cos(8x) +

1

4cos(−2x) + C

Remark: You are not required to memorize any sum to product or product to sumtrigonometric identities!

Page 14 of 22

Page 15: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

31)

∫1

k2 − 6k + 9dk

Solution: By completing the square, we observe that k2 − 6k + 9 = (k − 3)2. So,using direct substitution with u = k − 3, and du = dk, we have that:∫

1

k2 − 6k + 9dk =

∫1

(k − 3)2dk =

∫1

u2du = −1

u+ C

⇒∫

1

k2 − 6k + 9dk = − 1

k − 3+ C

32)

∫1

secx− 1dx

Solution: Since sec x =1

cosx, we get:∫

1

secx− 1dx =

∫cosx

1− cosxdx =

∫ (−1 +

1

1− cosx

)dx = −x+

∫1

1− cosxdx

For the remaining integral, use a direct substitution with t = tan(x

2

), so dt =

1

2sec2

(x2

)dx. We also can compute that sec

(x2

)=√t2 + 1, cos

(x2

)=

1√t2 + 1

and sin(x

2

)=

t√t2 + 1

. So, dx =2

t2 + 1dt. Using double angle formula, we get:

cosx = cos2(x

2

)− sin2

(x2

)=

1

t2 + 1− t2

t2 + 1=

1− t2

t2 + 1

So, after the substitution, we get:∫1

1− cosxdx =

∫1

1− 1−t2t2+1

(2

t2 + 1

)dt =

∫1

t2dt

= −1

t+ C = − cot

(x2

)+ C

Therefore, ∫1

secx− 1dx = −x− cot

(x2

)+ C

Remark: This is an extremely challenging question; do not panic if you do not knowhow to solve it!

Page 15 of 22

Page 16: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

33)

∫ 1

0

2

e−x + 1dx

Solution: Using direct substitution with u = e−x + 1, and du = −e−x dx, that isdx = − 1

u−1 du. When x = 0, u = 2, and when x = 1, u = e−1 + 1. So, we get:∫ 1

0

2

e−x + 1dx =

∫ e−1+1

2

−2

u(u− 1)du

Using partial fraction, we get:

−2

u(u− 1)=A

u+

B

u− 1=A(u− 1) +Bu

u(u− 1)=

(A+B)s+ (−A)

u(u− 1)

Thus, A+B = 0 and −A = −2. So, A = 2, and B = −2. Thus, we have that:∫ e−1+1

2

−2

u(u− 1)du =

∫ e−1+1

2

2

udu−

∫ e−1+1

2

2

u− 1du

Therefore,∫ e−1+1

2

−2

u(u− 1)du = (2 ln |u| − 2 ln |u− 1|) |e−1+1

2 = (2 ln(e−1 + 1) + 2)− (2 ln 2− 0)

⇒∫

2

e−x + 1dx = 2 ln(e−1 + 1) + 2− 2 ln 2.

34)

∫1

c2 − 6c+ 10dc

Solution: Completing the square yields c2 − 6c+ 10 = (c− 3)2 + 1. So, using directsubstitution with u = c− 3, and du = dc, we have that:∫

1

c2 − 6c+ 10dc =

∫1

(c− 3)2 + 1dc =

∫1

u2 + 1du = arctanu+ C

⇒∫

1

c2 − 6c+ 10dc = arctan(c− 3) + C

35)

∫f(x)f ′(x) dx

Page 16 of 22

Page 17: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

Solution: Using direct substitution with u = f(x), and du = f ′(x) dx, we get:∫f(x)f ′(x) dx =

∫u du =

1

2u2 + C

⇒∫f(x)f ′(x) dx =

1

2(f(x))2 + C

36)

∫1

x2 + 4x+ 5dx

Solution: Completing the square, we get x2 + 4x + 5 = (x + 2)2 + 1. Using directsubstitution with u = x+ 2 and du = dx, we get:∫

1

x2 + 4x+ 5dx =

∫1

(x+ 2)2 + 1dx =

∫1

u2 + 1du = arctan(u) + C

⇒∫

1

x2 + 4x+ 5dx = arctan(x+ 2) + C

37)

∫ 2

0

1

(3 + 5x)2dx

Solution: Using direct substitution with u = 3 + 5x, and du = 5 dx, when x = 0,then u = 3, and when x = 2, u = 13. We have that:∫ 2

0

1

(3 + 5x)2dx =

∫ 13

3

1

5u2du =

−1

5u|133 = − 1

65+

1

15=

2

39

⇒∫ 2

0

1

(3 + 5x)2dx =

2

39

38)

∫sin(lnu) du

Solution: Using direct substitution with t = lnu, that is, u = et, and du = et dt, wehave that: ∫

sin(lnu) du =

∫et sin t dt

Page 17 of 22

Page 18: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

Using integration by parts twice to compute the integral on the right hand side (seethe solution of question 18 for details), we have that:∫

et sin t dt =1

2et sin t− 1

2et cos t+ C

Therefore,∫sin(lnu) du =

1

2elnu sin(lnu)− 1

2elnu cos(lnu) + C =

1

2u sin(lnu)− 1

2u cos(lnu) + C

39)

∫r(ln r)2 dr

Solution: Using integration by parts with u = (ln r)2, du =2 ln r

rdr, and dv = r dr,

v =r2

2, we get that:

∫r(ln r)2 dr =

r2(ln r)2

2−∫r ln r dr

Using integration by parts again on the remaining integral with u1 = ln r, du1 =1

rdr,

and dv1 = r dr, v1 =r2

2, we get that:

∫r ln r dr =

r2 ln r

2−∫

r

2dr =

r2 ln r

2− r2

4+ C

Therefore, ∫r(ln r)2 dr =

r2(ln r)2

2− r2 ln r

2+r2

4+ C

40)

∫1

x3 − xdx

Page 18 of 22

Page 19: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

Solution: Using partial fraction, we get:

1

x3 − x=A

x+

B

x+ 1+

C

x− 1=A(x2 − 1) +B(x2 − x) + C(x2 + x)

x3 − x

=(A+B + C)x2 + (C −B)x+ (−A)

x3 − x

Thus, A+ B + C = 0, C − B = 0 and −A = 1. Therefore, A = −1, and B + C = 1,which gives C = 1

2and B = −1

2. So,∫

1

x3 − xdx =

∫−1

xdx−

∫1

2(x+ 1)dx+

∫1

2(x− 1)dx

⇒∫

1

x3 − xdx = − ln |x| − 1

2ln |x+ 1|+ 1

2ln |x− 1|+ C

Remark: This involves partial fractions with 3 distinct roots in the denominator, whichyou are not required to master in this course!

41)

∫sec3 u du

Solution: We use the reduction formula:∫sec3 u du =

1

2tanu secu+

1

2

∫secu du =

1

2tanu secu+

1

2ln | secu+ tanu|+ C

42)

∫ √x2 − 2x− 8

x− 1dx

Solution: Observe that x2 − 2x − 8 = (x − 1)2 − 9. Using direct substitution witht = x− 1, and dt = dx, we get:∫ √

x2 − 2x− 8

x− 1dx =

∫ √t2 − 9

tdt

Using inverse trigonometric substitution with t = 3 sec y, and dt = 3 sec y tan y dy, we

Page 19 of 22

Page 20: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

get: ∫ √t2 − 9

tdt =

∫ √9 sec2 y − 9

3 sec y3 sec y tan y dy =

∫3 tan2 y dy

=

∫3(sec2 y − 1) dy = 3 tan y − 3y + C

⇒∫ √

x2 − 2x− 8

x− 1dx = 3 tan(arccos

(3

t

))− 3 arccos

(3

t

)+ C =

√t2 − 9− 3 arccos

(3

t

)+ C

=√

(x− 1)2 − 9− 3 arccos

(3

x− 1

)+ C

43)

∫ √r2 − 1

rdr

Solution: Using inverse trigonometric substitution with sec s = r, that is, s =

arccos

(1

r

), and sec s tan s ds = dr, we get:

∫ √r2 − 1

rdr =

∫ √sec2 s− 1

sec ssec tan s ds =

∫tan2 s ds

=

∫(sec2 s− 1) ds = tan s− s+ C

⇒∫ √

r2 − 1

rdr = tan(arccos

(1

r

))− arccos

(1

r

)+ C =

√r2 − 1− arccos

(1

r

)+ C

44)

∫(et

2

+ 16)tet2

dt

Solution: Using direct substitution with u = et2

and du = 2tet2dt, we get:∫

(et2

+ 16)tet2

dt =

∫1

2(u+ 16) du =

1

4u2 + 8u+ C

⇒∫

(et2

+ 16)tet2

dt =1

4e2t

2

+ 8et2

+ C

45)

∫√y ln y dy

Page 20 of 22

Page 21: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

Solution: Using integration by parts with u = ln y, du =1

ydy and dv =

√y dy,

v =2

3y

32 , we get:∫

√y ln y dy =

2

3y

32 ln y −

∫2

3y

12 dy =

2

3y

32 ln y − 4

9y

32 + C

46)

∫cos θ

1 + sin2 θdθ

Solution: Using direct substitution with u = sin θ, and du = cos θ dθ, we have that:∫cos θ

1 + sin2 θdθ =

∫1

1 + u2du = arctanu+ C

⇒∫

cos θ

1 + sin2 θdθ = arctan(sin θ) + C

47)

∫1

x2√x2 + 4

dx

Solution: Using inverse trigonometric substitution with 2 tanu = x, and 2 secu du =dx, we get:∫

1

x2√x2 + 4

dx =

∫1

4 tan2 u√

4 tan2 u+ 42 sec2 u du =

∫2 sec2 u

8 tan2 u secudu

=

∫cos2 u

4 cosu sin2 udu =

∫1

4cotu cscu du

= −1

4cscu+ C = −1

4csc(arctan

(x2

)) + C

⇒∫

1

x2√x2 + 4

dx = −√x2 + 4

4x+ C

48)

∫tet

2

dt

Page 21 of 22

Page 22: MATH 105 921 Solutions to Integration Exercisesathena/I1S1.pdfMATH 105 921 Solutions to Integration Exercises Solution: Using direct substitution with t= p w, and dt= 1 2 p w dw, that

MATH 105 921 Solutions to Integration Exercises

Solution: Using direct substitution with u = t2, and du = 2t dt, we have that:∫tet

2

dt =

∫1

2eu du =

1

2eu + C

⇒∫tet

2

dt =1

2et

2

+ C

49)

∫cos(πt) cos(sin(πt)) dt

Solution: Using direct substitution with u = sin(πt) dt, and du = π cos(πt) dt, wehave that: ∫

cos(πt) cos(sin(πt)) dt =

∫1

πcosu du =

1

πsinu+ C

⇒∫

cos(πt) cos(sin(πt)) dt =1

πsin(cos(πt)) + C

50)

∫ π4

0

sin5(x) dx

Solution: Using direct substitution with u = cosx, and du = − sinx dx, when x = 0,

then u = 1, and when x =π

4, u =

1√2

. We have that:

∫ π4

0

sin5(x) dx =

∫ π4

0

(sin2(x))2 sinx dx =

∫ π4

0

(1− cos2 x)2 sinx dx

=

∫ 1√2

1

−(1− u2)2 du =

∫ 1√2

1

(−1 + 2u2 − u4) du

= (−u+2

3u3 − 1

5u5) |

1√2

1

= (− 1√2

+1

3√

2− 1

20√

2)− (−1 +

2

3− 1

5) = − 43

60√

2+

8

15

⇒∫ π

4

0

sin5(x) dx = − 43

60√

2+

8

15

Page 22 of 22