22
Mathematical model for microbial enhanced oil recovery with surfactant distributed between phases Sidsel Marie Nielsen [email protected] Alexander Shapiro Michael Michelsen Erling Stenby IVC-SEP, DTU Chemical Engineering IEA EOR 2009

Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Embed Size (px)

Citation preview

Page 1: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Mathematical model for microbial enhanced oil recoverywith surfactant distributed between phases

Sidsel Marie [email protected]

Alexander ShapiroMichael Michelsen

Erling Stenby

IVC-SEP, DTU Chemical Engineering

IEA EOR 2009

Page 2: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Outline

1 Introduction

2 The reactive transport model

3 Simulation results

4 Conclusion

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 2 / 20

Page 3: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Introduction

Introduction

Tertiary oil recovery method

Application of injected or indigeneous microorganisms

Addresses the same effects as chemical EOR

Typical MEOR effects

Reduction of oil/water interfacial tension and alteration of wettability(surfactant)

Fluid diversion

Viscosity reduction due to gas production or degradation ofhydrocarbons (minor effect)

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 3 / 20

Page 4: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Introduction

Introduction

Tertiary oil recovery method

Application of injected or indigeneous microorganisms

Addresses the same effects as chemical EOR

Typical MEOR effects

Reduction of oil/water interfacial tension and alteration of wettability(surfactant)

Fluid diversion

Viscosity reduction due to gas production or degradation ofhydrocarbons (minor effect)

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 3 / 20

Page 5: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Introduction

Surfactant effect

In situ production ofsurfactants

Interfacial tension reduction

From 30 mN/m to 10−2

mN/m

Additional contribution frombacterial surface

Relative permeability changes 0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sw

krw

kro

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 4 / 20

Page 6: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

The reactive transport model

The 1D model

Oil Metabolite

MetaboliteWater

Substrate BacteriaBacteria

Substrate MetaboliteBacteria

Phases

Water

Oil

Components

Water

Oil

Bacteria

Substrate

Metabolite

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 5 / 20

Page 7: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

The reactive transport model

The 1D model

Flow equations

∂t

np∑j=1

ωijρj sj

)+

∂x

v np∑j=1

ωijρjfj

= φ qi, i = 1..nc

where ωij are mass fractions.

Phases

Water

Oil

Components

Water

Oil

Bacteria

Substrate

Metabolite

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 6 / 20

Page 8: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

The reactive transport model

Assumptions

Flow equations

∂t

np∑j=1

ωijρj sj

)+

∂x

v np∑j=1

ωijρjfj

= φ qi, i = 1..nc

where ωij are mass fractions.

1D two-phase model

Application of Darcy’s law

Capillary pressure neglected

Dispersion term neglected

No volume change on mixing

No adsorption to pore walls

Monod kinetics for bacterial growth

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 7 / 20

Page 9: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

The reactive transport model

Reaction rates µ

Growth rate with onelimiting substrate

µ = µmaxCs

Ks+Cs

Reaction rate

qb = sw Ysb Cb µ

qm = sw Ysm Cb µ

qs = −qm − qb0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cs

µ

K=0.5K=0.05

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 8 / 20

Page 10: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

The reactive transport model

Implementation of surfactant effect

Correlation between surfactant concentration and IFT

Approaches to relativepermeability modifications

1 Capillary number related toresidual oil saturation

2 Interpolation of parameters inCorey relative permeabilitycorrelations

3 Coats’ interpolation methodbetween relative permeabilitycurves 10

−610

−410

−210

−6

10−4

10−2

100

IFT

[mN

/m]

Cm

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 9 / 20

Page 11: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

The reactive transport model

Capillary number related to residual oil saturation

Capillary number

Nca = v µwσ

Correlation between capillary number and residual oil sor

10−8

10−6

10−4

10−2

100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Nca

sor/sorw

Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol. 6. SPE Textbook Series.

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 10 / 20

Page 12: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Simulation results

Flooding results

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

s

Surfactant floodWater floodMEORsor surfactant flood

sor MEOR

The capillary numbermethod

Injection volume fractions

Bacteria 1 · 10−5

Substrate 0.5 · 10−5

Formation of an oil bank

Oil bank front travels fasterthan water flood front

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 11 / 20

Page 13: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Simulation results

Flooding results

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

s

Surfactant floodWater floodMEORsor surfactant flood

sor MEOR

The capillary numbermethod

Injection volume fractions

Bacteria 1 · 10−5

Substrate 0.5 · 10−5

Formation of an oil bank

Oil bank front travels fasterthan water flood front

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 11 / 20

Page 14: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Simulation results

Recovery factor

Qualitatively, the oil recovery is enhanced

Incremental recovery up to 40–45%

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

s

Surfactant floodWater floodMEORsor surfactant flood

sor MEOR

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

Rec

over

y

Surfactant floodingMEORWater flooding

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 12 / 20

Page 15: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Simulation results

Comparison of the interpolation methodsfor modification of relative permeabilities

0 0.2 0.4 0.6 0.8 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ [PVI]

Reco

very

CoreyCapillary numberCoats

CoreyCapillary numberCoats

τ = 0.15 PVI

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 13 / 20

Page 16: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Simulation results

Coats’ interpolation model

Interpolation function

f(σ) =(

σσbase

) 1n

Relative permeability curves

s∗or = f(σ)sor

s∗wc = f(σ)swc0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sw

krw

kro

krw = f(σ)krw(base) + [1 − f(σ)]krw(misc)

kro = f(σ)kro(base) + [1 − f(σ)]kro(misc)

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 14 / 20

Page 17: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Simulation results

Interpolation of Corey parameters

Interpolation function

f(σ) =(

σσbase

) 1n

Parameters

s∗or = sor · f(σ)s∗wc = swc · f(σ)

α∗w = αw · f(σ) + (1 − f(σ))α∗o = αo · f(σ) + (1 − f(σ))

k∗rwor = krwor · f(σ) + (1 − f(σ))k∗rowc = krowc · f(σ) + (1 − f(σ))

Relative permeabilities

krw = k∗rwor

(sw−s∗wi

1−s∗or−s∗wi

)α∗wkro = k∗rowc

(1−sw−s∗or1−s∗or−s∗wi

)α∗o

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sw

krw

kro

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 15 / 20

Page 18: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Simulation results

Comparison of the interpolation methodsfor modification of relative permeabilities

0 0.2 0.4 0.6 0.8 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ [PVI]

Reco

very

CoreyCapillary numberCoats

CoreyCapillary numberCoats

τ = 0.15 PVI

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 16 / 20

Page 19: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Simulation results

Partitioning of surfactant

Surfactant is removed from water phase

Partitioning determines residual oil

0 0.2 0.4 0.6 0.8 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

s

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ [PVI]

Reco

very

Ki = 10 3

Ki = 10 0

Ki = 10 −2

Ki = 10 3

Ki = 10 0

Ki = 10 −1

Ki = 10 −2

τ = 0.15 PVI

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 17 / 20

Page 20: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Simulation results

Growth rate

Maximum growth rate µmax is investigated

The ability to maintain a certain growth rate is important

0 0.2 0.4 0.6 0.8 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

s

µ = 0.2 d −1

µ = 2.0 d −1

µ = 0.02 d −1

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

τ [PVI]

Reco

very

µ = 0.2 d −1

µ = 2.0 d −1

µ = 0.02 d −1

τ = 0.15 PVI

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 18 / 20

Page 21: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Simulation results

Injection concentrations

Injection concentrations have a significant influence on oil recovery

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

τ [PVI]

Reco

very

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

τ [PVI]

Reco

very

DoubleRegularHalf

DoubleRegularHalfQuarter

Coats’ methodCapillary number method

Bacterial volumetric fraction 1 · 10−5 (regular)

Substrate volumetric fraction 0.5 · 10−5 (regular)

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 19 / 20

Page 22: Mathematical model for microbial enhanced oil recovery …iea-eor.ptrc.ca/2009/papers/F1PR.pdf ·  · 2009-09-21Green, D. W. and G. P. Willhite (1998). Enhanced oil recovery, Vol

Conclusion

Formation of an oil bank

Recovery determined by surfactant-induced residual oil

Important MEOR considerations

Partitioning of surfactant

Growth rate

Injection concentration of substrate and bacteria

Sensitivity to method for interpolation of the relativepermeabilities

Sidsel Marie Nielsen (IVC-SEP) Microbial enhanced oil recovery September 2009 20 / 20