31
MATHEMATICAL PHYSICS UNIT โ€“ 2 BESSELโ€™S EQUATION DR. RAJESH MATHPAL ACADEMIC CONSULTANT SCHOOL OF SCIENCES UTTARAKHAND OPEN UNIVERSITY TEENPANI, HALDWANI UTTRAKHAND MOB:9758417736,7983713112 Email: [email protected]

MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

MATHEMATICAL PHYSICS

UNIT โ€“ 2

BESSELโ€™S EQUATION

DR. RAJESH MATHPAL

ACADEMIC CONSULTANT

SCHOOL OF SCIENCES

UTTARAKHAND OPEN UNIVERSITY

TEENPANI, HALDWANI

UTTRAKHAND

MOB:9758417736,7983713112

Email: [email protected]

Page 2: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

STRUCTURE OF UNIT

โ€ข 2.1 INTRODUCTION

โ€ข 2.2 BESSELโ€™S EQUATION

โ€ข 2.4 BESSELโ€™S FUNCTIONS, Jn (x)

โ€ข 2.5 Besselโ€™s function of the second kind of order n

โ€ข 2.6 RECURRENCE FORMULAE

โ€ข 2.7 ORTHOGONALITY OF BESSEL FUNCTION

โ€ข 2.8 A GENERATING FUNCTION FOR Jn (x)

โ€ข 2.9 SOME EXAMPLES

Page 3: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.1 INTRODUCTION

We find the Besselโ€™s equation while solving Laplace equation in polar coordinates by the needed of separation of variables. This equation has a number of applications in engineering.

Besselโ€™s function are involved in

โ€ข The Oscillatory motion of a hanging chain

โ€ข Eulerโ€™s theory of a circular membrane

โ€ข The studies of planetary motion

โ€ข The propagation of waves

โ€ข The Elasticity

โ€ข The fluid motion

โ€ข The potential theory

โ€ข Cylindrical and spherical waves

โ€ข Theory of plane waves

โ€ข Besselโ€™s function are also known as cylindrical and spherical function.

Page 4: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.2 BESSELโ€™S EQUATION

The differential equation

๐‘ฅ2 ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 + ๐‘ฅ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ+ ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘› ๐‘ฆ = 0

is called the Besselโ€™s differential equation, and particular solutions of this equation are

called Besselโ€™s fraction of order n.

Page 5: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.3 SOLUTION OF BESSELโ€™S EQUATION

๐‘ฅ2 ๐‘‘2๐‘ฆโ€ฒ

๐‘‘๐‘ฅ2 + ๐‘ฅ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ+ ๐‘ฅ2 โˆ’ ๐‘ฅ๐‘› ๐‘ฆ = 0. โ€ฆ(1)

Let ฯƒ๐‘Ÿ=0โˆž ๐‘Ž๐‘Ÿ๐‘ฅ

๐‘š+๐‘Ÿ ๐‘œ๐‘Ÿ ๐‘ฆ = ๐‘Ž0๐‘ฅ๐‘š + ๐‘Ž1๐‘ฅ

๐‘š+1 + ๐‘Ž2๐‘ฅ๐‘š+2 + โ‹ฏ โ€ฆ(2)

So that๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= ฯƒ๐‘Ÿ=0

โˆž ๐‘Ž๐‘Ÿ ๐‘š + ๐‘Ÿ ๐‘ฅ๐‘š+๐‘Ÿโˆ’1

and ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = ฯƒ๐‘Ÿ=0โˆž ๐‘Ž๐‘Ÿ ๐‘š + ๐‘Ÿ (๐‘š + ๐‘Ÿ โˆ’1)๐‘ฅ๐‘š+๐‘Ÿโˆ’2

Substituting these values in (1), we get

๐‘ฅ2

๐‘Ÿ=0

โˆž

๐‘Ž๐‘Ÿ ๐‘š+๐‘Ÿ (๐‘š+๐‘Ÿ โˆ’1)๐‘ฅ๐‘š+๐‘Ÿโˆ’2 +๐‘ฅ

๐‘Ÿ=0

โˆž

๐‘Ž๐‘Ÿ ๐‘š + ๐‘Ÿ ๐‘ฅ๐‘š+๐‘Ÿโˆ’1 + (

)

๐‘ฅ2

โˆ’ ๐‘›2

๐‘Ÿ=0

โˆž

๐‘Ž๐‘Ÿ๐‘ฅ๐‘š+๐‘Ÿ = 0

Page 6: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2 2

0 0 0 0

2 2

0 0

2 2 2

0 0

( )( 1) ( ) 0

[( )( 1) ( ) ] 0

[( ) ] 0.

m r m r m r m r

r r r r

r r r r

m r m r

r r

r r

m r m r

r r

r r

a m r m r x a m r x a x n a x

a m r m r m r n x a x

a m r n x a x

+ + + + +

= = = =

+ + +

= =

+ + +

= =

+ + โˆ’ + + + โˆ’ =

+ + โˆ’ + + โˆ’ + =

+ โˆ’ + =

Equating the coefficient of lowest degree term of xm in the identity (3) to zero,

by putting r = 0 in the first summation we get the indicial equation.

a0[m+0)2 โ€“ n2] = 0. (r = 0)

โ‡’ m2 = n2 i.e. m = n, m = - n a0 โ‰  0

Page 7: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Equating the coefficient of the next lowest degree term xm+1 in the identity (3), we put r = 1 in the first summation

a1 [m + 1)2 โ€“ n2] = 0 i.e. a1 = 0, since m + 1)2 โ€“ n2 โ‰  0

Equating the coefficient of xm + r + 2 in (3) to zero, to find relation in successive coefficients, we get

ar +2[(m+r+2)2 โ€“ n2] +ar = 0

โ‡’ ๐‘Ž๐‘Ÿ+2 = โˆ’1

๐‘š+๐‘Ÿ+2 2โˆ’๐‘›2 . ar

Therefore, a3 = a5 = a1 = โ€ฆ. = 0, since a1 = 0

If r = 0, ๐‘Ž2 = โˆ’1

๐‘š+2 2โˆ’๐‘›2 . a0

If r = 2, ๐‘Ž4 = โˆ’1

๐‘š+4 2โˆ’๐‘›2 a2 =1

๐‘š+2 2โˆ’๐‘›2 [(๐‘š+4)2โˆ’๐‘›2 a0 and so on.

On substituting the values of the coefficients a1, a2, a3, a4 โ€ฆโ€ฆ.. in (2), we have

y = a0xm = โˆ’

๐‘Ž0

๐‘š+2 2โˆ’๐‘›2 ๐‘ฅ๐‘š+2 +๐‘Ž0

๐‘š+2 2โˆ’๐‘›2 [ ๐‘š+4)2โˆ’๐‘›2 ๐‘ฅ๐‘š+4 + โ‹ฏ

y = a0xm = 1 โˆ’

1

๐‘š+2 2โˆ’๐‘›2 ๐‘ฅ2 +1

๐‘š+2 2โˆ’๐‘›2 [ ๐‘š+4)2โˆ’๐‘›2 ๐‘ฅ4 โˆ’ โ‹ฏ

Page 8: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

For m = n

y = a0xn 1 โˆ’

1

4 ๐‘›+1๐‘ฅ2 +

1

42.2! ๐‘›+1 ๐‘›+2๐‘ฅ4 โˆ’ โ‹ฏ

where a0 is an arbitrary constant.

For m = โˆ’ n

y = a0x-n 1 โˆ’

1

4 โˆ’๐‘›+1๐‘ฅ2 +

1

42.2! โˆ’๐‘›+1 โˆ’๐‘›+2๐‘ฅ4 โˆ’ โ‹ฏ

Page 9: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.4 BESSELโ€™S FUNCTIONS, Jn (x)

The Besselโ€™s equation is ๐‘ฅ2 ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ 2+ ๐‘ฅ

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ+ (๐‘ฅ2 โˆ’ ๐‘ฅ๐‘›)๐‘ฆ = 0. โ€ฆ(1)

Solution of (1) is

y = a0x-n 1 โˆ’๐‘ฅ2

2.2(๐‘›+1)+

๐‘ฅ4

2.4.22(๐‘›+1)(๐‘›+2)โˆ’ โ‹ฏ + (โˆ’1)๐‘Ÿ ๐‘ฅ2๐‘Ÿ

(2๐‘Ÿ๐‘Ÿ!).2๐‘Ÿ(๐‘›+1)(๐‘›+2)โ€ฆ(๐‘›+๐‘Ÿ)+ โ‹ฏ

2

0 20

( 1)2 . !( 1)( 2)...( )

rn r

rr

xa x

r n n n r

=

= โˆ’+ + +

where a0 is an arbitrary constant.

If a0 = 1

2๐‘› (๐‘›+1)

The above solution is called Besselโ€™s function denoted by Jn (x).

Page 10: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Thus ๐ฝ๐‘›(๐‘ฅ) = 1

2๐‘› (๐‘›+1)ฯƒ(โˆ’1)๐‘Ÿ ๐‘ฅ๐‘›+2๐‘Ÿ

22๐‘Ÿ .๐‘Ÿ!(๐‘›+1)(๐‘›+2)โ€ฆ(๐‘›+๐‘Ÿ) ๐‘› + 1 = ๐‘›!

โ‡’ ๐ฝ๐‘›(๐‘ฅ) = x

2

n

1

(๐‘›+1)โˆ’

1

1! (๐‘›+2)

x

2

2

+1

2! (๐‘›+3)

x

2

4

โˆ’1

3! (๐‘›+4)

x

2

6

+ โ‹ฏ

โ‡’ ๐ฝ๐‘›(๐‘ฅ) =๐‘ฅ๐‘›

2๐‘› ๐‘›+1 1 โˆ’

๐‘ฅ2

2.(2๐‘›+2)+

๐‘ฅ4

2.4.(2๐‘›+2)(2๐‘›+4)+ โ‹ฏ โ€ฆ(2)

2 2

0 0

( 1) ( 1) ( ) ( )

2 2! ( 1) ! ( )!

n r n rr r

n n

r r

x xJ x J x

r n r r n r

+ +

= =

โˆ’ โˆ’ = =

+ + +

If n = 0, J0 (x) = ฯƒ(โˆ’1)๐‘Ÿ

(๐‘Ÿ!)2 ๐‘ฅ

2

2๐‘Ÿ

โ‡’ J0 (x) = 1 โˆ’๐‘ฅ2

22+

๐‘ฅ4

22 .42โˆ’

๐‘ฅ6

22 .42 .62+ โ‹ฏ

Page 11: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

If n = 1, J1 (x) = ๐‘ฅ

2โˆ’

๐‘ฅ3

22.4+

๐‘ฅ5

22.42.6โˆ’ โ‹ฏ

We draw the length of these two functions. Both the functions are oscillatory with a varying period and a decreasing amplitude.

Replacing n by โ€“ n in (2), we get J-n (x) = ฯƒ๐‘Ÿ=0โˆž โˆ’1 ๐‘Ÿ

๐‘Ÿ! โˆ’๐‘›+๐‘Ÿ+1

๐‘ฅ

2

โˆ’๐‘›+2๐‘Ÿ

Case I. If n is not integer or zero, then complete solution of (1) is

Case II. If n = 0, then y1 = y2 and complete solution of (1) is the Besselโ€™s function of order zero.

Case III. If n is positive integer, then y2 is not solution of (1). And y1 fails to give a solution for negative values of n. Let us find out the general solution when n is an integer.

Page 12: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.5 Besselโ€™s function of the second kind of

order n

๐‘ฅ2 ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 + ๐‘ฅ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ+ ๐‘ฅ2 โˆ’ ๐‘›2 ๐‘ฆ = 0 โ€ฆ(1)

Let y = u(x) Jn (x) be the second of the Besselโ€™s equation when n integer.

๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= uโ€™ Jn + u Jโ€™n

๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 = uโ€™โ€™ Jn + 2uโ€™ Jโ€™n + u Jโ€™โ€™n

Substituting these values of y, yโ€™, yn in (1), we get

x2 (uโ€™โ€™ Jn + 2uโ€™ Jโ€™n + u Jโ€™โ€™n) + x(uโ€™ Jn + u.Jโ€™n) + (x2 โ€“ n2) u Jn = 0

โ‡’ u [x2 Jnn + x Jโ€™n + (x2 โ€“ n2) Jn] + x2 uโ€™โ€™ Jn + 2x2 uโ€™ Jn + x uโ€™ Jn = 0 โ€ฆ(2)

โ‡’ x2 Jโ€™โ€™n + x Jโ€™n + (x2 โ€“ n2) Jn = 0 [Since Jn is a solution of (1)]

(2) becomes x2 uโ€™โ€™ Jn + 2x2 uโ€™ Jโ€™n + xuโ€™ Jn = 0 โ€ฆ(3)

Page 13: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Dividing (3) by x2 uโ€™ Jn, we have

๐‘ข๐‘›

๐‘ขโ€ฒ + 2๐ฝ๐‘›โ€ฒ

๐ฝ๐‘›+

1

๐‘ฅ= 0

(4) Can also be written as โ€ฆ(4)

๐‘‘

๐‘‘๐‘ฅ[log๐‘ขโ€ฒ + 2

๐‘‘

๐‘‘๐‘ฅ[log ๐ฝ๐‘›] +

๐‘‘

๐‘‘๐‘ฅ(log ๐‘ฅ) = 0

โ‡’๐‘‘

๐‘‘๐‘ฅ[log๐‘ขโ€ฒ + 2 log ๐ฝ๐‘› + log ๐‘ฅ] = 0

โ‡’๐‘‘

๐‘‘๐‘ฅlog(๐‘ขโ€ฒ. ๐ฝ๐‘›

2 ๐‘ฅ = 0 โ€ฆ(5)

Integrating (5), we get

log ๐‘ขโ€ฒ. ๐ฝ๐‘›2 . ๐‘ฅ = log ๐ถ1

โ‡’ ๐‘ขโ€ฒ. ๐ฝ๐‘›2. ๐‘ฅ =๐ถ1 โ‡’ ๐‘ขโ€ฒ =

๐ถ1

๐ฝ๐‘›2.๐‘ฅ

โ€ฆ(6)

On integrating (6), we obtain

๐‘ข = ๐ถ1

๐ฝ๐‘›2 .๐‘ฅ

๐‘‘๐‘ฅ +๐ถ2

Putting the value of ๐‘ข in the assumed solution y = u (x). ๐ฝ๐‘›2(๐‘ฅ), we get

Page 14: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.6 RECURRENCE FORMULAE

These formulae are very useful in solving the questions. So, they are to be

committed to memory.

1. x ๐ฝ๐‘›โ€ฒ = ๐‘›๐ฝ๐‘› โˆ’ ๐‘ฅ ๐ฝ๐‘›+1

2. x ๐ฝ๐‘›โ€ฒ = โˆ’๐‘›๐ฝ๐‘› + ๐‘ฅ ๐ฝ๐‘›โˆ’1

3. 2 ๐ฝ๐‘›โ€ฒ = ๐ฝ๐‘›โˆ’1 โˆ’ ๐ฝ๐‘›+1

4. 2๐‘› ๐ฝ๐‘› = ๐‘ฅ ๐ฝ๐‘›โˆ’1 + ๐ฝ๐‘›+1

5. ๐‘‘

๐‘‘๐‘ฅ๐‘ฅโˆ’๐‘›๐ฝ๐‘› = โˆ’๐‘ฅโˆ’๐‘› ๐ฝ๐‘›+1

6. ๐‘‘

๐‘‘๐‘ฅ๐‘ฅโˆ’๐‘›๐ฝ๐‘› = ๐‘ฅ๐‘› ๐ฝ๐‘›โˆ’1

Page 15: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula I. x ๐ฝ๐‘›โ€ฒ = ๐‘›๐ฝ๐‘› โˆ’ ๐‘ฅ๐ฝ๐‘›+1

Proof. We know that

๐ฝ๐‘› = ฯƒ๐‘Ÿ=0โˆž โˆ’1 ๐‘Ÿ

๐‘Ÿ! ๐‘›+๐‘Ÿ+1

๐‘ฅ

2

๐‘›+2๐‘Ÿ

Differentiating with respect to x, we get

๐ฝ๐‘›โ€ฒ = ฯƒ

โˆ’1 ๐‘Ÿ ๐‘›+2๐‘Ÿ

๐‘Ÿ! ๐‘›+๐‘Ÿ+1

๐‘ฅ

2

๐‘›+2๐‘Ÿโˆ’1 1

2

โ‡’ ๐‘ฅ๐ฝ๐‘›โ€ฒ = ๐‘›ฯƒ

โˆ’1 ๐‘Ÿ

๐‘Ÿ! ๐‘›+๐‘Ÿ+1

๐‘ฅ

2

๐‘›+2๐‘Ÿ+ ๐‘ฅ ฯƒ

โˆ’1 ๐‘Ÿ.2๐‘Ÿ

2.๐‘Ÿ! ๐‘›+๐‘Ÿ+1

๐‘ฅ

2

๐‘›+2๐‘Ÿโˆ’1

= ๐‘ฅ๐ฝ๐‘› + ๐‘ฅ ฯƒ๐‘Ÿ=0โˆž โˆ’1 ๐‘Ÿ

๐‘Ÿโˆ’1 ! ๐‘›+๐‘Ÿ+1

๐‘ฅ

2

๐‘›+2๐‘Ÿโˆ’1

= ๐‘›๐ฝ๐‘› + ๐‘ฅ ฯƒ๐‘ =0โˆž โˆ’1 ๐‘ +1

๐‘ ! ๐‘›+๐‘ +2

๐‘ฅ

2

๐‘›+2๐‘ โˆ’1[Putting r โ€“ 1 = s]

= ๐‘›๐ฝ๐‘› โˆ’ ๐‘ฅ ฯƒ๐‘ =0โˆž โˆ’1 ๐‘ 

๐‘ ! ๐‘›+1 +๐‘ +1

๐‘ฅ

2

๐‘›+1 +2๐‘ 

๐‘ฅ๐ฝ๐‘›โ€ฒ = ๐‘›๐ฝ๐‘› โˆ’ ๐‘ฅ๐ฝ๐‘›+1 Proved.

Page 16: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula II. ๐‘ฅ๐ฝ๐‘›โ€ฒ = โˆ’๐‘›๐ฝ๐‘› + ๐‘ฅ๐ฝ๐‘›โˆ’1

Proof. We know that ๐ฝ๐‘› = ฯƒ๐‘Ÿ=0โˆž โˆ’1 ๐‘Ÿ

๐‘Ÿ! ๐‘›+๐‘Ÿ+2

๐‘ฅ

2

๐‘›+2๐‘Ÿ

Differentiating w.r.t. โ€˜xโ€™, we get ๐ฝ๐‘›โ€ฒ = ฯƒ๐‘Ÿ=0

โˆž โˆ’1 ๐‘Ÿ ๐‘›+2๐‘Ÿ

๐‘Ÿ! ๐‘›+๐‘Ÿ+1

๐‘ฅ

2

๐‘›+2๐‘Ÿโˆ’1 1

2

๐ฝ๐‘›โ€ฒ = ฯƒ๐‘Ÿ=0

โˆž โˆ’1 ๐‘Ÿ ๐‘›+2๐‘Ÿ

๐‘Ÿ! ๐‘›+๐‘Ÿ+1

๐‘ฅ

2

๐‘›+2๐‘Ÿ= ฯƒ๐‘Ÿ=0

โˆž โˆ’1 ๐‘Ÿ 2๐‘›+2๐‘Ÿ โˆ’๐‘›

๐‘Ÿ! ๐‘›+๐‘Ÿ+1

๐‘ฅ

2

๐‘›+2๐‘Ÿ

= ฯƒ๐‘Ÿ=0โˆž โˆ’1 ๐‘Ÿ 2๐‘›+2๐‘Ÿ

๐‘Ÿ! ๐‘›+๐‘Ÿ+1

๐‘ฅ

2

๐‘›+2๐‘Ÿโˆ’ ๐‘› ฯƒ๐‘Ÿ=0

โˆž โˆ’1 ๐‘Ÿ

๐‘Ÿ! ๐‘›+๐‘Ÿ+1

๐‘ฅ

2

๐‘›+2๐‘Ÿ

= ฯƒ๐‘Ÿ=0โˆž โˆ’1 ๐‘Ÿ2

๐‘Ÿ! ๐‘›+๐‘Ÿ

๐‘ฅ

2

๐‘›+2๐‘Ÿโˆ’ ๐‘›๐ฝ๐‘›

= ๐‘ฅ

๐‘Ÿ=0

โˆžโˆ’1 ๐‘Ÿ

๐‘Ÿ! ๐‘› โˆ’ 1 + ๐‘Ÿ + 1

๐‘ฅ

2

๐‘›โˆ’1+2๐‘Ÿ

โˆ’ ๐‘›๐ฝ๐‘›

โ‡’ ๐’™๐‘ฑ๐’โ€ฒ = ๐’™๐‘ฑ๐’โˆ’๐Ÿ โˆ’ ๐’๐‘ฑ๐’

Page 17: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula III. ๐Ÿ๐‘ฑ๐’โ€ฒ = ๐‘ฑ๐’โˆ’๐Ÿ โˆ’ ๐‘ฑ๐’+๐Ÿ

Proof.

We know that

๐‘ฅ๐ฝ๐‘›โ€ฒ = ๐ฝ๐‘› โˆ’ ๐‘ฅ๐ฝ๐‘›+1 โ€ฆ(1) (Recurrence formula I)

๐‘ฅ๐ฝ๐‘›โ€ฒ = โˆ’๐‘›๐ฝ๐‘› + ๐‘ฅ๐ฝ๐‘›โˆ’1 โ€ฆ(2) (Recurrence formula II)

Adding (1) and (2), we get

2๐‘ฅ๐ฝ๐‘›โ€ฒ = โˆ’๐‘ฅ๐ฝ๐‘›+1 + ๐‘ฅ๐ฝ๐‘›โˆ’1 โ‡’ 2๐ฝ๐‘›

โ€ฒ = ๐ฝ๐‘›โˆ’1 โˆ’ ๐ฝ๐‘›+1

Page 18: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula IV. 2๐‘›๐ฝ๐‘› = ๐‘ฅ (๐ฝ๐‘›โˆ’1 + ๐ฝ๐‘›+1)

Proof.

We know that

๐‘ฅ๐ฝ๐‘›โ€ฒ = ๐‘›๐ฝ๐‘› โˆ’ ๐‘ฅ๐ฝ๐‘›+1 โ€ฆ(1) (Recurrence formula I)

๐‘ฅ๐ฝ๐‘›โ€ฒ = โˆ’๐‘›๐ฝ๐‘› + ๐‘ฅ๐ฝ๐‘›โˆ’1 โ€ฆ(2) (Recurrence formula II)

subtracting (2) from (1), we get

0 = 2 ๐‘› ๐ฝ๐‘› โˆ’๐‘ฅ๐ฝ๐‘›+1 โˆ’๐‘ฅ๐ฝ๐‘›โˆ’1

โ‡’ 2 ๐‘› ๐ฝ๐‘› = ๐‘ฅ (๐ฝ๐‘›โˆ’1 +๐ฝ๐‘›+1) โ€ฆ(3)

Page 19: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula V.๐’…

๐’…๐’™(x-n. Jn) = -x-n Jn+1

Proof. We know that ๐‘ฅ๐ฝ๐‘›โ€ฒ = ๐‘›๐ฝ๐‘› โˆ’ ๐‘ฅ๐ฝ๐‘›+1

(Recurrence formula I)

Multiplying by x-n-1, we obtain x-n ๐ฝ๐‘›โ€ฒ = nx-n-1 Jn โ€“ x-n Jn+1

i.e., x-n ๐ฝ๐‘›โ€ฒ = nx-n-1 Jn =โ€“ x-n Jn+1

โ‡’๐‘‘

๐‘‘๐‘ฅ(x-n Jn) = - x-n Jn + 1

Page 20: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Formula VI.๐’…

๐’…๐’™(xn Jn) = xn Jn-1

Proof.

We know that x-n ๐ฝ๐‘›โ€ฒ = -nJn + x Jn-1 (Recurrence formula II)

Multiplying by xn+1, we have

xn ๐ฝ๐‘›โ€ฒ = -nxn-1 Jn + xn Jn-1 i.e., xn ๐ฝ๐‘›

โ€ฒ +nxn-1 Jn = xn Jn-1

โ‡’๐’…

๐’…๐’™(xn Jn) = xn Jn-1

Page 21: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.7 ORTHOGONALITY OF BESSEL

FUNCTION

Proof. We know that

๐‘ฅ2 ๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 + ๐‘ฅ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ+ ๐›ผ2๐‘ฅ2 โˆ’ ๐‘›2 ๐‘ฆ = 0 โ€ฆ(1)

โ‡’ ๐‘ฅ2 ๐‘‘2๐‘ง

๐‘‘๐‘ฅ2 + ๐‘ฅ๐‘‘๐‘ง

๐‘‘๐‘‘๐‘ฅ+ ๐›ฝ2๐‘ฅ2 โˆ’ ๐‘›2 ๐‘ง = 0 โ€ฆ(2)

Solution of (1) and (2) are y = Jn (๐›ผ ๐‘ฅ), z = Jn (๐›ฝ ๐‘ฅ) respectively.

Multiplying (1) by ๐‘ง

๐‘ฅand (2) by โ€“

๐‘ฆ

๐‘ฅand adding, we get

๐‘ฅ ๐‘ง๐‘‘2๐‘ฆ

๐‘‘๐‘ฅ2 โˆ’ ๐‘ฆ๐‘‘2๐‘ง

๐‘‘๐‘ฅ2 + ๐‘ง๐‘‘๐‘ฆ

๐‘‘๐‘ฅโˆ’ ๐‘ฆ

๐‘‘๐‘ง

๐‘‘๐‘ฅ+ ๐›ผ2 โˆ’๐›ฝ2 ๐‘ฅ๐‘ฆ๐‘ง = 0.

โ‡’๐‘‘

๐‘‘๐‘ฅ๐‘ฅ ๐‘ง

๐‘‘๐‘ฆ

๐‘‘๐‘ฅโˆ’ ๐‘ฆ

๐‘‘๐‘ง

๐‘‘๐‘ฅ+ ๐›ผ2 โˆ’๐›ฝ2 ๐‘ฅ๐‘ฆ๐‘ง = 0 โ€ฆ(3)

Page 22: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Integrating (3) w.r.t. โ€˜xโ€™ between the limits 0 and 1, we get

๐‘‘

๐‘‘๐‘ฅ๐‘ฅ ๐‘ง

๐‘‘๐‘ฆ

๐‘‘๐‘ฅโˆ’ ๐‘ฆ

๐‘‘๐‘ง

๐‘‘๐‘ฅ 0

1+ ๐›ผ2 โˆ’๐›ฝ2 0

1๐‘ฅ ๐‘ฆ ๐‘ง ๐‘‘๐‘ฅ = 0

โ‡’ ๐›ฝ2 โˆ’๐›ผ2 01๐‘ฅ ๐‘ฆ ๐‘ง ๐‘‘๐‘ฅ = ๐‘ฅ ๐‘ง

๐‘‘๐‘ฆ

๐‘‘๐‘ฅโˆ’ ๐‘ฆ

๐‘‘๐‘ง

๐‘‘๐‘ฅ 0

1= ๐‘ง

๐‘‘๐‘ฆ

๐‘‘๐‘ฅโˆ’ ๐‘ฆ

๐‘‘๐‘ง

๐‘‘๐‘ฅ ๐‘ฅ=1โ€ฆ(4)

Putting the values of y = Jn (๐›ผ ๐‘ฅ), ๐‘‘๐‘ฆ

๐‘‘๐‘ฅ= ๐›ผ ๐ฝ๐‘›

โ€ฒ ๐›ผ๐‘ฅ , ๐‘ง = ๐ฝ๐‘› ๐›ฝ๐‘ฅ ,๐‘‘๐‘ง

๐‘‘๐‘ฅ= ๐›ฝ, ๐ฝ๐‘›

โ€ฒ ๐›ฝ๐‘ฅ in (4), we get

๐›ฝ2 โˆ’ ๐›ผ2 01๐‘ฅ๐ฝ๐‘› ๐›ผ๐‘ฅ . ๐ฝ๐‘› ๐›ฝ๐‘ฅ ๐‘‘๐‘ฅ = ๐›ผ๐ฝ๐‘›

โ€ฒ ๐›ผ๐‘ฅ ๐ฝ๐‘› ๐›ฝ๐‘ฅ = ๐›ฝ๐ฝ๐‘›โ€ฒ ๐›ฝ๐‘ฅ ๐ฝ๐‘› ๐›ผ๐‘ฅ ๐‘ฅ=1

= ๐›ผ๐ฝ๐‘›โ€ฒ ๐›ผ ๐ฝ๐‘› ๐›ฝ โˆ’ ๐›ฝ๐ฝ๐‘›

โ€ฒ ๐›ฝ ๐ฝ๐‘› ๐›ผ โ€ฆ(5)

Since ๐›ผ, ๐›ฝ are the roots of Jn (x) = 0, so Jn ๐›ผ = Jn ๐›ฝ = 0

Page 23: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Putting the values of Jn (๐›ผ) = Jn (๐›ฝ) = 0 in (5), we get

(๐›ผ2โˆ’๐›ฝ2) ๐‘ฅ1

0 Jn (๐›ผ๐‘ฅ). Jn (๐›ฝ๐‘ฅ) dx = 0

โ‡’ ๐‘ฅ1

0 Jn (๐›ผ๐‘ฅ). Jn (๐›ฝ๐‘ฅ) dx = 0 Proved.

We also know that Jn (๐›ผ) = 0. Let ๐›ฝ be a neighboring value of ๐›ผ, which tends to ๐›ผ.

Then

1 '

2 2

0

0 ( ). ( )lim ( ). ( ) lim n n

n n

J JxJ x J x dx

โ†’ โ†’

+=

โˆ’

As the limit is of the form 0

0, we apply Lโ€™ Hopitalโ€™s rule

1 ' '2

2 '

0

0 ( ). ( ) 1( ) lim ( )

2 2

n nn n

J JxJ x dx J

โ†’

+ = = =

Proved.

Page 24: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.8 A GENERATING FUNCTION FOR

Jn (x)

Prove that Jn (x) is the coefficient of zn in the expansion of ๐‘’๐‘ฅ

2๐‘งโˆ’

1

๐‘ง

Proof. We know that et = 1 + t + ๐‘ก2

2!+

๐‘ก3

3!+ โ‹ฏ

๐‘’๐‘ฅ๐‘ง

2 = 1 +๐‘ฅ๐‘ง

2+

1

2!

๐‘ฅ

2๐‘ง

2โˆ’

1

3!

๐‘ฅ

2๐‘ง

3+ โ‹ฏ โ€ฆ(1)

๐‘’๐‘ฅ

2๐‘ง = 1 โˆ’๐‘ฅ

2๐‘ง+

1

2!

๐‘ฅ

2๐‘ง

2โˆ’

1

3!

๐‘ฅ

2๐‘ง

3+ โ‹ฏ โ€ฆ(2)

On multiplying (1) and (2), we get

๐‘’๐‘ฅ

2๐‘ง1

๐‘ง = 1 +๐‘ฅ๐‘ง

2+

1

2!

๐‘ฅ๐‘ง

2

2+

1

3!

๐‘ฅ๐‘ง

2

3+ โ‹ฏ ร— 1 โˆ’

๐‘ฅ

2๐‘ง+

1

2!

๐‘ฅ

2๐‘ง

2โˆ’

1

3!

๐‘ฅ

2๐‘ง

3+ โ‹ฏ โ€ฆ(3)

Page 25: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

The coefficient of zn in the product of (3), we get

=1

๐‘› ! ๐‘ฅ

2 ๐‘›

โˆ’1

(๐‘›+1)! ๐‘ฅ

2 ๐‘›+2

+1

2!(๐‘›+2)! ๐‘ฅ

2 ๐‘›+4

โˆ’ โ‹ฏ = Jn (x)

Similarly, coefficient of z-n in the product of (3) = J-n(x)

โˆด ๐‘’๐‘ฅ

2 ๐‘ง

1

๐‘ง = J0 + z J1 + z2 J2 + z3 J3 + โ€ฆ + z-1 J-1 + z-2 J-2 + z-3 J-3 + โ€ฆ

1

2 ( )

xz

nz

n

n

e z J x

=โˆ’

=

For this reason ๐‘’๐‘ฅ

2 ๐‘ง

1

๐‘ง is known as the generating function of Besselโ€™s functions.

Proved.

Page 26: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2.9 SOME EXAMPLES

Example 1. Show that Besselโ€™s Function Jn(x) is an even function when n is even and is

odd function when n is odd.

Solution. We know that

2

0

( 1)( ) ...(1)

2! 1

n rr

n

r

xJ x

r n r

+

=

โˆ’ =

+ +

Replacing x by โ€“ x in (1), we get

2

0

( 1)( ) ...(2)

2! 1

n rr

n

r

xJ x

r n r

+

=

โˆ’ โˆ’ โˆ’ =

+ +

Case I. If n is even, then n + 2r is even โ‡’ โˆ’๐‘ฅ

2 ๐‘›+2๐‘Ÿ

= ๐‘ฅ

2 ๐‘›+2๐‘Ÿ

Thus (2), becomes

Page 27: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

2

0

( 1)( )

2! 1

n rr

n

r

xJ x

r n r

+

=

โˆ’ โˆ’ =

+ +

= Jn (x) ๐น๐‘œ๐‘Ÿ ๐‘’๐‘ฃ๐‘’๐‘› ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›

๐‘“(โˆ’๐‘ฅ) = ๐‘“(๐‘ฅ)

Hence, Jn (x) is even function

Case II. If n is odd, then n + 2r is odd โ‡’ โˆ’๐‘ฅ

2 ๐‘›+2๐‘Ÿ

= โˆ’ ๐‘ฅ

2 ๐‘›+2๐‘Ÿ

Thus (2). Becomes

2

0

( 1)( )

2! 1

n rr

n

r

xJ x

r n r

+

=

โˆ’ โˆ’ = โˆ’

+ +

= โˆ’ Jn (x) ๐น๐‘œ๐‘Ÿ ๐‘œ๐‘‘๐‘‘ ๐‘“๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›

๐‘“(โˆ’๐‘ฅ) = โˆ’๐‘“(๐‘ฅ)

Proved.

Hence, Jn (x) os odd function.

Page 28: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Example 2. Prove that:

x 0

( ) 1lim ;( 1).

2 1

n

n n

J xn

x nโ†’= โˆ’

+

Solution. From the equation (2) of Article 29.3 on page 798, we know that

Jn (x) = ๐‘ฅ๐‘›

2๐‘› ๐‘›+1 1 โˆ’

๐‘ฅ2

2.(2๐‘›+2)+

๐‘ฅ4

2.4(2๐‘›+2)(2๐‘›+4)โˆ’ โ‹ฏ

On taking limit on both sides when x โ†’ 0, we get

2 4

x 0 x 0

( ) 1lim lim 1 ...

2.(2 2) 2.4.(2 2)(2 4)2 1

n

n n

J x x x

x n n nnโ†’ โ†’

= โˆ’ + โˆ’

+ + ++

= 1

2๐‘› ๐‘›+1

Page 29: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Example 3. Find the value of J-1 (x) + J1 (x).

Solution. By using Recurrence relation IV for Jn (x) is

2n Jn = x (Jn โ€“ 1 + Jn + 1)

Jn โ€“ 1 (x) + Jn + 1 (x) = 2๐‘›

๐‘ฅJn (x)

Put n = 0

J-1(X) + J1(x) = 0

Page 30: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

Example 4.Prove that

Formula V.๐’…

๐’…๐’™(x-n. Jn) = -x-n Jn+1

Proof. We know that ๐‘ฅ๐ฝ๐‘›โ€ฒ = ๐‘›๐ฝ๐‘› โˆ’ ๐‘ฅ๐ฝ๐‘›+1 (Recurrence formula I)

Multiplying by x-n-1, we obtain x-n ๐ฝ๐‘›โ€ฒ = nx-n-1 Jn โ€“ x-n Jn+1

i.e., x-n ๐ฝ๐‘›โ€ฒ = nx-n-1 Jn =โ€“ x-n Jn+1

โ‡’๐‘‘

๐‘‘๐‘ฅ(x-n Jn) = - x-n Jn + 1

Page 31: MATHEMATICAL PHYSICS UNIT 2 - uou.ac.in

THANKS