1
Nearsurface density currents observed in the stratocumulustopped marine boundary layer Matt Wilbanks 1 , Sandra Yuter 1 , Matthew Miller 1 , Simon de Szoeke 2 , Alan Brewer 3 , Casey Burleyson 1,4 1 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA 2 College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA 3 National Oceanic and Atmospheric Association Earth Systems Research Laboratory, Boulder, CO, USA 4 Pacific Northwest National Laboratory, Richland, WA, USA References 1. Simpson, J. E., 1969: A comparison between laboratory and atmospheric density currents. Quart. J. Roy. Meteor. Soc.,95,758–765, doi:10.1002/qj.49709540609 2. Feingold, G., I. Koren, H. Wang, H. Xue, and W. A. Brewer, 2010: Precipitationgenerated oscillations in open cellular cloud fields. Nature, 466, 849–852, doi:10.1038/nature09314. 3. SavicJovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 1587–1605, doi:10.1175/2007JAS2456.1. 4. 9. Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part II: The microphysics and dynamics of the boundary region between open and closed cells. J. Atmos. Sci., 66, 3257–3275, doi:10.1175/2009JAS3120.1. 5. Bryan, G. H., R. Rotunno, and J. M. Fritsch, 2007: Roll circulations in the convective region of a simulated squall line. J. Atmos. Sci., 64, 1249–1266, doi:10.1175/JAS3899.1. 6. Charba, J., 1974: Application of gravity current model to analysis of squallline gust front. Mon. Wea. Rev., 102, 140–156, doi:10.1175/15200493(1974)102<0140:AOGCMT>2.0.CO;2. 7. Goff, C.R., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440, doi:10.1175/15200493(1976)104<1429:VSOTO>2.0.CO;2. 8. Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 4839–4849, doi:10.1175/2008MWR2528.1. 9. Jensen, J. B., S. Lee, P. B. Krummel, J. Katzfey, and D. Gogoasa, 2000: Precipitation in marine cumulus and stratocumulus: Part I: Thermodynamic and dynamic observations of closed cell circulations and cumulus bands. Atmos. Res., 54, 117–155, doi:10.1016/S01698095(00)000405. 10. Terai, C. R., and R. Wood, 2013: Aircraft observations of cold pools under marine stratocumulus. Atmos. Chem. Phys., 13, 98999914, 2013, doi: 10.5194/acp1398992013. The observed density currents were on average 510 times thinner (330 m) and weaker (0.8 K) than typical continental thunderstorm cold pools. 5,8 Prefrontal updrafts were present immediately prior to and over top of nearly every density current, extending on average up to 800 m altitude. Shelf clouds capping the front edge of density currents frequently formed. These typically did not connect to the overlying stratocumulus deck. Density currents preferentially (34 out of 71) occurred within a region of predominately open cells, but they also occurred beneath closed cells. Density current occurrence peaked in the morning between 06 and 08 LT, after the overnight peak in drizzle. The presence of enhanced local drizzle is not sufficient to explain the diurnal cycle of density current occurrence. Density currents were associated with subcloud dry layers and more dry static stability, which are more common during the day. Source drizzle cells and density current frontal boundaries approximately kept pace with each other because the differential speed of the cloud layer relative to the surface layer (1.9 m s 1 ) was commensurate with density current propagation speed (1.8 m s 1 ). Compared to front and core zones, density current tails had weaker density gradients, longer timeintegrated ship transects, and stronger consistently positive vertical shear of wind speed in the lowest 800 m. Acknowledgements: This research was supported by the Office of Science (Biological and Environmental Research) U.S. Department of Energy Grants DESC0006701 and DESC0006994, the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (CPO) Climate Prediction Program for the Americas (CPPA) Grants GC09252b and GC09507, and the National Aeronautics and Space Administration Grant NNX11AE98G. Fig. 7: Vertical crosssection along the axis of propagation of an idealized drizzleinduced nearsurface density current. Fig. 1 a) Example of a laboratory density current (adapted from Simpson 1969 1 ). b) Doppler lidar vertical crosssection through a density current showing mean wind corrected radial velocity along a plane approximately orthogonal to the frontal boundary. c) Timeheight lidar backscatter intensity and vertical velocity as a density current passed over the lidar. Fig. 3: a) Left: Panoramic photograph of a shelf cloud (within white brackets) seen along and directly above the density current front that approached from the east and crossed the ship at 1353 UTC. Right: Corresponding GOES VIS satellite, radar, and lidar PPI of mean wind corrected radial velocity. The white section line indicates the field of view of the photograph. b) Panorama of drizzle cell located above and adjacent to a density current as it approached the ship from the east (right plot as in a). c) Timeheight lidar as the density current shown in b. passed over the lidar. e) Vertical velocity distributions from 25 lidarobserved prefrontal updrafts. Drizzleinduced density currents (i.e. cold pools) are generated when evaporatively cooled, negatively buoyant air sinks to the earth’s surface and diverges. They have been proposed to affect mesoscale circulation in marine stratocumulus. 2,3,4 Though studied extensively in midlatitude continental deep convection 5,6,7,8 , observational studies of density currents beneath marine stratocumulus are limited to aircraft data in a line or curtain. 9,10 An objective method identified 71 density currents in 30 d of ship data collected during the 2008 VAMOS OceanCloudAtmosphereLand Regional Experiment (VOCALSREx) in the Southeast Pacific. Scanning Doppler lidar depictions of density currents and their prefrontal updrafts are presented for the first time beneath marine stratocumulus. The horizontal configuration of the surrounding clouds and drizzle, density current structure and kinematic features, as well as boundary layer conditions provide valuable context to address the potential role of density currents on mesoscale organization and drizzle cell convective initiation. t 0 t 1 t 2 t 3 U[ms -1 ] z [m] 5 6 7 8 9 10 11 12 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 Prefront(N=61) Front/Core(N=39) Tail(N=77) East of 80˚W(N=988) 80˚W - 85˚W(N=747) West of 85˚W(N=337) 650 m layer 100 m layer Fig. 6: Average lidar VAD wind speed profiles obtained within density current prefront, front/core, and tail zones compared with all VADs obtained within three different longitude categories. Density current distributions in met data -3 -2 -1 0 1 2 3 IU’I [ms -1 ] 0 2 4 6 U’ [°] -3 -2 -1 0 1 2 3 0 30 60 90 120 150 180 Normalized Displacement Along Ship Transect [-] Table 1: Density current temperature depression (T), estimated depth (h) from lidar VADs, density current length along timeintegrated ship transects (L), duration of density current in ship time series (t), mean vertical wind speed throughout prefrontal updraft (w), density current propagation speed (C) estimated by finding the magnitude of the resultant wind anomaly inside density current front zones. Δρ [gm -3 ] -3 0 3 6 ΔT [K] -2 -1 0 1 Front and Core Tail Prefrontal a) b) Fig. 2: Perturbation in ship a) air density, b) temperature, c) wind anomaly magnitude, and d) wind anomaly angular deviation (U’). U’ is absolute value of the small angle between the wind anomaly and the 10min average prefrontal wind. The solid (dashed) black line gives mean (median) values. Fig. 5: Schematic of the development of a density current with an elongated tail oriented along the axis of the mean wind (gray arrow). The source drizzle cell (green) moves northwest at a marginally higher speed than the leading edge of the divergent cold pool (blue) and releases a second cold pool at t 3. Cloud Shelf clouds and prefrontal updrafts z [km] 0.5 1.5 Introduction -10 0 10 20 dB Towards Lidar Away from Lidar -2 0 2 ms -1 0.25 0.5 0.75 1 Cloud Fraction Longitude [° ] -86 -84 -82 -80 -78 -76 Fig. 4: Examples of closed cells (a) and open cells (b) in VIS satellite over the ship at the start of a density current. c) The relationship among local time of day, longitude, and the halfhourly cloud fraction over the ship at the start of each density current. Data points corresponding to density currents occurring on 26 Oct 2008 or 27 Oct 2008 –when a large region of predominantly open cells were observed—are diamondshaped. The remaining data are indicated by circles. d) Diurnal cycle of enhanced local drizzle surrounding the ship (green) and times when a density current was detected over the ship (black line). Diurnal Cycle and Mesoscale Cellular Organization Hours 0 2 4 6 8 10 DC Occurrence Over Ship R 15km >1.0mmd -1 Effect of boundary layer shear 6 am Noon 6 pm 0 Conclusions b) c) c) t [min] Updraft 0 1 2 3 2 6 Mean 95 th Pct w [m s -1 ] Count T [K] h [m] L [km] t [min] w [m s 1 ] C [m s 1 ] Range 0.22.1 80610 540 8161 0.281.51 0.25.1 Mean 0.8 330 15 33 0.9 1.8 a) b) c) d) d) c) d) 0 30 60 10 -3 10 -2 10 -1 10 0 10 1 -1 0 1 2 3 4 5 6 7 8 x 10 -5 R 15km [mm d -1 ] N 2 [s -2 ] Dusk Midnight Dawn Noon Dusk Through DC Through Prefrontal Zone Fig. 8: Joint subcloud stability, time of day, and rain rate for periods with and without density currents. Subcloud stability is quantified using the soundingderived squared dry BruntVäisälä frequency (N 2 ) calculated from the 100m layer nearest the ocean surface to the 100m layer just below the median cloud base. Data points collected east of 80°W are marked with triangles and points west of 80°W with circles. Updraft Cloud -5 0 5 1405 UTC on 29 Oct 2008 1205 UTC on 27 Oct 2008 0824 UTC 26 Oct 2008 t 0 = 1618 UTC on 26 Oct 2008 Density current Bin Count 0 20 40 60 80 100 t 0 = 1213 UTC on 27 Oct 2008 Open Cell Closed Cell 1 cm X [km] Diurnal cycle of subcloud stability Saline Solution Water

Matt Wilbanks ASR 03122015...Microsoft PowerPoint - Matt_Wilbanks_ASR_03122015 Author wookie Created Date 3/13/2015 3:53:53 PM

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • Near‐surface density currents observed in the stratocumulus‐topped marine boundary layer  Matt Wilbanks1, Sandra Yuter1, Matthew Miller1, Simon de Szoeke2,  Alan Brewer3, Casey Burleyson1,4

    1Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA2College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA

    3National Oceanic and Atmospheric Association Earth Systems Research Laboratory, Boulder, CO, USA4Pacific Northwest National Laboratory, Richland, WA, USA

    References 1. Simpson, J. E., 1969: A comparison between laboratory and atmospheric density currents. Quart. J. Roy. Meteor. Soc.,95,758–765, 

    doi:10.1002/qj.497095406092. Feingold, G., I. Koren, H. Wang, H. Xue, and W. A. Brewer, 2010: Precipitation‐generated oscillations in open cellular cloud fields. Nature, 466, 849–852, 

    doi:10.1038/nature09314.3. Savic‐Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 1587–1605, 

    doi:10.1175/2007JAS2456.1.4. 9. Wang, H., and G. Feingold, 2009: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part II: The microphysics and dynamics 

    of the boundary region between open and closed cells. J. Atmos. Sci., 66, 3257–3275, doi:10.1175/2009JAS3120.1.5. Bryan, G. H., R. Rotunno, and J. M. Fritsch, 2007: Roll circulations in the convective region of a simulated squall line. J. Atmos. Sci., 64, 1249–1266,

    doi:10.1175/JAS3899.1.6. Charba, J., 1974: Application of gravity current model to analysis of squall‐line gust front. Mon. Wea. Rev., 102, 140–156, doi:10.1175/1520‐

    0493(1974)1022.0.CO;2.7. Goff, C.R., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440, doi:10.1175/1520‐

    0493(1976)1042.0.CO;2.8. Engerer, N. A., D. J. Stensrud, and M. C. Coniglio, 2008: Surface characteristics of observed cold pools. Mon. Wea. Rev., 136, 4839–4849, 

    doi:10.1175/2008MWR2528.1.9. Jensen, J. B., S. Lee, P. B. Krummel, J. Katzfey, and D. Gogoasa, 2000: Precipitation in marine cumulus and stratocumulus: Part I: Thermodynamic and 

    dynamic observations of closed cell circulations and cumulus bands. Atmos. Res., 54, 117–155, doi:10.1016/S0169‐8095(00)00040‐5.10. Terai, C. R., and R. Wood, 2013: Aircraft observations of cold pools under marine stratocumulus. Atmos. Chem. Phys., 13, 9899‐9914, 2013, doi: 

    10.5194/acp‐13‐9899‐2013.

    • The observed density currents were on average 5‐10 times thinner (330 m) and weaker (0.8 K) than typical continental thunderstorm cold pools.5,8

    • Prefrontal updrafts were present immediately prior to and over top of nearly every density current, extending on average up to 800 m altitude. 

    • Shelf clouds capping the front edge of density currents frequently formed. These typically did not connect to the overlying stratocumulus deck. 

    • Density currents preferentially (34 out of 71) occurred within a region of predominately open cells, but they also occurred beneath closed cells.

    • Density current occurrence peaked in the morning between 06 and 08 LT, after the overnight peak in drizzle. The presence of enhanced local drizzle is not sufficient to explain the diurnal cycle of density current occurrence. Density currents were associated with subcloud dry layers and more dry static stability, which are more common during the day.

    • Source drizzle cells and density current frontal boundaries approximately kept pace with each other because the differential speed of the cloud layer relative to the surface layer (1.9 m s‐1) was commensurate with density current propagation speed (1.8 m s‐1). 

    • Compared to front and core zones, density current tails had weaker density gradients, longer time‐integrated ship transects, and stronger consistently positive vertical shear of wind speed in the lowest 800 m. 

    Acknowledgements: This research was supported by the Office of Science (Biological and Environmental Research) U.S. Department of Energy Grants DE‐SC0006701 and DE‐SC0006994, the National Oceanic and Atmospheric Administration (NOAA) Climate Program Office (CPO) Climate Prediction Program for the Americas (CPPA) Grants GC09‐252b and GC09‐507, and the National Aeronautics and Space Administration Grant NNX11AE98G.

    Fig. 7: Vertical cross‐section along the axis of propagation of an idealized drizzle‐induced near‐surface density current. 

    Fig. 1 a) Example of a laboratory density current (adapted from Simpson 19691). b) Doppler lidar vertical cross‐section through a density current showing mean wind corrected radial velocity along a plane approximately orthogonal to the frontal boundary. c) Time‐height lidarbackscatter intensity and vertical velocity as a density current passed over the lidar.

    Fig. 3: a) Left: Panoramic photograph of a shelf cloud (within white brackets) seen along and directly above the density current front that approached from the east and crossed the ship at 1353 UTC. Right: Corresponding GOES VIS satellite, radar, and lidar PPI of mean wind corrected radial velocity. The white section line indicates the field of view of the photograph. b) Panorama of drizzle cell located above and adjacent to a density current as it approached the ship from the east (right plot as in a). c) Time‐height lidar as the density current shown in b. passed over the lidar. e) Vertical velocity distributions from 25 lidar‐observed prefrontal updrafts.

    Drizzle‐induced density currents (i.e. cold pools) are generated when evaporatively cooled, negatively buoyant air sinks to the earth’s surface and diverges. They have been proposed to affect mesoscale circulation in marine stratocumulus.2,3,4 Though studied extensively in mid‐latitude continental deep convection5,6,7,8, observational studies of density currents beneath marine stratocumulus are limited to aircraft data in a line or curtain.9,10

    An objective method identified 71 density currents in 30 d of ship data collected during the 2008 VAMOS Ocean‐Cloud‐Atmosphere‐Land Regional Experiment (VOCALS‐REx) in the Southeast Pacific. Scanning Doppler lidardepictions of density currents and their prefrontal updrafts are presented for the first time beneath marine stratocumulus. The horizontal configuration of the surrounding clouds and drizzle, density current structure and kinematic features, as well as boundary layer conditions provide valuable context to address the potential role of density currents on mesoscale organization and drizzle cell convective initiation.

    t0 t1 t2 t3

    U [ms−1]

    z [m

    ]

    5 6 7 8 9 10 11 120

    100

    200

    300

    400

    500

    600

    700

    800

    900

    1000

    1100

    1200

    Prefront(N=61)Front/Core(N=39)Tail(N=77)East of 80˚W(N=988)80˚W - 85˚W(N=747)West of 85˚W(N=337)

    650 mlayer

    100 mlayer

    Fig. 6: Average lidar VAD wind speed profiles obtained within density current prefront, front/core, and tail zones compared with all VADs obtained within three different longitude categories.

    Density current distributions in met data 

    −3 −2 −1 0 1 2 3

    IU’I

    [ms

    −1 ]

    0

    2

    4

    6

    U’ [°]

    −3 −2 −1 0 1 2 30

    30

    60

    90

    120

    150

    180

    Normalized Displacement Along Ship Transect [−]

    b)

    c)

    e)

    f)

    Table 1: Density current temperature depression (∆T), estimated depth (h) from lidar VADs, density current length along time‐integrated ship transects (L), duration of density current in ship time series (t), mean vertical wind speed throughout prefrontal updraft (w), density current propagation speed (C) estimated by finding the magnitude of the resultant wind anomaly inside density current front zones.  

    Δρ [g

    m−

    3 ]

    −3

    0

    3

    6

    ΔT [K

    ]

    −2

    −1

    0

    1

    Frontand

    Core

    TailPrefrontala)

    b)

    Fig. 2: Perturbation in ship a) air density, b) temperature, c) wind anomaly magnitude, and d) wind anomaly angular deviation (U’). U’ is absolute value of the small angle between the wind anomaly and the 10‐min average prefrontal wind. The solid (dashed) black line gives mean (median) values. 

    Fig. 5: Schematic of the development of a density current with an elongated tail oriented along the axis of the mean wind (gray arrow). The source drizzle cell (green) moves northwest at a marginally higher speed than the leading edge of the divergent cold pool (blue) and releases a second cold pool at t3.

    Cloud

    Shelf clouds and prefrontal updrafts

    z [k

    m]

    0.5

    1.5

    Introduction

    −10 0 10 20 dB

    Towards Lidar Away from Lidar

    −2 0 2

    ms −1

    6AM Noon 6PM

    0.25

    0.5

    0.75

    1

    Clo

    ud F

    ract

    ion

    Long

    itude

    [°]

    −86

    −84

    −82

    −80

    −78

    −76

    Fig. 4: Examples of closed cells (a) and open cells (b) in VIS satellite over the ship at the start of a density current. c) The relationship among local time of day, longitude, and the half‐hourly cloud fraction over the ship at the start of each density current. Data points corresponding to density currents occurring on 26 Oct 2008 or 27 Oct 2008 –when a large region of predominantly open cells were observed—are diamond‐shaped. The remaining data are indicated by circles. d) Diurnal cycle of enhanced local drizzle surrounding the ship (green) and times when a density current was detected over the ship (black line).

    Diurnal Cycle and Mesoscale Cellular OrganizationH

    ours

    6 am Noon 6 pm0

    2

    4

    6

    8

    10 DC Occurrence Over Ship R 15km>1.0mmd−1

    b)

    Effect of  boundary layer shear

    6 am Noon 6 pm0

    Conclusions

    b)

    c)c)

    t [min]

    Updraft

    0 1 2 3

    2

    6

    Mean95th Pct

    w [m s-1]

    Coun

    t

    ∆T [K] h [m] L [km] t [min] w [m s‐1] C [m s‐1]Range 0.2‐2.1 80‐610 5‐40 8‐161 0.28‐1.51 0.2‐5.1Mean 0.8 330 15 33 0.9 1.8

    a)

    b)

    c)

    d)

    d)

    d)

    c)

    d)

    0 30 60

    10−3

    10−2

    10−1

    100

    101

    −1

    0

    1

    2

    3

    4

    5

    6

    7

    8

    x 10−5

    R15km

    [mm d −1]

    N2

    [s−

    2 ]

    Dusk

    Midnight

    Dawn

    Noon

    DuskThrough DC

    Through PrefrontalZone

    Fig. 8: Joint subcloud stability, time of day, and rain rate for periods with and without density currents. Subcloudstability is quantified using the sounding‐derived squared dry Brunt‐Väisälä frequency (N2) calculated from the 100‐m layer nearest the ocean surface to the 100‐m layer just below the median cloud base. Data points collected east of 80°W are marked with triangles and points west of 80°W with circles. 

    Updraft

    Cloud

    −5 0 5

    1405 UTC on 29 Oct 2008

    1205 UTC on 27 Oct 20080824 UTC 26 Oct 2008

    t0 = 1618 UTC on 26 Oct 2008 Density current

    Bin Count

    0

    20

    40

    60

    80

    100

    t0 = 1213 UTC on 27 Oct 2008

    Open Cell

    Closed Cell

    1 cm

    X [km]

    Diurnal cycle of subcloud stability

    Saline Solution

    Water

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /CropGrayImages true /GrayImageMinResolution 300 /GrayImageMinResolutionPolicy /OK /DownsampleGrayImages false /GrayImageDownsampleType /Bicubic /GrayImageResolution 300 /GrayImageDepth 8 /GrayImageMinDownsampleDepth 2 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /FlateEncode /AutoFilterGrayImages false /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /CropMonoImages true /MonoImageMinResolution 1200 /MonoImageMinResolutionPolicy /OK /DownsampleMonoImages false /MonoImageDownsampleType /Bicubic /MonoImageResolution 1200 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /FlateEncode /MonoImageDict > /AllowPSXObjects false /CheckCompliance [ /None ] /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile () /PDFXOutputConditionIdentifier () /PDFXOutputCondition () /PDFXRegistryName () /PDFXTrapped /False

    /CreateJDFFile false /Description > /Namespace [ (Adobe) (Common) (1.0) ] /OtherNamespaces [ > /FormElements false /GenerateStructure false /IncludeBookmarks false /IncludeHyperlinks false /IncludeInteractive false /IncludeLayers false /IncludeProfiles false /MultimediaHandling /UseObjectSettings /Namespace [ (Adobe) (CreativeSuite) (2.0) ] /PDFXOutputIntentProfileSelector /DocumentCMYK /PreserveEditing true /UntaggedCMYKHandling /LeaveUntagged /UntaggedRGBHandling /UseDocumentProfile /UseDocumentBleed false >> ]>> setdistillerparams> setpagedevice