168
Maximally Localized Wannier Functions Andreas Kl¨ ockner Outline Photonic Crystals Fabrication Eigenproblems with Spatially Periodic Coefficients The Floquet Transform Wannier Functions Minimizing the Spread Outlook and Origins Maximally Localized Wannier Functions Andreas Kl¨ ockner Valentine’s Day 2007 Andreas Kl¨ ockner Maximally Localized Wannier Functions

Maximally Localized Wannier Functions

  • Upload
    others

  • View
    16

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Maximally Localized Wannier Functions

Andreas Klockner

Valentine’s Day 2007

Andreas Klockner Maximally Localized Wannier Functions

Page 2: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Outline

1 Photonic CrystalsFabrication

2 Eigenproblems with Spatially Periodic CoefficientsThe Floquet Transform

3 Wannier FunctionsMinimizing the Spread

4 Outlook and Origins

Andreas Klockner Maximally Localized Wannier Functions

Page 3: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Outline

1 Photonic CrystalsFabrication

2 Eigenproblems with Spatially Periodic CoefficientsThe Floquet Transform

3 Wannier FunctionsMinimizing the Spread

4 Outlook and Origins

Andreas Klockner Maximally Localized Wannier Functions

Page 4: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

What are Photonic Crystals?

Photonic Crystals are

Periodic Optical Nanomaterials

That can be used to emulate the behavior of electrons insemiconductors–using light

Typical PCs have a Band gap

Andreas Klockner Maximally Localized Wannier Functions

Page 5: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

What are Photonic Crystals?

Photonic Crystals are

Periodic Optical Nanomaterials

That can be used to emulate the behavior of electrons insemiconductors–using light

Typical PCs have a Band gap

Andreas Klockner Maximally Localized Wannier Functions

Page 6: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

What are Photonic Crystals?

Photonic Crystals are

Periodic Optical Nanomaterials

That can be used to emulate the behavior of electrons insemiconductors–using light

Typical PCs have a Band gap

Andreas Klockner Maximally Localized Wannier Functions

Page 7: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

What is a Band Gap?

A band gap is a range of energies for which photons cannotpropagate in a material.

→ an insulator for lightMost materials absorb, they don’t insulate. → energy lossPBG materials insulate → no energy lossRoughly: A perfect, nanoscale, omnidirectional mirror.(Don’t take the “mirror” part too literally.)

Andreas Klockner Maximally Localized Wannier Functions

Page 8: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

What is a Band Gap?

A band gap is a range of energies for which photons cannotpropagate in a material.→ an insulator for light

Most materials absorb, they don’t insulate. → energy lossPBG materials insulate → no energy lossRoughly: A perfect, nanoscale, omnidirectional mirror.(Don’t take the “mirror” part too literally.)

Andreas Klockner Maximally Localized Wannier Functions

Page 9: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

What is a Band Gap?

A band gap is a range of energies for which photons cannotpropagate in a material.→ an insulator for lightMost materials absorb, they don’t insulate.

→ energy lossPBG materials insulate → no energy lossRoughly: A perfect, nanoscale, omnidirectional mirror.(Don’t take the “mirror” part too literally.)

Andreas Klockner Maximally Localized Wannier Functions

Page 10: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

What is a Band Gap?

A band gap is a range of energies for which photons cannotpropagate in a material.→ an insulator for lightMost materials absorb, they don’t insulate. → energy loss

PBG materials insulate → no energy lossRoughly: A perfect, nanoscale, omnidirectional mirror.(Don’t take the “mirror” part too literally.)

Andreas Klockner Maximally Localized Wannier Functions

Page 11: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

What is a Band Gap?

A band gap is a range of energies for which photons cannotpropagate in a material.→ an insulator for lightMost materials absorb, they don’t insulate. → energy lossPBG materials insulate → no energy loss

Roughly: A perfect, nanoscale, omnidirectional mirror.(Don’t take the “mirror” part too literally.)

Andreas Klockner Maximally Localized Wannier Functions

Page 12: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

What is a Band Gap?

A band gap is a range of energies for which photons cannotpropagate in a material.→ an insulator for lightMost materials absorb, they don’t insulate. → energy lossPBG materials insulate → no energy lossRoughly: A perfect, nanoscale, omnidirectional mirror.

(Don’t take the “mirror” part too literally.)

Andreas Klockner Maximally Localized Wannier Functions

Page 13: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

What is a Band Gap?

A band gap is a range of energies for which photons cannotpropagate in a material.→ an insulator for lightMost materials absorb, they don’t insulate. → energy lossPBG materials insulate → no energy lossRoughly: A perfect, nanoscale, omnidirectional mirror.(Don’t take the “mirror” part too literally.)

Andreas Klockner Maximally Localized Wannier Functions

Page 14: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Mother Nature: “Been there, done that.”

Photonic Crystals occur naturally.

Ever seen an opal?

(from http://geomuseum.tu-clausthal.de/)

Andreas Klockner Maximally Localized Wannier Functions

Page 15: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Mother Nature: “Been there, done that.”

Photonic Crystals occur naturally. Ever seen an opal?

(from http://geomuseum.tu-clausthal.de/)

Andreas Klockner Maximally Localized Wannier Functions

Page 16: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Mother Nature: “Been there, done that.”

Photonic Crystals occur naturally. Ever seen an opal?

(from http://geomuseum.tu-clausthal.de/)

Andreas Klockner Maximally Localized Wannier Functions

Page 17: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

If PCs are the soup, then defects are the salt

Semiconductor devices (and thereby all of modernelectronics) come from defects in regular crystals.

Crystals are only the substrate.

Defects are what we really want.

Andreas Klockner Maximally Localized Wannier Functions

Page 18: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

If PCs are the soup, then defects are the salt

Semiconductor devices (and thereby all of modernelectronics) come from defects in regular crystals.

Crystals are only the substrate.

Defects are what we really want.

Andreas Klockner Maximally Localized Wannier Functions

Page 19: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

If PCs are the soup, then defects are the salt

Semiconductor devices (and thereby all of modernelectronics) come from defects in regular crystals.

Crystals are only the substrate.

Defects are what we really want.

Andreas Klockner Maximally Localized Wannier Functions

Page 20: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Example Device: A waveguide

Want to transmit light around a bend with no loss?

(from http://ab-initio.mit.edu/photons/bends/)

Andreas Klockner Maximally Localized Wannier Functions

Page 21: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Example Device: A waveguide

Want to transmit light around a bend with no loss?

(from http://ab-initio.mit.edu/photons/bends/)

Andreas Klockner Maximally Localized Wannier Functions

Page 22: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Main Goal of this Research

This research seeks to enable large-scale simulation of suchstructures.

This means finding the propagating modes.Bases of Wannier functions promise to be much better suitedto this than standard polynomial or plane-wave bases.Simulation is especially necessary because fabrication isdifficult.

Andreas Klockner Maximally Localized Wannier Functions

Page 23: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Main Goal of this Research

This research seeks to enable large-scale simulation of suchstructures.This means finding the propagating modes.

Bases of Wannier functions promise to be much better suitedto this than standard polynomial or plane-wave bases.Simulation is especially necessary because fabrication isdifficult.

Andreas Klockner Maximally Localized Wannier Functions

Page 24: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Main Goal of this Research

This research seeks to enable large-scale simulation of suchstructures.This means finding the propagating modes.Bases of Wannier functions promise to be much better suitedto this than standard polynomial or plane-wave bases.

Simulation is especially necessary because fabrication isdifficult.

Andreas Klockner Maximally Localized Wannier Functions

Page 25: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Main Goal of this Research

This research seeks to enable large-scale simulation of suchstructures.This means finding the propagating modes.Bases of Wannier functions promise to be much better suitedto this than standard polynomial or plane-wave bases.Simulation is especially necessary because fabrication isdifficult.

Andreas Klockner Maximally Localized Wannier Functions

Page 26: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Materials built from FCC lattices (in 3D) often have bandgaps.

→ Let’s build an FCC lattice!

(from http://ece-www.colorado.edu/~bart/book/bravais.htm)

Andreas Klockner Maximally Localized Wannier Functions

Page 27: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Materials built from FCC lattices (in 3D) often have bandgaps.→ Let’s build an FCC lattice!

(from http://ece-www.colorado.edu/~bart/book/bravais.htm)

Andreas Klockner Maximally Localized Wannier Functions

Page 28: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Materials built from FCC lattices (in 3D) often have bandgaps.→ Let’s build an FCC lattice!

(from http://ece-www.colorado.edu/~bart/book/bravais.htm)

Andreas Klockner Maximally Localized Wannier Functions

Page 29: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Maybe like this:

Stack some latex and silicaspheres. . .

. . . dissolve half ofthem. . .

. . . bake that. . . make a Silicon inverse of it. . . Ta-daa!(from http://ab-initio.mit.edu/photons/tutorial/, as are the next few examples)

Andreas Klockner Maximally Localized Wannier Functions

Page 30: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Maybe like this:

Stack some latex and silicaspheres. . .

. . . dissolve half ofthem. . .

. . . bake that. . . make a Silicon inverse of it. . . Ta-daa!(from http://ab-initio.mit.edu/photons/tutorial/, as are the next few examples)

Andreas Klockner Maximally Localized Wannier Functions

Page 31: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Maybe like this:

Stack some latex and silicaspheres. . .

. . . dissolve half ofthem. . .

. . . bake that. . . make a Silicon inverse of it. . . Ta-daa!(from http://ab-initio.mit.edu/photons/tutorial/, as are the next few examples)

Andreas Klockner Maximally Localized Wannier Functions

Page 32: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Maybe like this:

Stack some latex and silicaspheres. . .

. . . dissolve half ofthem. . .

. . . bake that. . .

make a Silicon inverse of it. . . Ta-daa!(from http://ab-initio.mit.edu/photons/tutorial/, as are the next few examples)

Andreas Klockner Maximally Localized Wannier Functions

Page 33: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Maybe like this:

Stack some latex and silicaspheres. . .

. . . dissolve half ofthem. . .

. . . bake that. . . make a Silicon inverse of it. . .

Ta-daa!(from http://ab-initio.mit.edu/photons/tutorial/, as are the next few examples)

Andreas Klockner Maximally Localized Wannier Functions

Page 34: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Maybe like this:

Stack some latex and silicaspheres. . .

. . . dissolve half ofthem. . .

. . . bake that. . . make a Silicon inverse of it. . . Ta-daa!(from http://ab-initio.mit.edu/photons/tutorial/, as are the next few examples)

Andreas Klockner Maximally Localized Wannier Functions

Page 35: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

That’s too hard.

Maybe we should think about differentstructures:

. . . called the “woodpile structure”.

Andreas Klockner Maximally Localized Wannier Functions

Page 36: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

That’s too hard. Maybe we should think about differentstructures:

. . . called the “woodpile structure”.

Andreas Klockner Maximally Localized Wannier Functions

Page 37: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

That’s too hard. Maybe we should think about differentstructures:

. . . called the “woodpile structure”.

Andreas Klockner Maximally Localized Wannier Functions

Page 38: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

But can we mass-produce those?

Using Lithography, maybe. . .

Andreas Klockner Maximally Localized Wannier Functions

Page 39: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

But can we mass-produce those? Using Lithography, maybe. . .

Andreas Klockner Maximally Localized Wannier Functions

Page 40: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

But can we mass-produce those? Using Lithography, maybe. . .

Andreas Klockner Maximally Localized Wannier Functions

Page 41: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Oh wait, what about defects?

Obviously, there’s a lot to do for the experimentalists. . .Let’s not disturb them and get on with our work.

Andreas Klockner Maximally Localized Wannier Functions

Page 42: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Oh wait, what about defects?Obviously, there’s a lot to do for the experimentalists. . .

Let’s not disturb them and get on with our work.

Andreas Klockner Maximally Localized Wannier Functions

Page 43: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A few ways of making PCs

Oh wait, what about defects?Obviously, there’s a lot to do for the experimentalists. . .Let’s not disturb them and get on with our work.

Andreas Klockner Maximally Localized Wannier Functions

Page 44: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Outline

1 Photonic CrystalsFabrication

2 Eigenproblems with Spatially Periodic CoefficientsThe Floquet Transform

3 Wannier FunctionsMinimizing the Spread

4 Outlook and Origins

Andreas Klockner Maximally Localized Wannier Functions

Page 45: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Maxwell’s Equations

The time-harmonic form of Maxwell’s Equations (no chargecarriers, µr ≡ 1, linear, isotropic materials) reads:

−∇× E(r) = µ0 iωH(r)

∇×H(r) = ε0ε(r)iωE(r)

∇ · E(r) = 0

∇ ·H(r) = 0

(note εr = ε for simplicity) But actually...

Andreas Klockner Maximally Localized Wannier Functions

Page 46: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Maxwell’s Equations

The time-harmonic form of Maxwell’s Equations (no chargecarriers, µr ≡ 1, linear, isotropic materials) reads:

−∇× E(r) = µ0 iωH(r)

∇×H(r) = ε0ε(r)iωE(r)

∇ · E(r) = 0

∇ ·H(r) = 0

(note εr = ε for simplicity) But actually...

Andreas Klockner Maximally Localized Wannier Functions

Page 47: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Maxwell’s Equations

The time-harmonic form of Maxwell’s Equations (no chargecarriers, µr ≡ 1, linear, isotropic materials) reads:

−∇× E(r) = µ0 iωH(r)

∇×H(r) = ε0ε(r)iωE(r)

∇ · E(r) = 0

∇ ·H(r) = 0

(note εr = ε for simplicity)

But actually...

Andreas Klockner Maximally Localized Wannier Functions

Page 48: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Maxwell’s Equations

The time-harmonic form of Maxwell’s Equations (no chargecarriers, µr ≡ 1, linear, isotropic materials) reads:

−∇× E(r) = µ0 iωH(r)

∇×H(r) = ε0ε(r)iωE(r)

∇ · E(r) = 0

∇ ·H(r) = 0

(note εr = ε for simplicity) But actually...

Andreas Klockner Maximally Localized Wannier Functions

Page 49: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

−∇2ψ(r) =ω2

c2ε(r)ψ(r)

(Recall µ0ε0 = 1/c2.)We put E = (0, 0, ψ)T and find H by the first equation above.→ scalar problem(I believe this is not a principal limitation, i.e. the methodshould still work in 3D.)So we’re actually solving the eigenvalue problem for −∇2/ε.But on what domain?

Andreas Klockner Maximally Localized Wannier Functions

Page 50: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

−∇2ψ(r) =ω2

c2ε(r)ψ(r)

(Recall µ0ε0 = 1/c2.)We put E = (0, 0, ψ)T and find H by the first equation above.→ scalar problem(I believe this is not a principal limitation, i.e. the methodshould still work in 3D.)So we’re actually solving the eigenvalue problem for −∇2/ε.But on what domain?

Andreas Klockner Maximally Localized Wannier Functions

Page 51: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

−∇2ψ(r) =ω2

c2ε(r)ψ(r)

(Recall µ0ε0 = 1/c2.)

We put E = (0, 0, ψ)T and find H by the first equation above.→ scalar problem(I believe this is not a principal limitation, i.e. the methodshould still work in 3D.)So we’re actually solving the eigenvalue problem for −∇2/ε.But on what domain?

Andreas Klockner Maximally Localized Wannier Functions

Page 52: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

−∇2ψ(r) =ω2

c2ε(r)ψ(r)

(Recall µ0ε0 = 1/c2.)We put E = (0, 0, ψ)T

and find H by the first equation above.→ scalar problem(I believe this is not a principal limitation, i.e. the methodshould still work in 3D.)So we’re actually solving the eigenvalue problem for −∇2/ε.But on what domain?

Andreas Klockner Maximally Localized Wannier Functions

Page 53: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

−∇2ψ(r) =ω2

c2ε(r)ψ(r)

(Recall µ0ε0 = 1/c2.)We put E = (0, 0, ψ)T and find H by the first equation above.

→ scalar problem(I believe this is not a principal limitation, i.e. the methodshould still work in 3D.)So we’re actually solving the eigenvalue problem for −∇2/ε.But on what domain?

Andreas Klockner Maximally Localized Wannier Functions

Page 54: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

−∇2ψ(r) =ω2

c2ε(r)ψ(r)

(Recall µ0ε0 = 1/c2.)We put E = (0, 0, ψ)T and find H by the first equation above.→ scalar problem

(I believe this is not a principal limitation, i.e. the methodshould still work in 3D.)So we’re actually solving the eigenvalue problem for −∇2/ε.But on what domain?

Andreas Klockner Maximally Localized Wannier Functions

Page 55: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

−∇2ψ(r) =ω2

c2ε(r)ψ(r)

(Recall µ0ε0 = 1/c2.)We put E = (0, 0, ψ)T and find H by the first equation above.→ scalar problem(I believe this is not a principal limitation, i.e. the methodshould still work in 3D.)

So we’re actually solving the eigenvalue problem for −∇2/ε.But on what domain?

Andreas Klockner Maximally Localized Wannier Functions

Page 56: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

−∇2ψ(r) =ω2

c2ε(r)ψ(r)

(Recall µ0ε0 = 1/c2.)We put E = (0, 0, ψ)T and find H by the first equation above.→ scalar problem(I believe this is not a principal limitation, i.e. the methodshould still work in 3D.)So we’re actually solving the eigenvalue problem for −∇2/ε.

But on what domain?

Andreas Klockner Maximally Localized Wannier Functions

Page 57: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

2D Transverse Magnetic

...we will only treat the simpler 2D Transverse Magnetic form:

−∇2ψ(r) =ω2

c2ε(r)ψ(r)

(Recall µ0ε0 = 1/c2.)We put E = (0, 0, ψ)T and find H by the first equation above.→ scalar problem(I believe this is not a principal limitation, i.e. the methodshould still work in 3D.)So we’re actually solving the eigenvalue problem for −∇2/ε.But on what domain?

Andreas Klockner Maximally Localized Wannier Functions

Page 58: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Domain? Boundary Conditions?

We approximate our domain as infinite,

and given a latticeL :=

∑i niRi, the permittivity ε is assumed L-periodic.

(We’ll deal with defects later.)

We would like to compute only on one primitive unit cell.Right BCs on the unit cell P? Periodic BCs maybe?

ψ(r + R) = ψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 59: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Domain? Boundary Conditions?

We approximate our domain as infinite, and given a latticeL :=

∑i niRi,

the permittivity ε is assumed L-periodic.

(We’ll deal with defects later.)

We would like to compute only on one primitive unit cell.Right BCs on the unit cell P? Periodic BCs maybe?

ψ(r + R) = ψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 60: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Domain? Boundary Conditions?

We approximate our domain as infinite, and given a latticeL :=

∑i niRi, the permittivity ε is assumed L-periodic.

(We’ll deal with defects later.)

We would like to compute only on one primitive unit cell.Right BCs on the unit cell P? Periodic BCs maybe?

ψ(r + R) = ψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 61: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Domain? Boundary Conditions?

We approximate our domain as infinite, and given a latticeL :=

∑i niRi, the permittivity ε is assumed L-periodic.

(We’ll deal with defects later.)

We would like to compute only on one primitive unit cell.Right BCs on the unit cell P? Periodic BCs maybe?

ψ(r + R) = ψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 62: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Domain? Boundary Conditions?

We approximate our domain as infinite, and given a latticeL :=

∑i niRi, the permittivity ε is assumed L-periodic.

(We’ll deal with defects later.)

We would like to compute only on one primitive unit cell.

Right BCs on the unit cell P? Periodic BCs maybe?

ψ(r + R) = ψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 63: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Domain? Boundary Conditions?

We approximate our domain as infinite, and given a latticeL :=

∑i niRi, the permittivity ε is assumed L-periodic.

(We’ll deal with defects later.)

We would like to compute only on one primitive unit cell.Right BCs on the unit cell P?

Periodic BCs maybe?

ψ(r + R) = ψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 64: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Domain? Boundary Conditions?

We approximate our domain as infinite, and given a latticeL :=

∑i niRi, the permittivity ε is assumed L-periodic.

(We’ll deal with defects later.)

We would like to compute only on one primitive unit cell.Right BCs on the unit cell P? Periodic BCs maybe?

ψ(r + R) = ψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 65: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Domain? Boundary Conditions?

We approximate our domain as infinite, and given a latticeL :=

∑i niRi, the permittivity ε is assumed L-periodic.

(We’ll deal with defects later.)

We would like to compute only on one primitive unit cell.Right BCs on the unit cell P? Periodic BCs maybe?

ψ(r + R) = ψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 66: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Why Periodic BCs are not right

Suppose ε ≡ 1. Then plane waves e ik·r are eigenmodes of theLaplacian.

But periodic BCs forbid them. Not good.

Andreas Klockner Maximally Localized Wannier Functions

Page 67: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Why Periodic BCs are not right

Suppose ε ≡ 1. Then plane waves e ik·r are eigenmodes of theLaplacian.But periodic BCs forbid them.

Not good.

Andreas Klockner Maximally Localized Wannier Functions

Page 68: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Why Periodic BCs are not right

Suppose ε ≡ 1. Then plane waves e ik·r are eigenmodes of theLaplacian.But periodic BCs forbid them. Not good.

Andreas Klockner Maximally Localized Wannier Functions

Page 69: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Which BCs are right?

Need to admit at least plane waves.

To admit a plane wave with wave vector k,

ψ(r + R) = e ik·Rψ(r)

would be suitable.

Andreas Klockner Maximally Localized Wannier Functions

Page 70: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Which BCs are right?

Need to admit at least plane waves.To admit a plane wave with wave vector k,

ψ(r + R) = e ik·Rψ(r)

would be suitable.

Andreas Klockner Maximally Localized Wannier Functions

Page 71: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Reciprocal Lattice

Here comes a (seemingly) unmotivated definition:

The reciprocal lattice L := ∑

i niKi, where

Ki · Rj = 2πδij .

Existence, uniqueness? → d2 equations, d2 unknowns, Rj are abasis.

Andreas Klockner Maximally Localized Wannier Functions

Page 72: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Reciprocal Lattice

Here comes a (seemingly) unmotivated definition:The reciprocal lattice L :=

∑i niKi, where

Ki · Rj = 2πδij .

Existence, uniqueness? → d2 equations, d2 unknowns, Rj are abasis.

Andreas Klockner Maximally Localized Wannier Functions

Page 73: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Reciprocal Lattice

Here comes a (seemingly) unmotivated definition:The reciprocal lattice L :=

∑i niKi, where

Ki · Rj = 2πδij .

Existence, uniqueness?

→ d2 equations, d2 unknowns, Rj are abasis.

Andreas Klockner Maximally Localized Wannier Functions

Page 74: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Reciprocal Lattice

Here comes a (seemingly) unmotivated definition:The reciprocal lattice L :=

∑i niKi, where

Ki · Rj = 2πδij .

Existence, uniqueness? → d2 equations, d2 unknowns, Rj are abasis.

Andreas Klockner Maximally Localized Wannier Functions

Page 75: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Meaning of the Reciprocal Lattice

Let K ∈ L. Then

ψ(r + R) = e i(k+K)·Rψ(r)

= e ik·Re iK·Rψ(r)

= e ik·Re i(P

j njKj)·(P

l mlRl)ψ(r)

= e ik·Re i(P

j

Pl njmlKj ·Rl)ψ(r)

= e ik·Re i(P

j

Pl njml2πδjl)ψ(r)

= e ik·Re i(P

j njmj2π)ψ(r)

= e ik·Rψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 76: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Meaning of the Reciprocal Lattice

Let K ∈ L. Then

ψ(r + R) = e i(k+K)·Rψ(r)

= e ik·Re iK·Rψ(r)

= e ik·Re i(P

j njKj)·(P

l mlRl)ψ(r)

= e ik·Re i(P

j

Pl njmlKj ·Rl)ψ(r)

= e ik·Re i(P

j

Pl njml2πδjl)ψ(r)

= e ik·Re i(P

j njmj2π)ψ(r)

= e ik·Rψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 77: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Meaning of the Reciprocal Lattice

Let K ∈ L. Then

ψ(r + R) = e i(k+K)·Rψ(r)

= e ik·Re iK·Rψ(r)

= e ik·Re i(P

j njKj)·(P

l mlRl)ψ(r)

= e ik·Re i(P

j

Pl njmlKj ·Rl)ψ(r)

= e ik·Re i(P

j

Pl njml2πδjl)ψ(r)

= e ik·Re i(P

j njmj2π)ψ(r)

= e ik·Rψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 78: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Meaning of the Reciprocal Lattice

Let K ∈ L. Then

ψ(r + R) = e i(k+K)·Rψ(r)

= e ik·Re iK·Rψ(r)

= e ik·Re i(P

j njKj)·(P

l mlRl)ψ(r)

= e ik·Re i(P

j

Pl njmlKj ·Rl)ψ(r)

= e ik·Re i(P

j

Pl njml2πδjl)ψ(r)

= e ik·Re i(P

j njmj2π)ψ(r)

= e ik·Rψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 79: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Meaning of the Reciprocal Lattice

Let K ∈ L. Then

ψ(r + R) = e i(k+K)·Rψ(r)

= e ik·Re iK·Rψ(r)

= e ik·Re i(P

j njKj)·(P

l mlRl)ψ(r)

= e ik·Re i(P

j

Pl njmlKj ·Rl)ψ(r)

= e ik·Re i(P

j

Pl njml2πδjl)ψ(r)

= e ik·Re i(P

j njmj2π)ψ(r)

= e ik·Rψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 80: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Meaning of the Reciprocal Lattice

Let K ∈ L. Then

ψ(r + R) = e i(k+K)·Rψ(r)

= e ik·Re iK·Rψ(r)

= e ik·Re i(P

j njKj)·(P

l mlRl)ψ(r)

= e ik·Re i(P

j

Pl njmlKj ·Rl)ψ(r)

= e ik·Re i(P

j

Pl njml2πδjl)ψ(r)

= e ik·Re i(P

j njmj2π)ψ(r)

= e ik·Rψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 81: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Meaning of the Reciprocal Lattice

Let K ∈ L. Then

ψ(r + R) = e i(k+K)·Rψ(r)

= e ik·Re iK·Rψ(r)

= e ik·Re i(P

j njKj)·(P

l mlRl)ψ(r)

= e ik·Re i(P

j

Pl njmlKj ·Rl)ψ(r)

= e ik·Re i(P

j

Pl njml2πδjl)ψ(r)

= e ik·Re i(P

j njmj2π)ψ(r)

= e ik·Rψ(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 82: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Brillouin Zone

Our proposed BCs

ψ(r + R) = e ik·Rψ(r),

are invariant under addition of a reciprocal lattice vector K tothe wave vector k.

So k can remain restricted to a primitive unit cell of thereciprocal lattice.Give this unit cell a special name: The Brillouin Zone B.

Andreas Klockner Maximally Localized Wannier Functions

Page 83: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Brillouin Zone

Our proposed BCs

ψ(r + R) = e ik·Rψ(r),

are invariant under addition of a reciprocal lattice vector K tothe wave vector k.So k can remain restricted to a primitive unit cell of thereciprocal lattice.

Give this unit cell a special name: The Brillouin Zone B.

Andreas Klockner Maximally Localized Wannier Functions

Page 84: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Brillouin Zone

Our proposed BCs

ψ(r + R) = e ik·Rψ(r),

are invariant under addition of a reciprocal lattice vector K tothe wave vector k.So k can remain restricted to a primitive unit cell of thereciprocal lattice.Give this unit cell a special name: The Brillouin Zone B.

Andreas Klockner Maximally Localized Wannier Functions

Page 85: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Right Track?

But are these BCs right?

There is an answer in the fourth volume of Reed and Simon,but it’s a bit intimidating at first.

Andreas Klockner Maximally Localized Wannier Functions

Page 86: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Right Track?

But are these BCs right?There is an answer in the fourth volume of Reed and Simon,but it’s a bit intimidating at first.

Andreas Klockner Maximally Localized Wannier Functions

Page 87: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Floquet Transform

Theorem (Plancherel’s Theorem for the Floquet Transform)

Define a transform U on S(Rd) by

(U f )k(r) :=∑R∈L

e ik·Rf (r − R).

Then U ’s domain may be extended to all of L2ε(R

d), and itbecomes a unitary operator

U : L2ε(R

d) → L2(B × L2ε(P)),

where L2(B × L2ε(P)) has the inner product

〈ϕ,ψ〉L2(B×L2ε(P)) =

1

λ(B)

∫B〈ϕk, ψk〉P dk.

Andreas Klockner Maximally Localized Wannier Functions

Page 88: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Floquet and the BCs

Our BCs follow from the Floquet Transform:

(U f )k(r + R′) =∑R∈L

e ik·Rf (r + R′ − R)

(let R′′ := R− R′) =∑R′′∈L

e ik·(R′′+R′)f (r − R′′)

= e ik·R′(U f )k(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 89: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Floquet and the BCs

Our BCs follow from the Floquet Transform:

(U f )k(r + R′) =∑R∈L

e ik·Rf (r + R′ − R)

(let R′′ := R− R′) =∑R′′∈L

e ik·(R′′+R′)f (r − R′′)

= e ik·R′(U f )k(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 90: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Floquet and the BCs

Our BCs follow from the Floquet Transform:

(U f )k(r + R′) =∑R∈L

e ik·Rf (r + R′ − R)

(let R′′ := R− R′) =∑R′′∈L

e ik·(R′′+R′)f (r − R′′)

= e ik·R′(U f )k(r)

Andreas Klockner Maximally Localized Wannier Functions

Page 91: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Inverse of the Floquet Transform

Theorem (Inverse of U)

(U−1f )(r) =1

λ(B)

∫B

fk(r)dk.

In plain words: To invert the Floquet transform, just averageover all k in the Brillouin zone.

Andreas Klockner Maximally Localized Wannier Functions

Page 92: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Inverse of the Floquet Transform

Theorem (Inverse of U)

(U−1f )(r) =1

λ(B)

∫B

fk(r)dk.

In plain words: To invert the Floquet transform, just averageover all k in the Brillouin zone.

Andreas Klockner Maximally Localized Wannier Functions

Page 93: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The transformed Differential Operator

Theorem (Floquet Transform of the Differential Operator)

U(−∇

2

ε

)U−1 =

1

λ(B)

∫ ⊕

BH(k)dk,

with H(k) := −∇2/ε on L2ε(P) under the boundary conditions

ϕ(r + R) = e ik·Rϕ(r)

∇ϕ(r + R) · n = e ik·R∇ϕ(r) · n

Andreas Klockner Maximally Localized Wannier Functions

Page 94: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Consequences

The BCs allow an intuitive “tiling” of all space with thesolution on a unit cell.

Each H(k) has a complete set of eigenfunctions (“Blochmodes”) ψm,k.

The Bloch modes are k- and m-orthogonal:⟨ψn,k, ψm,k′

⟩P

= λ(B)δ(k− k′)δn,m.

One can prove that–away from degeneracies–theeigenvalues and eigenmodes have a C 1 dependency on k,so the eigenvalues form “sheets” called bands.

Plotting the eigenvalues ω over the Brillouin Zone givesthe Dispersion Relation.

Andreas Klockner Maximally Localized Wannier Functions

Page 95: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Consequences

The BCs allow an intuitive “tiling” of all space with thesolution on a unit cell.

Each H(k) has a complete set of eigenfunctions (“Blochmodes”) ψm,k.

The Bloch modes are k- and m-orthogonal:⟨ψn,k, ψm,k′

⟩P

= λ(B)δ(k− k′)δn,m.

One can prove that–away from degeneracies–theeigenvalues and eigenmodes have a C 1 dependency on k,so the eigenvalues form “sheets” called bands.

Plotting the eigenvalues ω over the Brillouin Zone givesthe Dispersion Relation.

Andreas Klockner Maximally Localized Wannier Functions

Page 96: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Consequences

The BCs allow an intuitive “tiling” of all space with thesolution on a unit cell.

Each H(k) has a complete set of eigenfunctions (“Blochmodes”) ψm,k.

The Bloch modes are k- and m-orthogonal:⟨ψn,k, ψm,k′

⟩P

= λ(B)δ(k− k′)δn,m.

One can prove that–away from degeneracies–theeigenvalues and eigenmodes have a C 1 dependency on k,so the eigenvalues form “sheets” called bands.

Plotting the eigenvalues ω over the Brillouin Zone givesthe Dispersion Relation.

Andreas Klockner Maximally Localized Wannier Functions

Page 97: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Consequences

The BCs allow an intuitive “tiling” of all space with thesolution on a unit cell.

Each H(k) has a complete set of eigenfunctions (“Blochmodes”) ψm,k.

The Bloch modes are k- and m-orthogonal:⟨ψn,k, ψm,k′

⟩P

= λ(B)δ(k− k′)δn,m.

One can prove that–away from degeneracies–theeigenvalues and eigenmodes have a C 1 dependency on k,so the eigenvalues form “sheets” called bands.

Plotting the eigenvalues ω over the Brillouin Zone givesthe Dispersion Relation.

Andreas Klockner Maximally Localized Wannier Functions

Page 98: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Consequences

The BCs allow an intuitive “tiling” of all space with thesolution on a unit cell.

Each H(k) has a complete set of eigenfunctions (“Blochmodes”) ψm,k.

The Bloch modes are k- and m-orthogonal:⟨ψn,k, ψm,k′

⟩P

= λ(B)δ(k− k′)δn,m.

One can prove that–away from degeneracies–theeigenvalues and eigenmodes have a C 1 dependency on k,so the eigenvalues form “sheets” called bands.

Plotting the eigenvalues ω over the Brillouin Zone givesthe Dispersion Relation.

Andreas Klockner Maximally Localized Wannier Functions

Page 99: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

An Example Dispersion Relation

Andreas Klockner Maximally Localized Wannier Functions

Page 100: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

More Consequences

U unitary =⇒ a Parseval-like equality

U transforms −∇2/ε into a direct integral of identicaldifferential operators with varying BCs.

One can also achieve a transform into varying operatorswith identical (periodic) BCs by considering

un,k(r) := (Pψn,k)(r) := e−ik·rψk(r).

and PH(k)P−1.

The construction is really analogous to the Fouriertransform.

Andreas Klockner Maximally Localized Wannier Functions

Page 101: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

More Consequences

U unitary =⇒ a Parseval-like equality

U transforms −∇2/ε into a direct integral of identicaldifferential operators with varying BCs.

One can also achieve a transform into varying operatorswith identical (periodic) BCs by considering

un,k(r) := (Pψn,k)(r) := e−ik·rψk(r).

and PH(k)P−1.

The construction is really analogous to the Fouriertransform.

Andreas Klockner Maximally Localized Wannier Functions

Page 102: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

More Consequences

U unitary =⇒ a Parseval-like equality

U transforms −∇2/ε into a direct integral of identicaldifferential operators with varying BCs.

One can also achieve a transform into varying operatorswith identical (periodic) BCs by considering

un,k(r) := (Pψn,k)(r) := e−ik·rψk(r).

and PH(k)P−1.

The construction is really analogous to the Fouriertransform.

Andreas Klockner Maximally Localized Wannier Functions

Page 103: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

More Consequences

U unitary =⇒ a Parseval-like equality

U transforms −∇2/ε into a direct integral of identicaldifferential operators with varying BCs.

One can also achieve a transform into varying operatorswith identical (periodic) BCs by considering

un,k(r) := (Pψn,k)(r) := e−ik·rψk(r).

and PH(k)P−1.

The construction is really analogous to the Fouriertransform.

Andreas Klockner Maximally Localized Wannier Functions

Page 104: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Computing the Bloch Modes

Determining the Bloch modes computationally is (relatively)easy now:

Sample the Brillouin Zone on a regular grid of k-points.

For each k, solve the eigenvalue problemH(k)ψk = ω2/c2ψk using second-order FEM. (BCs requirecare.)

Obtain the N Bloch modes with the smallest eigenvalues,where N ≈ 10 . . . 20. (The spectrum of H(k) is discreteand unbounded above.)

Andreas Klockner Maximally Localized Wannier Functions

Page 105: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Computing the Bloch Modes

Determining the Bloch modes computationally is (relatively)easy now:

Sample the Brillouin Zone on a regular grid of k-points.

For each k, solve the eigenvalue problemH(k)ψk = ω2/c2ψk using second-order FEM. (BCs requirecare.)

Obtain the N Bloch modes with the smallest eigenvalues,where N ≈ 10 . . . 20. (The spectrum of H(k) is discreteand unbounded above.)

Andreas Klockner Maximally Localized Wannier Functions

Page 106: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Computing the Bloch Modes

Determining the Bloch modes computationally is (relatively)easy now:

Sample the Brillouin Zone on a regular grid of k-points.

For each k, solve the eigenvalue problemH(k)ψk = ω2/c2ψk using second-order FEM. (BCs requirecare.)

Obtain the N Bloch modes with the smallest eigenvalues,where N ≈ 10 . . . 20. (The spectrum of H(k) is discreteand unbounded above.)

Andreas Klockner Maximally Localized Wannier Functions

Page 107: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Outline

1 Photonic CrystalsFabrication

2 Eigenproblems with Spatially Periodic CoefficientsThe Floquet Transform

3 Wannier FunctionsMinimizing the Spread

4 Outlook and Origins

Andreas Klockner Maximally Localized Wannier Functions

Page 108: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A Harmless Question

So, what happens if we apply the inverse Floquet transform tothe Bloch modes?

Well, we get Wannier functions.

Andreas Klockner Maximally Localized Wannier Functions

Page 109: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

A Harmless Question

So, what happens if we apply the inverse Floquet transform tothe Bloch modes?Well, we get Wannier functions.

Andreas Klockner Maximally Localized Wannier Functions

Page 110: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Wannier Functions

Definition (Wannier Function)

wn,0(r) := U−1(ψn) ∈ L2ε(R

d).

More generally, the nth Wannier function wn,R centered at R isdefined as

wn,R(r) := wn,0(r − R).

i.e.

wn,R(r) =1

λ(B)

∫B

e−ik·Rψn,k(r)dk.

Andreas Klockner Maximally Localized Wannier Functions

Page 111: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Wannier Functions

Definition (Wannier Function)

wn,0(r) := U−1(ψn) ∈ L2ε(R

d).

More generally, the nth Wannier function wn,R centered at R isdefined as

wn,R(r) := wn,0(r − R).

i.e.

wn,R(r) =1

λ(B)

∫B

e−ik·Rψn,k(r)dk.

Andreas Klockner Maximally Localized Wannier Functions

Page 112: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Pretty Picture

So, what do they look like?

Yikes!

Andreas Klockner Maximally Localized Wannier Functions

Page 113: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Pretty Picture

So, what do they look like?

Yikes!

Andreas Klockner Maximally Localized Wannier Functions

Page 114: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Pretty Picture

So, what do they look like?

Yikes!

Andreas Klockner Maximally Localized Wannier Functions

Page 115: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Pretty Ambiguous

The problem is that Bloch modes are not unique.

For each ψm,k,e iαψm,k

for α ∈ R is just as good a Bloch mode.Unfortunately, the choice of that constant matters whencomputing Wannier Functions.To resolve the ambiguity, we demand that our Wannierfunctions be maximally localized, i.e. have minimal secondmoment

Ωn :=⟨r2wn,0,wn,0

⟩Rd − | 〈rwn,0,wn,0〉Rd |2.

Andreas Klockner Maximally Localized Wannier Functions

Page 116: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Pretty Ambiguous

The problem is that Bloch modes are not unique.For each ψm,k,

e iαψm,k

for α ∈ R is just as good a Bloch mode.

Unfortunately, the choice of that constant matters whencomputing Wannier Functions.To resolve the ambiguity, we demand that our Wannierfunctions be maximally localized, i.e. have minimal secondmoment

Ωn :=⟨r2wn,0,wn,0

⟩Rd − | 〈rwn,0,wn,0〉Rd |2.

Andreas Klockner Maximally Localized Wannier Functions

Page 117: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Pretty Ambiguous

The problem is that Bloch modes are not unique.For each ψm,k,

e iαψm,k

for α ∈ R is just as good a Bloch mode.Unfortunately, the choice of that constant matters whencomputing Wannier Functions.

To resolve the ambiguity, we demand that our Wannierfunctions be maximally localized, i.e. have minimal secondmoment

Ωn :=⟨r2wn,0,wn,0

⟩Rd − | 〈rwn,0,wn,0〉Rd |2.

Andreas Klockner Maximally Localized Wannier Functions

Page 118: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Pretty Ambiguous

The problem is that Bloch modes are not unique.For each ψm,k,

e iαψm,k

for α ∈ R is just as good a Bloch mode.Unfortunately, the choice of that constant matters whencomputing Wannier Functions.To resolve the ambiguity, we demand that our Wannierfunctions be maximally localized

, i.e. have minimal secondmoment

Ωn :=⟨r2wn,0,wn,0

⟩Rd − | 〈rwn,0,wn,0〉Rd |2.

Andreas Klockner Maximally Localized Wannier Functions

Page 119: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Pretty Ambiguous

The problem is that Bloch modes are not unique.For each ψm,k,

e iαψm,k

for α ∈ R is just as good a Bloch mode.Unfortunately, the choice of that constant matters whencomputing Wannier Functions.To resolve the ambiguity, we demand that our Wannierfunctions be maximally localized, i.e. have minimal secondmoment

Ωn :=⟨r2wn,0,wn,0

⟩Rd − | 〈rwn,0,wn,0〉Rd |2.

Andreas Klockner Maximally Localized Wannier Functions

Page 120: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread

To find a localized Wannier function, we need to choose acomplex constant

for each sample point k in the Brillouin zone

for each band number n

So the problem gets more difficult as we refine the BrillouinZone Discretization.

Andreas Klockner Maximally Localized Wannier Functions

Page 121: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread

To find a localized Wannier function, we need to choose acomplex constant

for each sample point k in the Brillouin zone

for each band number n

So the problem gets more difficult as we refine the BrillouinZone Discretization.

Andreas Klockner Maximally Localized Wannier Functions

Page 122: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread

To find a localized Wannier function, we need to choose acomplex constant

for each sample point k in the Brillouin zone

for each band number n

So the problem gets more difficult as we refine the BrillouinZone Discretization.

Andreas Klockner Maximally Localized Wannier Functions

Page 123: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread

To find a localized Wannier function, we need to choose acomplex constant

for each sample point k in the Brillouin zone

for each band number n

So the problem gets more difficult as we refine the BrillouinZone Discretization.

Andreas Klockner Maximally Localized Wannier Functions

Page 124: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Isolated Bands

Experimentation shows:

To localize the WF for an isolated band, fixing

argψn,k(r) = constant over k!

for a given r is enough.(Proof?)

Unfortunately, this does not work for entangled bands.

Andreas Klockner Maximally Localized Wannier Functions

Page 125: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Isolated Bands

Experimentation shows:To localize the WF for an isolated band,

fixing

argψn,k(r) = constant over k!

for a given r is enough.(Proof?)

Unfortunately, this does not work for entangled bands.

Andreas Klockner Maximally Localized Wannier Functions

Page 126: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Isolated Bands

Experimentation shows:To localize the WF for an isolated band, fixing

argψn,k(r) = constant over k!

for a given r is enough.

(Proof?)

Unfortunately, this does not work for entangled bands.

Andreas Klockner Maximally Localized Wannier Functions

Page 127: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Isolated Bands

Experimentation shows:To localize the WF for an isolated band, fixing

argψn,k(r) = constant over k!

for a given r is enough.(Proof?)

Unfortunately, this does not work for entangled bands.

Andreas Klockner Maximally Localized Wannier Functions

Page 128: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Isolated Bands

Experimentation shows:To localize the WF for an isolated band, fixing

argψn,k(r) = constant over k!

for a given r is enough.(Proof?)

Unfortunately, this does not work for entangled bands.

Andreas Klockner Maximally Localized Wannier Functions

Page 129: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Entangled Bands

To deal with degeneracies, we make our problem morecomplicated:

We introduce “generalized” Bloch modes

ψn,k,gen :=J∑

m=1

U(k)n,mψm,k.

→ mixtures of existing Bloch modes with “mixing matrix” U.

To maintain orthogonality, we demand that U(k) be unitary.

Andreas Klockner Maximally Localized Wannier Functions

Page 130: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Entangled Bands

To deal with degeneracies, we make our problem morecomplicated:We introduce “generalized” Bloch modes

ψn,k,gen :=J∑

m=1

U(k)n,mψm,k.

→ mixtures of existing Bloch modes with “mixing matrix” U.

To maintain orthogonality, we demand that U(k) be unitary.

Andreas Klockner Maximally Localized Wannier Functions

Page 131: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Entangled Bands

To deal with degeneracies, we make our problem morecomplicated:We introduce “generalized” Bloch modes

ψn,k,gen :=J∑

m=1

U(k)n,mψm,k.

→ mixtures of existing Bloch modes with “mixing matrix” U.

To maintain orthogonality, we demand that U(k) be unitary.

Andreas Klockner Maximally Localized Wannier Functions

Page 132: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Entangled Bands

To deal with degeneracies, we make our problem morecomplicated:We introduce “generalized” Bloch modes

ψn,k,gen :=J∑

m=1

U(k)n,mψm,k.

→ mixtures of existing Bloch modes

with “mixing matrix” U.

To maintain orthogonality, we demand that U(k) be unitary.

Andreas Klockner Maximally Localized Wannier Functions

Page 133: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Entangled Bands

To deal with degeneracies, we make our problem morecomplicated:We introduce “generalized” Bloch modes

ψn,k,gen :=J∑

m=1

U(k)n,mψm,k.

→ mixtures of existing Bloch modes with “mixing matrix” U.

To maintain orthogonality, we demand that U(k) be unitary.

Andreas Klockner Maximally Localized Wannier Functions

Page 134: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Minimizing the Spread: Entangled Bands

To deal with degeneracies, we make our problem morecomplicated:We introduce “generalized” Bloch modes

ψn,k,gen :=J∑

m=1

U(k)n,mψm,k.

→ mixtures of existing Bloch modes with “mixing matrix” U.

To maintain orthogonality, we demand that U(k) be unitary.

Andreas Klockner Maximally Localized Wannier Functions

Page 135: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Summary

So, our problem becomes to find a set of U(k) such that

Ω :=∑n

Ωn → min!

Recall

Ωn :=⟨r2wn,0,wn,0

⟩Rd − | 〈rwn,0,wn,0〉Rd |2.

But how do we even compute the spread? We can’t evaluatean integration over all of Rd !

Andreas Klockner Maximally Localized Wannier Functions

Page 136: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Summary

So, our problem becomes to find a set of U(k) such that

Ω :=∑n

Ωn → min!

Recall

Ωn :=⟨r2wn,0,wn,0

⟩Rd − | 〈rwn,0,wn,0〉Rd |2.

But how do we even compute the spread? We can’t evaluatean integration over all of Rd !

Andreas Klockner Maximally Localized Wannier Functions

Page 137: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Summary

So, our problem becomes to find a set of U(k) such that

Ω :=∑n

Ωn → min!

Recall

Ωn :=⟨r2wn,0,wn,0

⟩Rd − | 〈rwn,0,wn,0〉Rd |2.

But how do we even compute the spread? We can’t evaluatean integration over all of Rd !

Andreas Klockner Maximally Localized Wannier Functions

Page 138: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Spread in k-space

Theorem

Let ψn,k be continuously differentiable in k. Then

〈rwn,0,wm,R〉Rd =1

λ(B)

∫B

e ik·R 〈i∇kun,k, um,k〉P dk

and ⟨r2wn,0,wn,0

⟩Rd =

1

λ(B)

∫B〈i∇kun,k, i∇kun,k〉P dk.

So if we approximate the k-gradients (say by FD), we canobtain a computable expression for the spread.

Andreas Klockner Maximally Localized Wannier Functions

Page 139: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Spread in k-space

Theorem

Let ψn,k be continuously differentiable in k. Then

〈rwn,0,wm,R〉Rd =1

λ(B)

∫B

e ik·R 〈i∇kun,k, um,k〉P dk

and ⟨r2wn,0,wn,0

⟩Rd =

1

λ(B)

∫B〈i∇kun,k, i∇kun,k〉P dk.

So if we approximate the k-gradients (say by FD), we canobtain a computable expression for the spread.

Andreas Klockner Maximally Localized Wannier Functions

Page 140: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Plan

Compute the spread Ω.

Find the gradientdΩ

dU

Use an iterative minimization technique (steepest descent,CG) to “slide down” and minimize Ω, finding the optimalmixing matrix U.

Compute the maximally localized Wannier Functions,using the optimal U.

Use a grid of MLWFs (centered in each unit cell) as aGalerkin basis to attack large-scale simulation problems,with defects.

Andreas Klockner Maximally Localized Wannier Functions

Page 141: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Plan

Compute the spread Ω.

Find the gradientdΩ

dU

Use an iterative minimization technique (steepest descent,CG) to “slide down” and minimize Ω, finding the optimalmixing matrix U.

Compute the maximally localized Wannier Functions,using the optimal U.

Use a grid of MLWFs (centered in each unit cell) as aGalerkin basis to attack large-scale simulation problems,with defects.

Andreas Klockner Maximally Localized Wannier Functions

Page 142: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Plan

Compute the spread Ω.

Find the gradientdΩ

dU

Use an iterative minimization technique (steepest descent,CG) to “slide down” and minimize Ω, finding the optimalmixing matrix U.

Compute the maximally localized Wannier Functions,using the optimal U.

Use a grid of MLWFs (centered in each unit cell) as aGalerkin basis to attack large-scale simulation problems,with defects.

Andreas Klockner Maximally Localized Wannier Functions

Page 143: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Plan

Compute the spread Ω.

Find the gradientdΩ

dU

Use an iterative minimization technique (steepest descent,CG) to “slide down” and minimize Ω, finding the optimalmixing matrix U.

Compute the maximally localized Wannier Functions,using the optimal U.

Use a grid of MLWFs (centered in each unit cell) as aGalerkin basis to attack large-scale simulation problems,with defects.

Andreas Klockner Maximally Localized Wannier Functions

Page 144: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Plan

Compute the spread Ω.

Find the gradientdΩ

dU

Use an iterative minimization technique (steepest descent,CG) to “slide down” and minimize Ω, finding the optimalmixing matrix U.

Compute the maximally localized Wannier Functions,using the optimal U.

Use a grid of MLWFs (centered in each unit cell) as aGalerkin basis to attack large-scale simulation problems,with defects.

Andreas Klockner Maximally Localized Wannier Functions

Page 145: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

So. . .

So, does it work?

Yes. But. . . There are cases where it does not work asbeautifully.

Andreas Klockner Maximally Localized Wannier Functions

Page 146: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

So. . .

So, does it work?Yes.

But. . . There are cases where it does not work asbeautifully.

Andreas Klockner Maximally Localized Wannier Functions

Page 147: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

So. . .

So, does it work?Yes. But. . .

There are cases where it does not work asbeautifully.

Andreas Klockner Maximally Localized Wannier Functions

Page 148: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

So. . .

So, does it work?Yes. But. . . There are cases where it does not work asbeautifully.

Andreas Klockner Maximally Localized Wannier Functions

Page 149: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Issues with The Plan

Getting stuck in a local minimum

What is a good starting guess?

There are several (at least two) valid ways of findingdΩ/dU. More specifically: What inner product do we useon the gradient space of U?

Andreas Klockner Maximally Localized Wannier Functions

Page 150: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Issues with The Plan

Getting stuck in a local minimum

What is a good starting guess?

There are several (at least two) valid ways of findingdΩ/dU. More specifically: What inner product do we useon the gradient space of U?

Andreas Klockner Maximally Localized Wannier Functions

Page 151: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Issues with The Plan

Getting stuck in a local minimum

What is a good starting guess?

There are several (at least two) valid ways of findingdΩ/dU. More specifically: What inner product do we useon the gradient space of U?

Andreas Klockner Maximally Localized Wannier Functions

Page 152: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Promise of MLWFs

Several things make WFs ideally suited as a computationalbasis:

Wannier functions are n- and R-orthogonal, i.e.⟨wn,R,wm,R′

⟩Rd = δm,nδR,R′ .

They are complete in L2ε.

(Conjecture) MLWFs are real-valued.

(Experimental evidence) Expansions of propagation modesin MLWFs converge very fast.

Andreas Klockner Maximally Localized Wannier Functions

Page 153: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Promise of MLWFs

Several things make WFs ideally suited as a computationalbasis:

Wannier functions are n- and R-orthogonal, i.e.⟨wn,R,wm,R′

⟩Rd = δm,nδR,R′ .

They are complete in L2ε.

(Conjecture) MLWFs are real-valued.

(Experimental evidence) Expansions of propagation modesin MLWFs converge very fast.

Andreas Klockner Maximally Localized Wannier Functions

Page 154: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Promise of MLWFs

Several things make WFs ideally suited as a computationalbasis:

Wannier functions are n- and R-orthogonal, i.e.⟨wn,R,wm,R′

⟩Rd = δm,nδR,R′ .

They are complete in L2ε.

(Conjecture) MLWFs are real-valued.

(Experimental evidence) Expansions of propagation modesin MLWFs converge very fast.

Andreas Klockner Maximally Localized Wannier Functions

Page 155: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

The Promise of MLWFs

Several things make WFs ideally suited as a computationalbasis:

Wannier functions are n- and R-orthogonal, i.e.⟨wn,R,wm,R′

⟩Rd = δm,nδR,R′ .

They are complete in L2ε.

(Conjecture) MLWFs are real-valued.

(Experimental evidence) Expansions of propagation modesin MLWFs converge very fast.

Andreas Klockner Maximally Localized Wannier Functions

Page 156: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

References

This is the method of Marzari and Vanderbilt (1997), whichthey invented and used for computational chemistry.

Busch et al. re-used M-V’s method for photonic crystals.

Andreas Klockner Maximally Localized Wannier Functions

Page 157: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

References

This is the method of Marzari and Vanderbilt (1997), whichthey invented and used for computational chemistry.Busch et al. re-used M-V’s method for photonic crystals.

Andreas Klockner Maximally Localized Wannier Functions

Page 158: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Outline

1 Photonic CrystalsFabrication

2 Eigenproblems with Spatially Periodic CoefficientsThe Floquet Transform

3 Wannier FunctionsMinimizing the Spread

4 Outlook and Origins

Andreas Klockner Maximally Localized Wannier Functions

Page 159: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Hopes and unanswered questions

What can theory tell us about MLWFs? Are they reallyreal-valued? Existence? Uniqueness?

Is minimization of the second moment even the correctway to resolve the ambiguity?

The FD k-space grid should be replaced by some sort ofFEM discretization (unsure how to treat boundary withFD)

Can the minimization be made reliable? In particular, howcan we detect that we have converged?

What exactly goes on in 3D?

DG could help greatly with the discretization of theFloquet BCs.

Andreas Klockner Maximally Localized Wannier Functions

Page 160: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Hopes and unanswered questions

What can theory tell us about MLWFs? Are they reallyreal-valued? Existence? Uniqueness?

Is minimization of the second moment even the correctway to resolve the ambiguity?

The FD k-space grid should be replaced by some sort ofFEM discretization (unsure how to treat boundary withFD)

Can the minimization be made reliable? In particular, howcan we detect that we have converged?

What exactly goes on in 3D?

DG could help greatly with the discretization of theFloquet BCs.

Andreas Klockner Maximally Localized Wannier Functions

Page 161: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Hopes and unanswered questions

What can theory tell us about MLWFs? Are they reallyreal-valued? Existence? Uniqueness?

Is minimization of the second moment even the correctway to resolve the ambiguity?

The FD k-space grid should be replaced by some sort ofFEM discretization (unsure how to treat boundary withFD)

Can the minimization be made reliable? In particular, howcan we detect that we have converged?

What exactly goes on in 3D?

DG could help greatly with the discretization of theFloquet BCs.

Andreas Klockner Maximally Localized Wannier Functions

Page 162: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Hopes and unanswered questions

What can theory tell us about MLWFs? Are they reallyreal-valued? Existence? Uniqueness?

Is minimization of the second moment even the correctway to resolve the ambiguity?

The FD k-space grid should be replaced by some sort ofFEM discretization (unsure how to treat boundary withFD)

Can the minimization be made reliable? In particular, howcan we detect that we have converged?

What exactly goes on in 3D?

DG could help greatly with the discretization of theFloquet BCs.

Andreas Klockner Maximally Localized Wannier Functions

Page 163: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Hopes and unanswered questions

What can theory tell us about MLWFs? Are they reallyreal-valued? Existence? Uniqueness?

Is minimization of the second moment even the correctway to resolve the ambiguity?

The FD k-space grid should be replaced by some sort ofFEM discretization (unsure how to treat boundary withFD)

Can the minimization be made reliable? In particular, howcan we detect that we have converged?

What exactly goes on in 3D?

DG could help greatly with the discretization of theFloquet BCs.

Andreas Klockner Maximally Localized Wannier Functions

Page 164: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Hopes and unanswered questions

What can theory tell us about MLWFs? Are they reallyreal-valued? Existence? Uniqueness?

Is minimization of the second moment even the correctway to resolve the ambiguity?

The FD k-space grid should be replaced by some sort ofFEM discretization (unsure how to treat boundary withFD)

Can the minimization be made reliable? In particular, howcan we detect that we have converged?

What exactly goes on in 3D?

DG could help greatly with the discretization of theFloquet BCs.

Andreas Klockner Maximally Localized Wannier Functions

Page 165: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

How I ended up doing this research

Prof. Dr. Willy Dorfler (Karlsruhe)

Prof. Dr. Kurt Busch (Karlsruhe/UCF)

Dipl.-Phys. Matthias Schillinger (Karlsruhe/UCF)

Andreas Klockner Maximally Localized Wannier Functions

Page 166: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

How I ended up doing this research

Prof. Dr. Willy Dorfler (Karlsruhe)

Prof. Dr. Kurt Busch (Karlsruhe/UCF)

Dipl.-Phys. Matthias Schillinger (Karlsruhe/UCF)

Andreas Klockner Maximally Localized Wannier Functions

Page 167: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

How I ended up doing this research

Prof. Dr. Willy Dorfler (Karlsruhe)

Prof. Dr. Kurt Busch (Karlsruhe/UCF)

Dipl.-Phys. Matthias Schillinger (Karlsruhe/UCF)

Andreas Klockner Maximally Localized Wannier Functions

Page 168: Maximally Localized Wannier Functions

MaximallyLocalizedWannierFunctions

AndreasKlockner

Outline

PhotonicCrystals

Fabrication

Eigenproblemswith SpatiallyPeriodicCoefficients

The FloquetTransform

WannierFunctions

Minimizing theSpread

Outlook andOrigins

Questions?

?

Andreas Klockner Maximally Localized Wannier Functions