32
Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise, France 26 Sept 2014 Robert K. Niven UNSW Canberra , ACT, Australia Institut PPrime , Poitiers , France [email protected] Bernd R. Noack Institut PPrime, Poitiers, France. Markus Abel Ambrosys GmbH / Univ. of Potsdam, Germany Michael Schlegel TU Berlin, Germany Hussein A. Abbass UNSW Canberra, ACT, Australia. Kamran Shafi UNSW Canberra, ACT, Australia Steven H. Waldrip UNSW Canberra, ACT, Australia Eurika Kaiser Institut PPrime, Poitiers, France Funding from ARC, Go8/DAAD, CNRS, Region Poitou-Charentes

Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

  • Upload
    lymien

  • View
    241

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

Maximum Entropy Analysis of Flow and Reaction Networks

MaxEnt 2014, Amboise, France

26 Sept 2014

Robert K. Niven

UNSW Canberra, ACT, AustraliaInstitut PPrime, Poitiers, France

⎧⎨⎩

[email protected] Bernd R. Noack Institut PPrime, Poitiers, France. Markus Abel Ambrosys GmbH / Univ. of Potsdam, Germany Michael Schlegel TU Berlin, Germany Hussein A. Abbass UNSW Canberra, ACT, Australia. Kamran Shafi UNSW Canberra, ACT, Australia Steven H. Waldrip UNSW Canberra, ACT, Australia Eurika Kaiser Institut PPrime, Poitiers, France

Funding from ARC, Go8/DAAD, CNRS, Region Poitou-Charentes

Page 2: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 2

Contents 1. Introduction - background - previous work

2. Flow network - definitions; network parameters - resistance functions; Kirchhoff laws - previous attempts in literature; aims

3. Standard problem - uncertainty in flow rates + potential differences - complications - results – incl. case study of pipe flow networks

4. Extended problem - much broader uncertainties, incl. in network structure

5. Conclusions

Page 3: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 3

Flow Network Consider generalised flow network, with nodes connected by flow paths:

Many applications: - electrical, fluid flow, communications networks - transport (road, air, shipping), chemical reaction, ecological networks - human industrial, economic, social, political networks

Page 4: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 4

Motivation 1. Cool problem ! → general unified framework for many diverse systems 2. Has not been done (properly) 3. MaxEnt analysis of fluid flow (Niven, PRE 2009; Phil Trans B, 2010; MaxEnt 2011; 2012)

Page 5: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 5

Analysis of Flow Systems

Page 6: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 6

Control Volume Analysis Consider - control volume = volume through which

fluid can flow (Eulerian description), bounded by control surface

- fluid volume = contiguous body of fluid, bounded by fluid surface

Quantity B balance → Reynolds transport theorem:

DBDt FV

= ∂∂t

ρbdVCV∫∫∫ + ρbvindA

CS∫∫

Infinitesimal element: ρDb

Dt= ∂∂tρb +∇iρbv

Rate of change

of B in FV Net rate of outflowof B through CS

Rate of changeof B in CV

Page 7: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 7

Entropy Balance Control volume analysis of S

→ thermodynamic entropy production

diSdt

Global:

σ = ∂

∂tρs dV

CV∫∫∫ + ρsvindA

CS∫∫ + js indA

FS∫∫

Local: σ̂ = ∂

∂tρs + ∇ i ρsv + js( ) with

σ = σ̂dV

CV∫∫∫

de Groot & Mazur (1984), without radiation →

σ̂ = jr iFr

r∑

js = jrλr

r∑

with jr ∈ jQ, jc ,τ,ξd{ },

Fr ∈ ∇ 1

T,−∇

μcT

,−∇vT

,−ΔGdT

⎧⎨⎩

⎫⎬⎭

, λr ∈ 1

T,−

μcT

⎧⎨⎩

⎫⎬⎭

Page 8: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 8

Definition of Steady State Strict:

Integral:

σ = ∂

∂tρs dV

CV∫∫∫ + ρsvindA

CS∫∫ + js indA

FS∫∫

Local: σ̂ = ∂

∂tρs + ∇iρsv +∇i js

Mean: Integral:

⟨σ⟩ = ⟨ρsv⟩indA

CS∫∫ + ⟨js ⟩indA

FS∫∫

Local: ⟨σ̂⟩ = ∇i⟨ρsv⟩ +∇i⟨js ⟩

Time Average B = lim

T→∞

1T

Bdt0T∫

Ensemble Average B = lim

K→∞

1K

B(k)k=1K∑ (⇔ ergodic principle)

⎬⎪⎪

⎭⎪⎪

Must impose atall times!

⎫⎬⎪

⎭⎪

More usefuland

equivalent

dSCVdt

= 0

d ⟨S⟩dt

= 0

0

0

∂ρs∂t

= 0

∂⟨ρs⟩∂t

= 0

Page 9: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 9

Local MaxEnt Analysis (Niven, PRE 2009; Phil Trans B 2010)

Define probability over uncertainties pI = p(jQ, jc ,τ,ξd ) →

maximise Hst = − pI ln

pIqII

∑ Flux entropy

subject to ⟨1⟩ and ⟨jr ⟩ ∈ ⟨jQ ⟩,⟨jc ⟩,⟨τ⟩,⟨ξ̂d ⟩{ }

→ pI

* = 1Z

qI exp − jrI i ζrr∑( )

Hst

* = lnZ + ⟨jr ⟩ i ζrr∑

Open system:

Φst = − lnZ = −Hst

* − 1K

σ̂⎢⎣ ⎥⎦ Flux potential

min Φst → driven by ΔΦst ≤ 0

∝Entropy production in mean, σ̂⎢⎣ ⎥⎦ ∝Mean gradients ⟨Fr ⟩

↑ Hst* , ↑ σ̂⎢⎣ ⎥⎦

↓ Hst* , ↑ σ̂⎢⎣ ⎥⎦

↑ Hst* , ↓ σ̂⎢⎣ ⎥⎦

⎪⎪

⎪⎪

⎫⎬⎪

⎭⎪pseudo MaxEP

}pseudo MinEP

Page 10: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 10

Summary: MaxEnt analysis of local flow system → 1. “Minimum flux potential” principle:

Φst= −Hst

* − 1K

σ̂⎢⎣ ⎥⎦

based on σ̂⎢⎣ ⎥⎦ = ⟨jr ⟩i

r∑ ⟨Fr ⟩ = EP in the mean

2. Subsidiary (pseudo-) MaxEP or MinEP principles (analogue of min or max enthalpy principles)

Page 11: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 11

Analysis of Flow Networks

Page 12: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 12

Network Specification Network structure

- N nodes, M edges - adjacency matrix A

Flow parameters - internal flow rates

Qij ∈Q (edges)

- external flow rates θi ∈ΘΘ (nodes) - potential differences

ΔEij ∈ΔE (edges) (for Δ = init − final )

Kirchhoff’s Laws

Ki ∈K : Continuity at each node i: θi − Qij

i=1

N∑ = 0

K ∈L : No potential difference around each loop :

ΔEijij∈∑ = 0

⎫⎬⎭⇒ L loops

Page 13: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 13

Resistance Functions Specify

ΔEij = Rij (Qij ) ∈ ΔE = R (Q )

e.g. Electrical: linear: ΔE = RQ c.f. V = RI Pipe flows: quadratic: ΔE = RQ2 power law: ΔE = RQ |Q |a−1 a ∈[0,1]

Colebrook: ΔE = 8fL

π2D5gQ |Q | with

Re = 4ρQ

πμD and

f = 64|Re|

, Re < 2100

1f= 1.14 − 2.0 log10

εD

+ 9.28|Re | f

⎛⎝⎜

⎞⎠⎟, Re ≥ 4000

⎪⎪

⎪⎪

Transport: ΔE = R(Q) with ΔE →∞ as Q →Qmax (or use other variables)

Page 14: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 14

Deterministic Method e.g. electrical circuit analysis; hydraulic engineering: - parameters {Q,Θ,ΔE } ; equations {K ,L,R } - specify sufficient parameters → solve directly (e.g. Hardy-Cross

method) - solution sometimes ⇔ min. or max. power

Page 15: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 15

Previous Literature (a) Transport networks e.g. Ortúzar & Willumsen (2001): “gravity model”: - define over trip counts

Tij

→ max H = − (Tij logTij −Tij )

ij∑

subject to Kirchhoff node constraints + cost function - use Lagrangian multiplier as fitting parameter (b) Hydraulic networks e.g. Awumah et al. 1990; Tanyimboh & Templeman 1993; de Schaetzen et al. 2000; Formiga

et al. 2003, Ang & Jowitt 2003; Setiadi et al. 2005

- define probabilities pij = Qij Qij

ij∑

→ MaxEnt subject to Kirchhoff node constraints - no account for Kirchhoff loop constraints or pipe resistances!

Page 16: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 16

“Standard Problem” Define probability over uncertainties → joint pdf p(Q ,Θ,ΔE )

→ maximise

H = − ...∫ dQ dΘdΔE p(Q ,Θ,ΔE ) ln p(Q ,Θ,ΔE )

q(Q ,Θ,ΔE )∫

Constraints: - normalisation ⟨1⟩ - known moments: some of

⟨Qij ⟩ , ⟨θi ⟩ ,

⟨ΔEij ⟩ - resistance functions ⟨ΔE ⟩ = R (⟨Q ⟩) - Kirchhoff node + loop constraints f(⟨Q ⟩,⟨ΘΘ⟩) = 0, g(⟨ΔE ⟩) = 0

→ Boltzmann distribution and MaxEnt:

Entropy production σnet⎢⎣ ⎥⎦

Non-linearities!

p* = qZ

exp −λλ :Q − μ iΘ − νν : ΔE − ρρ : ⟨ΔE ⟩ −R (⟨Q ⟩)( )− αα i f − ββ i g⎡⎣ ⎤⎦

H* = − lnZ + λ : ⟨Q ⟩ + μ i ⟨ΘΘ⟩ + ν : ⟨ΔE ⟩

Page 17: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 17

Complications 1. Constraint independence: - if resistance functions known →

⟨ΔEij ⟩ ,

⟨Qij ⟩ not independent

2. Dimensionality of integrals

...∫ dQ dΘdΔE ...∫ R (Q )⎯ →⎯⎯⎯ ...∫ dQ dΘ...∫

3. Type of constraints (what does a mean mean?)

- local

dQij p(Qij | Q¬ij ,Θ,ΔE ) ∫ Qij = Q¬ij⎡⎣ ⎤⎦(Q¬ij ,Θ,ΔE)

- global

...∫ dQ dΘdΔE p(Q ,Θ,ΔE )∫ Qij = ⟨Qij ⟩

4. Kirchhoff constraints - impose in mean:

θi − Qij

i=1

N∑ = 0 , all nodes;

ΔEijij∈∑ = 0 , all indep. loops

Page 18: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 18

5. Nonlinear resistance functions: I.

⟨ΔEij ⟩ = ⟨Rij (Qij )⟩ → simple Lagrangian

II. ⟨ΔEij ⟩ = Rij (⟨Qij ⟩) → implicit Lagrangian

6. Prior probabilities - important for under-constrained problems - in practice, use Gaussian priors

Page 19: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 19

Results (Waldrip et al., MaxEnt2013) e.g. 3-node network:

- 6 parameters (

⟨ΔEij ⟩ dependent)

- 3 x Ki + 1 x K - power-law resistances:

⟨ΔEij ⟩ = Kij ⟨Qij ⟩ | ⟨Qij ⟩ |

- Gaussian priors Solved numerically (multidimensional quadrature, quasi-Newton iteration for multipliers, outer implicit iteration)

Constraints ⟨θ1⟩ = 1, ⟨θ2⟩ = 0; fixed K12 = K23 = 0.5

Constraints ⟨θ1⟩ = 1; fixed K12 = K23 = 0.5

Page 20: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 20

Real network (Waldrip et al., to appear) Water distribution network for suburb of Torrens, Australian Capital Territory 1123 nodes 1140 pipes Network data sourced from and owned by ACTEW Corporation Limited

205,500 206,000 206,500 207,000

593,50

059

4,00

059

4,50

0595,00

0

Easting (m ACT Standard Grid AGD66)

Northing(m

) 600mm450mm375mm300mm225mm150mm100mm20mmPumpPearce ReservoirTorrens Reservoir

Page 21: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 21

Constraints: K ,L, ⟨ θi

ini∑ ⟩ , ⟨Δhres ⟩ K ,L, ⟨ θi

ini∑ ⟩ , ⟨Δhres ⟩ , ⟨Q1⟩

Prior: N (0,σ) uniform mean θiout

Constraints: 1 Group inflow 1 Head 1 Pipe Flow

Constrained pipe

Constraints: 1 Group inflow 1 Head 20 Pipe Flow

Page 22: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 22

Jaynes’ Relations Entropy:

H* = lnZ + λr ⟨fr ⟩

r=1

R∑

Potential: Φ = − lnZ = −H* + λr ⟨fr ⟩

r=1

R∑

Derivatives:

∂H*

∂⟨fr ⟩= λr

∂2H*

∂⟨fm ⟩∂⟨fr ⟩=

∂λr∂⟨fm ⟩

= gmr ∈g

∂Φ∂λr

= ⟨fr ⟩

∂2Φ∂λm ∂λr

= −cov(fm,fr ) =∂⟨fr ⟩∂λm

= γmr ∈γγ

Legendre transform: Φ(λ1,λ2,...) ⇔ H*(⟨f1⟩,⟨f2⟩,...) with γ = g−1

∂⟨fr ⟩∂λm

=∂⟨fm ⟩∂λr

∂λm∂⟨fr ⟩

=∂λr∂⟨fm ⟩

Page 23: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 23

“Standard Problem”

p* = qZ

exp −λλ : Q − μ iΘ − νν : ΔE − ρρ : ⟨ΔE ⟩ −R (⟨Q ⟩)( )− αα i f − ββ i g⎡⎣ ⎤⎦

Φ = − lnZ = −H* + λ : ⟨Q ⟩ + μ i ⟨ΘΘ⟩ + ν : ⟨ΔE ⟩ (constraints largely empty)

Derivatives:

∂H*

∂⟨Q ⟩, ∂H

*

∂⟨ΘΘ⟩, ∂H*

∂⟨ΔE ⟩

⎣⎢⎢

⎦⎥⎥= λ,μ,ν⎡⎣ ⎤⎦ ,

∂Φ∂λλ

,∂Φ∂μ

,∂Φ∂νν

⎣⎢

⎦⎥ = ⟨Q ⟩,⟨ΘΘ⟩,⟨ΔE ⟩⎡⎣ ⎤⎦

∂2Φ

∂λλ2∂2Φ∂λλ ∂μ

∂2Φ∂λλ ∂νν

∂2Φ∂μ ∂λλ

∂2Φ

∂μ2∂2Φ∂μ ∂νν

∂2Φ∂νν∂λλ

∂2Φ∂νν∂μ

∂2Φ

∂νν2

⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥

=

∂⟨Q ⟩∂λλ

∂⟨ΘΘ⟩∂λλ

∂⟨ΔE ⟩∂λλ

∂⟨Q ⟩∂μ

∂⟨ΘΘ⟩∂μ

∂⟨ΔE ⟩∂μ

∂⟨Q ⟩∂νν

∂⟨ΘΘ⟩∂νν

∂⟨ΔE ⟩∂νν

⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥

Legendre Φ⇔ H*

Page 24: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 24

Chemical Reaction Networks Species

X =

PQAP *QA

P+QA−

⎢⎢⎢⎢

⎥⎥⎥⎥

=XYZ

⎢⎢⎢

⎥⎥⎥

Reactions

Π = L+ L− D+ D− B1

+ B1− B2

+ B2−⎡

⎣⎤⎦

Stoichiometric matrix:

Γ =-1 1 1 -1 0 0 1 -11 -1 -1 1 -1 1 0 00 0 0 0 1 -1 -1 1

⎢⎢⎢

⎥⎥⎥

(e.g. Juretic & Županovic, 2003)

Page 25: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 25

Chemical Reaction Networks Thermodynamics Kinetics

ΔGL+

ΔGL−

ΔGD+

ΔGD−

ΔGB1+

ΔGB1−

ΔGB2+

ΔGB2−

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

=

-1 1 01 -1 01 -1 0

-1 1 00 -1 10 1 -11 0 -1

-1 0 1

⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥

GXGYGZ

⎢⎢⎢

⎥⎥⎥

XYZ

⎢⎢⎢

⎥⎥⎥=

-1 1 1 -1 0 0 1 -11 -1 -1 1 -1 1 0 00 0 0 0 1 -1 -1 1

⎢⎢⎢

⎥⎥⎥

νL+

νL−

νD+

νD−

νB1+

νB1−

νB2+

νB2−

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

ΔG(Π) = Γ G(X) X = Γ ν(Π)

Page 26: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 26

Graph Structures Closed system → steady state: X = Γνν = 0 Open system

→ augmented stoich. matrix Γtot

→ stationary state ≠ steady state Γtotν = 0

Famili & Palsson (2003)

Page 27: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 27

Geological Reaction Systems (Ord et al. 2013 & Lester et al. 2013, Ore Geology Reviews)

e.g. metamorphic processes; ore deposit formation

Example:

X = Albite, Biot, Garnet, Musc, Qtz, [ Staur, Sill, H2O, H+, Na+, K+, M2+ ⎤

Π = A B C D[ ]

Γ =

-2 21 24 -43-2 -15 12 62 0 0 00 -2 0 16 -12 -90 910 0 -9 00 0 0 174 60 -48 -7-4 -86 90 02 -21 -24 432 17 -12 -70 45 -27 -18

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

Page 28: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 28

Multimolecular stoichiometry → bipartite graph structure!

Page 29: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 29

“Extended Problem” Many parameters, e.g.: - N nodes, M edges - connectivity (adjacency matrix A ) - flow quantities c ∈C - edge distances

Dij ∈D , volumes

Vij ∈V

- node storage capacities Si ∈S ; rates of production ξic ∈ΞΞ

- node conductivities Gi ∈G - edge resistance functions

Fij ∈F

- edge flow rates Qij

c ∈Q ; node external flow rates θic ∈ΘΘ

- node potentials Ei ∈E ; edge potential differences ΔEij ∈ΔE

→ uncertainty in {N,M,A,C ,D,V ,S,Ξ,G,F ,Q ,Θ,E ,ΔE } → joint pdf p(N,M,A,C ,D,V ,S,Ξ,G,F ,Q ,Θ,E ,ΔE | I)

Page 30: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 30

Define probability over the uncertainties X → relative entropy

Hnet = − ...∫ dX p(X | I) ln p(X | I)

q(X | I)∫

Maximise subject to constraints → infer p * (X | I) → moments ⟨Xij ⟩

Open systems: minimise potential

Φnet = −Hnet

* − 1K

σnet⎢⎣ ⎥⎦

Work in progress: applying MaxEnt with uncertainty in graph structure

Page 31: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 31

Conclusions 1. Flow network - definitions; network parameters - resistance functions; Kirchhoff laws - previous attempts in literature

2. Standard problem - uncertainty in flow rates + potential differences - complications - results – incl. case study of pipe flow networks - chemical reaction networks ⇒ bipartite graph structure open ⇒ stationary state ≠ steady state

3. Extended problem - much broader uncertainties, incl. in network structure

Page 32: Maximum Entropy Analysis of Flow and Reaction Networksdjafari.free.fr/MaxEnt2014/slides/92_slides.pdf · Maximum Entropy Analysis of Flow and Reaction Networks MaxEnt 2014, Amboise,

© R.K. Niven 2014 32

Thank you ! (Advertisement: now recruiting

for postdoc / PhD students)