4
1 MAYO CLINIC Optimization of Internal Margin to Account for Respiratory Motion YILDIRIM D. MUTAF, PhD DEBRA H. BRINKMANN, PhD July 2007 Minneapolis, AAPM 2007 MAYO CLINIC Y. D. Mutaf, PhD SM Internal Target Volume (ITV) = CTV + IM Introduction Respiratory motion is a source of dosimetric uncertainty ICRU 62 recommends use of Internal Margin (IM) …to compensate for expected physiological movements, variations in shape, size and position of the CTV during therapy… The aim of this study is to find Optimum Internal Margin ITV PTV IM IM SM Planning Target Volume (PTV) = ITV + SM July 2007 Minneapolis, AAPM 2007 MAYO CLINIC Y. D. Mutaf, PhD Motion Imaging 4DCT or Fluoroscopy – Enables identification of the target motion – Ensures only the geometric coverage i.e. where target IS – Doesn’t provide direct information on the dosimetric effects due to motion i.e. what dose target GETS Determining IM from imaging studies alone could be overly-conservative – Are smaller margins sufficient? Possible implications regarding dose escalation July 2007 Minneapolis, AAPM 2007 MAYO CLINIC Y. D. Mutaf, PhD Part I – Phantom Study Phantom Simulation – Rectangular body with 3.0cm radius target (TV) Treatment Plans – 4 coplanar, orthogonal fields treat TV Conformal in the coronal plane plane of motion – Plans with different IM and SM added linearly Coronal View

MAYOCLINIC I ntr oduc i · MAYOCLINIC Y. D. Mutaf, PhD SM – Internal Target Volume (ITV) = CTV + IM I ntr oduc i • Respiratory motion is a source of dosimetric uncertainty •

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MAYOCLINIC I ntr oduc i · MAYOCLINIC Y. D. Mutaf, PhD SM – Internal Target Volume (ITV) = CTV + IM I ntr oduc i • Respiratory motion is a source of dosimetric uncertainty •

1

MAYO CLINIC

Optimi zatio nof Int ernal Margin

t o Account for Respi rat ory Motion

YIL DI RIM D. MUTAF, PhDDEBRA H. BRINKMANN, PhD

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

SM

– Internal Target Volume (ITV) = CTV + IM

I ntrod uc tion

• Respiratory motion is a source of dosimetric uncertainty

• ICRU 62 recommends use of Internal Margin (IM)– …to compensate for expected

physiological movements, variations in shape, size and position of the CTV during therapy…

• The aim of this study is to find – Optimum Internal Margin

ITV

PTV

IM

IM

SM

– Planning Target Volume (PTV) = ITV + SM

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Motion I magin g

• 4DCT or Fluoroscopy – Enables identification of the target motion– Ensures only the geometric coverage

� i.e. where target IS

– Doesn’t provide direct information on the dosimetric effects due to motion� i.e. what dose target GETS

• Determining IM from imaging studies alone could be overly-conservative– Are smaller margins sufficient?

�Possible implications regarding dose escalation

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Part I – Phantom Study

• Phantom Simulation– Rectangular body with

3.0cm radius target (TV)

• Treatment Plans– 4 coplanar, orthogonal

fields treat TV – Conformal in the coronal

plane�plane of motion

– Plans with different IM and SM added linearly

Coronal View

Page 2: MAYOCLINIC I ntr oduc i · MAYOCLINIC Y. D. Mutaf, PhD SM – Internal Target Volume (ITV) = CTV + IM I ntr oduc i • Respiratory motion is a source of dosimetric uncertainty •

2

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Sim ul ation Method

• Extract dose from the coronal plane at center of the target

• Where location of target change due to – Setup Uncertainties

through 100 fractions– Respiration motion in

each fraction

2)/(cos)( 04

0 ATtAtA −= π)/(cos)( 4

0 TtAtA π=Lujan et.al., MedPhys 99

Coronal Plane

Head

Foot

Asy

mm

etri

c(c

m) S

ymm

etric(cm

)

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Setup Uncertainti es and Resp iration

Appropriate setup margins are applied

MSM σ⋅= 7.0van Herk et.al., IJROBP 2000

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Comparison of Plans

• REFERENCE (or STATIC) Plan– No respiration motion (without IM) – With setup uncertainties (added SM)

� σM = 2, 4 and 6 mm• MOTION Plan

– With respiration motion (added IM)

� 5, 10, 15, 20 mm p2p motion– With setup uncertainties (added SM)

No Respiration (Reference)

R = 30 mm

10mm p2p Amp IM = 0 mm

R = 30 mm

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Compariso n of Plans

( )2

1%100

%95

21

−= ∫ dVDD

NF static

imotioni

DVH Based Cost Function

a

i

aiiDvgEUD

1

= ∑

Ratio of gEUDs

A. Niemierko Med. Phys. 97

Page 3: MAYOCLINIC I ntr oduc i · MAYOCLINIC Y. D. Mutaf, PhD SM – Internal Target Volume (ITV) = CTV + IM I ntr oduc i • Respiratory motion is a source of dosimetric uncertainty •

3

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Optimu m Inter nal Margin

• Optimum dosimetric coverage is obtained with IM smaller than full motion amplitude– Symmetric margins

• Asymmetric margins – Using the end of exhale

images for treatment planning

– Larger but one sided margins• Observed to be independent of

the random setup uncertainties – Effect of systematic

uncertainties is not yet investigated

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Part II – Patient Study

Fluence simulation requires constant external contour along the motion direction

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Patien t Cohor t

• 12 total patients – 10 lung, 2 pancreas– TV range 7 to 210cc

• Treatment plan characteristics

– 3 to 6 beams� All coplanar beams� 6 or 10 MV

– Conformal in the direction of motion

• Setup Uncertainties are not simulated– No setup margins (SM)

• Only 10mm p2p symmetric motion studied

1 2 3 4

5 6 7 8

9 10 11 12

Note: Drawings not to scale.Targets are indexed in the order of increasing volume.

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Compariso n of Plans

Patien t #610 mm Mot ion

TV = 51.3 cc

( )2

1%100

%95

21

−= ∫ dVDD

NF static

imotioni

DVH Based Cost Function

Patient #610 mm Motion

TV = 51.3 cc

Ratio of gEUDs

a

i

aiiDvgEUD

1

= ∑A. Niemierko Med. Phys. 97

Page 4: MAYOCLINIC I ntr oduc i · MAYOCLINIC Y. D. Mutaf, PhD SM – Internal Target Volume (ITV) = CTV + IM I ntr oduc i • Respiratory motion is a source of dosimetric uncertainty •

4

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Optimu m Inter nal Margin

Target Coverage (avg of 12 patients)– Minimum dose is 0.2% colder

� TV receiving colder dose is 0.2%– TV receiving 100% dose (V100) is

0.8% larger– Relative gEUD is always ≥ 100%

Target Conformity (~ Normal Tissue Sparing)

– 17% less irradiated volume receiving 100% dose

– 10% less irradiated volume receiving 50% dose

Distribution of OptimumInternal Margins

50% and 100%RTOG Conformit y Indices (CI)Relative CI ≡ CImotion / CIstatic

July 2007 Minneapolis, AAPM 2007

MAYO CLINIC

Y. D. Mutaf, PhD

Concl usions

• Optimum Internal Margin (IM) was always smaller than full motion amplitude – Example: ±1.5mm IM for 10mm p2p motion

• Standard practice of target expansion based on imaging alone (e.g. 4DCT) is overly conservative– “Where Target IS” vs “What Target GETS”

• As compared to full motion amplitude, optimum internal margin provided– Similar target coverage– Improved target conformity

ThankYou!