11
Metabolic Biochemistry Lecture 5 Lecture 5:The PDH Complex Part 1: Pyruvate Dehydrogenase Content: The pyruvate dehydrogenase reaction mechanism Roles of vitamin derivatives in the pyruvate dehydrogenase complex reaction Pyruvate Dehydrogenase Complex that is a multienzyme that contains 3 types of different enzymes, E1, E2 and E3. Responsible in generating acetyl coA from pyruvate, this acetyl coA enters the citric acid cycle Aerobic processes that occur in the mitochondria are pyruvate dehydrogenase, citric acid cycle and oxidation phosphorylation Overview of oxidative respiration: 1) Pyruvate dehydrogenase: occurs in mitochondria 2) Citric acid cycle: matrix 3) Oxidative phosphorylation: inner and outer membrane Pyruvate: Made from glycolysis needs to be transported into the mitochondria for the next phase Pyruvate and H+ ions go through pores in the outer membrane but cannot get into inner membrane Symporter: channel in cell membrane: allows both pyruvate and H+ into the inner membrane into the matrix as both as important in process ATP and Muscles: Energy currency of cells Power enzyme reactions via ‘coupling’ Nonenzymatic reactions: muscle contraction Main difference in slow oxidative and fast oxidative is the use e.g. slow for long distance and fast for quick movements Based on where they get ATP from 3 types of muscle fibres: Muscle types Difference in colour due to blood supply and myoglobin levels (stores oxygen) Slow oxidative o Need high oxygen supply (dark red because high amount of myoglobin) o For long distance e.g. marathon Fast glycolytic o Low mitochondria and blood supply (don’t need stored hemoglobin) o Short powerful bursts Fast oxidative glycolytic

MB - Lecture 5 - PDH + Citric · Metabolic*Biochemistry* Lecture5* * Lecture 5:The PDH Complex Part 1: Pyruvate Dehydrogenase ! Content:! 4 The!pyruvate!dehydrogenase!reaction!mechanism!!

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

  • Metabolic  Biochemistry  Lecture  5  

     Lecture 5:The PDH Complex Part 1: Pyruvate Dehydrogenase  Content:  

    -‐ The  pyruvate  dehydrogenase  reaction  mechanism    -‐ Roles  of  vitamin  derivatives  in  the  pyruvate  dehydrogenase  complex  reaction    

     Pyruvate Dehydrogenase Complex  that  is  a  multi-‐enzyme  that  contains  3  types  of  different  enzymes,  E1,  E2  and  E3.  

    -‐ Responsible  in  generating  acetyl  co-‐A  from  pyruvate,  this  acetyl  co-‐A  enters  the  citric  acid  cycle    -‐ Aerobic  processes  that  occur  in  the  mitochondria  are  pyruvate  dehydrogenase,  citric  acid  cycle  and  oxidation  

    phosphorylation      Overview  of  oxidative  respiration:  

    1) Pyruvate  dehydrogenase:  occurs  in  mitochondria    2) Citric  acid  cycle:  matrix  3) Oxidative  phosphorylation:  inner  and  outer  membrane    

     Pyruvate:  

    -‐ Made  from  glycolysis  needs  to  be  transported  into  the  mitochondria  for  the  next  phase  -‐ Pyruvate  and  H+  ions  go  through  pores  in  the  outer  membrane  but  cannot  get  into  inner  membrane    -‐ Symporter:  channel  in  cell  membrane:  allows  both  pyruvate  and  H+  into  the  inner  membrane  into  the  matrix  

    as  both  as  important  in  process    ATP  and  Muscles:  

    -‐ Energy  currency  of  cells  -‐ Power  enzyme  reactions  via  ‘coupling’  -‐ Non-‐enzymatic  reactions:  muscle  contraction    -‐ Main  difference  in  slow  oxidative  and  fast  oxidative  is  the  use  e.g.  slow  for  long  distance  and  fast  for  quick  

    movements    -‐ Based  on  where  they  get  ATP  from    -‐ 3  types  of  muscle  fibres:  

     Muscle  types    

    -‐ Difference  in  colour  due  to  blood  supply  and  myoglobin  levels  (stores  oxygen)    -‐ Slow  oxidative    

    o Need  high  oxygen  supply  (dark  red  because  high  amount  of  myoglobin)  o For  long  distance  e.g.  marathon  

    -‐ Fast  glycolytic    o Low  mitochondria  and  blood  supply  (don’t  need  stored  hemoglobin)  o Short  powerful  bursts    

    -‐ Fast  oxidative  glycolytic    

  • Metabolic  Biochemistry  Lecture  5  

     o Mixed  o Short  powerful  bursts    

     Pyruvate  entry      Pyruvate  à  Acetyl  CoA  –  enzyme  that  does  this  is  pyruvate  dehydrogenase    

    -‐ This  releases  carbon  dioxide  and  2  electrons  -‐ Acetyl  CoA  is  a  common  entry  point  into  the  citric  acid  cycle  for  protein  and  fats  for  production  of  energy  via  

    aerobic  respiration    -‐ Only  carbs  can  go  through  glycolysis  to  create  pyruvate  that  can  then  enter  pyruvate  dehydrogenase    

                                 Pyruvate  catabolism:    

     -‐  Overall  reaction  Pyruvate  reacted  with  Coenzyme  A  via  athyl  –  NAD  à  reduced  to  NADH  (this  is  later  used  in  

    used  in  oxidative  phosphorylation)  -‐ One  of  the  three  carbons  in  pyruvate  (yellow  group)  is  released  as  carbon  dioxide  leaving  2  carbon  

    compound  bound  to  coenzyme  a  to  create  Acetyl  CoA  -‐ Dehydrogenation  (hydrogen  removal)  and  decarboxylation  (CO2  removal)  of  pyruvate  

    o Generate  NADH  (reduced  electron  carrier)  -‐ Highly  exergonic,  Delta  G  of  -‐33,  essentially  irreversible  in  physiological  conditions  –  this  is  why  fatty  acids  

    cannot  be  used  to  produce  glucose  via  gluconeogenesis          Pyruvate  Dehydrogenase  complex  (PDH)      Co-‐enzyme:  organic  non-‐protein  that  interacts  with  a  protein  to  make  an  enzyme    PDH  –  interacts  with  5  co-‐enzymes:    

    -‐ TPP:  Thymine  pyro  phosphate  –  comes  from  thiamine  or  vitamin  B1,  in  fortified  bread  and  grain,  wheat  germs  and  pork    

    -‐ Lipoamide:  comes  from  lipoic  acid  from  green  leafy  vegetables,  red  meat  and  beer  -‐ Coenzyme  A:  comes  as  pantothenic  acid  –  vitamin  B5;  in  broccoli,  eggs,  mushrooms  and  poultry    -‐ FAD  –  riboflavin,  vitamin  B2  –  cereals,  nuts,  eggs,  milk,  red  meat,  green  vegies  -‐ NAD+:  Vitamin  B3  –  dairy,  poultry,  fish,  nuts,  eggs    

     

  • Metabolic  Biochemistry  Lecture  5  

     Redox  reactions  –  Revision:    Oxidized:  

    -‐ Lost  hydrogen    -‐ Lost  electron    -‐ Given  to  reduced  electron  carriers  (e.g.  NADH)    

    Reduced    -‐ Gained  Hydrogen    -‐ Gained  electron    -‐ Often  paired  with  hydride  ion  (H,  1  hydrogen,  2  electrons)    -‐ Therefore  molecule  is  negatively  charged.    

     TPP

    -‐ Thiamine  pyrophosphate    o Sourced  from  thiamine  (Vit.  B1)    o Acidic  carbon  interacts  with  middle  carbon   of  

    pyruvate    o TPP  is  required  for  carbohydrate  

    metabolism  –  brain  cannot  catabolize  fatty   acids  for  energy    

    o Therefore  brain  must  have  a  function  PDH  complex  to  turn  pyruvate  from  glucose  into   acetyl  CoA  to  enter  the  citric  acid  cycle    

    o Thiamine  deficit  leads  to  Beri  Beri  –  which  has  symptoms  of  muscle  weakness,  paralysis  or  heart  failure  

    o Causes:  diet  lacking  thiamine  (white  rice,  alcoholism),  genetics    o Treatment  through  foods  rich  in  thiamine    o TPP  is  a  cofactor  of  the  first  unit  in  PDH  –  called  E1  

     Lipoamide

    -‐ Second  Coenzyme,  interacts  with  E2  of  PDH  -‐ Dithiol  group  (SS  group)  gets  oxidized  to  SS  or  

    reduced  to  2  lots  of  SH  -‐ During  redox  reactions,  one  of  the  thial  groups  

    gets  acetylated  and  this  bounds  to  a  2  carbon  compound  

    -‐ Permanently  bound  to  dihydrolipoyl  transacetylase  (E2  of  PDH)    

    -‐ The  carboxyl  group  of  lipolic  acid  binds  through  to  the  amino  group  of  the  side  chain  of  the  lysine  residue  (NH)  in  E2  forming  lipoamide  

     Coenzyme A

    -‐ Not  bound  to  enzymes  in  PDH  group    -‐ Carries  acetyl  groups    -‐ Binds  acetate  to  make  acetyl-‐coA  -‐ Has  3  components  –  modified  ADP,  a  

    pantothenic  acid  (Vit  B5)  and  a  Beta-‐Mercapto-‐thylamine    

    -‐ The  thiol  groups  in  the  beta  Mercapto-‐thylamine  section  binds  with  acetate  to  create  Acetyl  coA  

  • Metabolic  Biochemistry  Lecture  5  

     FAD

    -‐ Flavin  adenine  dinucleotide,  an  electron  carrier  o Can  accept  1  or  2  hydride  ions  and  thus  1  or  2  electrons    o Permanently  bound  to  PDH  complex  –  NAD  can  dissociate  and  move  into  the  mitochondrial  matrix  o FAD  bound  to  E3  in  the  PDH  complex,  made  from  Vit  B2  o The  Dimethlylisoalloxazine  ring  is  what  accepts  the  hydride  ions  as  these  have  double  bonds  which  

    break  and  hydrogen  can  be  attached    

       NAD

    -‐ Nicotinamide  adenine  dinucleotide  o Carries  1  hydride  and  1  electron    o Benzoid  ring  accepts  hydride  ion  (double   bond  

    broken  hydrogen  can  attach)    o Sourced  from  niacin  (vitamin  B3)  o NAD  is  electron  acceptor  (oxidized  form,   NADH  is  

    reduced  form  as  has  already  accepted  a   H)  o Does  not  partake  in  reaction  just  carries   electrons  

    around  the  mitochondria  –  readily   recycled  o Deficit  of  Niacin  can  cause  rough  skin   known  as  

    Pellagra  o Niacin  is  used  for  the  pyrimidine  ring  in  NAD+    o Symptoms:  dermatitis,  diarrhea,  possible  death  o Niacin  is  supplemented  from  tryptophan    o Causes:  corn  based  diets  (low  in  tryptophan),  alcoholism    o Treatment:  diet  changes    

     PDH complex

       

    -‐ Each  appears  in  the  complex  as  multiple  complexes    -‐ Structure  helps  to  control  the  substrates  through  the  complex  -‐ Long  arm  in  Lipoaminde  in  E2  keeps  the  substrate  in  complex  controlled,  holding  intimidate  substrates  close  

    to  the  complex  keeps  the  rate  of  the  reactions  to  stay  rapid  as  the  intimidates  don’t  diffuse  away  also  makes  sure  the  substrates  are  available  for  the  reactions  and  that  they  are  not  used  by  any  other  enzymes  or  lost  

    -‐ Overall  reactions  sees  pyruvate  converted  to  acetyl  CoA  and  1  carbon  dioxide  is  released,  all  of  the  3  enzymes  (E1-‐E3)  as  well  as  the  5  coenzymes  are  needed  

    -‐ Very  favorable  as  gives  a  large  negative  Delta  G    

  • Metabolic  Biochemistry  Lecture  5  

     PDH COMPLEX REACTION BREAKDOWN 5 STEPS  

    1. Pyruvate  is  decarboxylated  and  product  (acetyl  group)  binds  to  coenzyme  TPP  2. Acetyl  group  oxidized  to  acetate  and  electrons  are  transferred  to  thiol  groups  in  lipoamide  (reduced)  (E2  –  

    enzyme  is  Dihydrolipoyl  tranacetylase)  –  2  carbon  acetate  binds  to  the  long  arm  chain  of  lipoamine  via  S  group.  

    3. Acetate  binds  Coenzyme  A  to  make  Acetyl-‐CoA  (enters  citric  acid  cycle)    4. 2  H-‐  Ions  removed  from  reduced  lipoamide  (recycled)  and  transferred  to  FAD  this  makes  FADH2  (need  to  

    recycle  the  coenzymes  do  that  PDH  can  catabolize  other  pyruvate)  E3  is  Dihydrylipoyl  Dehydrogenase.  5. Electrons  transferred  to  NAD+  (this  recycles  the  coenzyme)  

     

     What  happens  is  you  have  PDH  deficit?  

    -‐ Only  anaerobic  catabolism  of  glucose  (build  up  of  pyruvate  and  lactic  acid)  o Pyruvate  cannot  be  catabolized  via  citric  acid  cycle  

    -‐ Lactic  acidosis  and  PDH  deficiency  syndrome    -‐ Syndrome  seen  in  infancy    

    o Slow  neuronal  development  and  motor  skills    o Brain  requires  aerobic  catabolism  of  glucose  

    -‐ Genetic  mutations  (mostly  E1)    -‐ Diagnosis:  skin  sample  and  analysis  of  fibroblast  enzyme  activity    -‐ No  treatment  

     E2  of  PDH-‐  clinical  study    

    -‐ E2  of  PDH  has  2  sulfhydryl  groups    -‐ Mercury  has  high  affinity  for  sulfhydryl  groups    

    o Outcompetes  and  blocks  site  of  enzyme  o PDH  complex  is  inhibited    

    -‐ Mercury  used  to  shape  felt  hats  -‐ Decreased  central  nervous  system  function    

    o This  is  where  “mad  as  a  hatter”  came  from    

  • Metabolic  Biochemistry  Lecture  5  

     Part 2: Citric Acid Cycle (TCA/Krebs Cycle) Contents:  

    -‐ Central  role  of  citric  acid  cycle  in  aerobic  energy  metabolism    -‐ Enzymes,  cofactors  and  metabolic  intermediates  of  the  citric  acid  cycle    -‐ Regulation  of  citric  acid  cycle    -‐ Amphibolic  nature  of  citric  acid  cycle    

     Citric  Acid  Cycle:    

    -‐ 2  Carbon  compound  (acetyl  CoA)  enters  the  cycle,  2  carbon  dioxide  atoms  are  released)    -‐ Electrons  are  transferred  to  electron  carriers  NAD  and  FAD  -‐ 1  GTP  is  made  and  quickly  converted  to  ATP    -‐ Common  oxidation  pathway  for  carbohydrates,  proteins  and  fatty  acids  -‐ Acetyl-‐CoA  from  the  PDH  complex  enters  the  cycle    

     -‐ 8  Different  reactions  take  place  in  the  cycle    -‐ Occurs  twice  to  fully  oxidize  one  glucose  molecule  -‐ 1  Glucose  à  2  pyruvate  and  2  acetyl  CoA  

     Step 1: Citrate Synthase

    Ø Condensation  of  oxaloacetate    (recycled  from  TCA  cycle)  and  acetyl-‐CoA  (combination  of  2  molecules,  with  loss  of  a  small  one)  

    Ø Hydrolysis  (addition  of  water)  releases  coenzyme  A  and  produces  citrate  (coenzyme  A  is  reused  as  a  coenzyme  in  the  PDH  complex)    

    Ø Enzyme:  citrate  synthase    Ø Citrate  synthase  is  a  dimeric  protein  (two  individual  protein)  which  undergoes  conformation  changes  after  

    the  oxaloacetate  bonds,  opening  up  the  binding  site  for  CoA  –  this  stops  CoA  from  binding  prematurely  –  otherwise  cleavage  would  see  the  2  carbon  acetate  needed  for  citric  acid  cycle  would  float  off  

       Step 2: Aconitase

    Ø Formation  of  isocitrate  (H  and  OH  group  swap  molecular  places  in  prep  for  decarboxylation)  Ø Occurs  through  dehydration  (water  loss)  and  then  hydrolysis    Ø Aconitase  has  an  iron  III  sulfide  in  the  center  and  helps  in  substrate  binding  for  citrate    Ø Start  product  citrate  and  final  isocitrate  are  isomers  –  this  swap  occurs  with  the  purpose  of  allowing  further  

    reactions  to  occur  

     

  • Metabolic  Biochemistry  Lecture  5  

     Step 3: isocitrate dehydrogenase

    Ø Oxidation  (loss  of  an  e-‐  transferred  to  NAD  to  make  NADH)  and  decarboxylation  (removal  of  carbon)  of  isocitrate  to  a-‐ketoglutarate  

    Ø Isocitrate  is  oxidized  to  the  intermediate  oxalosuccinate  –  the  NADH  is  what  is  being  reduced).  Intimidate  stays  bound  to  the  enzyme  until  its  decarboxylated  and  released  as  a-‐ketoglutarate  

    Ø Isocitrate  dehydrogenase  uses  manganese  ions  as  a  cofactor  to  stabilize  oxalosuccinate    

       Step 4: a-ketoglutarate dehydrogenase complex

    Ø Oxidation  and  decarboxylation  of  a-‐ketoglutarate  to  succinyl  CoA  Ø Releases  CO2  electrons  are  transferred  to  NAD  to  make  NADH  Ø Identical  to  pyruvate  dehydrogenase  complex    

    o Similar  subunits    o Same  coenzymes    

                       

    Steps so far: 1. Condensation 2. (a) Dehydration, (b) Hydration 3. Oxidative decarboxylation 4. Oxidative decarboxylation

    Products so far:

    Ø 2NADH Ø 2CO2

    Next steps have the aim of: regeneration of oxaloacetate Part 3: Citric Acid Cycle Part 2 – Regeneration of oxaloacetate Step 5: Succinyl-CoA synthetase  

    Ø Synthetase:  condensation  using  nucleotide  triphosphate  (e.g.  ATP,  GTP)  Ø The  thio-‐die-‐ster  bond  highlighted  between  CoA  and  Succinyl  is  a  high  energy  bond  –  this  energy  is  

    harnessed  and  stored  by  converting  GDP  -‐-‐>  GTP    Ø Released  coenzyme  is  recycled  (used  in  E2  in  PDH)    Ø Bond  between  CoA  and  succinate  releases  energy  which  is  stored  in  GTP    

  • Metabolic  Biochemistry  Lecture  5  

     o Phosphate  group  in  GTP  is  transferred  to  ADP  to  make  ATP  uses  the  enzyme  nucleoside-‐

    diphosphate  kinase  Ø The  enzyme  (succincyl  CoA  synthetase)  has  two  subunits  one  binds  succinyl  CoA  and  the  other  the  

    diphosphate  nucleotide  

       Step 6: Succinate Dehydrogenase  

    Ø Oxidation  of  succinate  to  fumerate  using  succinate  dehydrogenase    o FAD  is  reduced  to  FADH2  

    Ø Enzyme  contains  3  iron  sulfide  clusters  to  help  with  electron  transfer  reactions  in  the  electron  transport  chain    

    Ø Enzyme  is  bound  to  inner  mitochondrial  membrane                    

    Step 7: Fumarase

    -‐ Hydration  (add  water)  of  fumarate  à  malate    -‐ Fumerate  becomes  L-‐Malate  -‐ Reaction  is  reversible    -‐ Fumarase  is  very  stereo  specific    

    o Will  only  interact  with  Trans  form  of  fumarate,  NOT  CIS-‐FUMERATE  o Will  only  produce  L-‐malate    

       Step 8: Malate dehydrogenase

    -‐ Oxidation  of  L-‐Malate  à  oxaloacetate    -‐ This  step  is  responsible  for  the  regeneration  of  oxaloacetate  so  the  citric  acid  cycle  can  continue    

    o Paired  with  reduction  of  NAD+  to  NADH  -‐ Not  energy  is  put  in  to  the  reaction  –  reaction  is  powered  by  equilibrium  -‐ The  concentration  of  oxaloacetate  in  cell  is  quite  low  however  metabolic  reactions  such  as  the  1st  step  in  the  

    citric  acid  cycle  are  constantly  using  oxaloacetate  away  thereby  driving  reaction  in  the  forward  direction  –  despite  the  unfavorable  positive  delta  G  

  • Metabolic  Biochemistry  Lecture  5  

     -‐ Reverse  reaction  more  favorable  due  to  high  positive  delta  G    

    o Oxaloacetate  is  always  in  demand  which  drives  reaction  to  reach  equilibrium  by  creating  more   Energy conversion/conservation

    -‐ Energy  is  efficiently  conserved  in  the  citric  acid  cycle    -‐ Energy  is  released  when  molecules  are  oxidized    -‐ 2  carbon  acetyl-‐CoA  enters  and  released  as  2  carbon  

    dioxides  -‐ Energy  released  is  conserved  and  stored  in  reduced  

    electron  carriers  (NADH,  FADH2)    -‐ Reduced  electron  carriers  then  proceed  on  to  next  system    

    o Oxidative  phosphorylation  –  makes  ATP  for  cell    -‐ Energy  conserved  by  breaking  the  bond  in  succincinyl-‐CoA  is  balanced  by  converting  GTP  à  ATP  TCA cycle is amphibolic and anaplerotic  -‐ TCA  cycle  involves  catabolism  and  anabolism  (amphibolic)    

    o Oxidative  catabolism  i.e.  breakdown  of  molecules  (blue  boxes)  of  carbs,  proteins  and  fats  

    o Anabolism  using  intermediates    o Oxaloacetate  is  a  precursor  for  the  amino  acid  aspartate  acid  

    à  pyrimidine    o Also  can  be  used  in  gluconeogenesis    o Without  these,  the  cell  couldn’t  make  energy  efficiently    

    -‐ Anapleorotic  role  (red  arrows)  o Replenishes  intermediates  of  the  cycle  from  external  pathways    

    -‐ Via  enzyme  PEP  carboxylase    -‐ The  citric  acid  cycle  can  only  work  effectively  when  there  is  enough  oxaloacetate  for  the  first  steps  -‐ PEP  is  regulated  positively  by  acetyl  CoA  so  when  it  builds  up  in  the  cell  it  indicates  the  citric  acid  cycle  isn’t  

    working  well  enough  as  there  is  a  build  up  of  the  acetyl  CoA  because  there  is  a  low  count  of  oxaloacetate    -‐ PEP  carboxylase  takes  PEP  directly  

    from  reaction  9  of  glycolysis  and  converts  it  to  oxaloacetate  allowing   the  citric  acid  cycle  to  catch  up  and  use   the  remaining  Acetyl  CoA  

    -‐ Then  as  the  levels  of  Acetyl  CoA  drop  back  down,  the  positive  effect  of  PEP   on  the  citric  acid  cycle  tells  it  to  slow  down      

     Regulation  Level  1  

    -‐ Conversion  of  pyruvate  to  Acetyl  CoA   via  the  PDH  complex    

    -‐ This  is  allosterically  regulated  i.e.  there  is  a  direct  link  to  the  energy  needs  of  the  cells    

    Negative  regulators  (turning  PDH  off)    -‐ An  abundance  of  energy  (ATP,  NADH   or  

    acetyl-‐CoA)  and  fatty  acids  (shuts  down  PDH  because  acetyl  CoA  is  produced  from  the  beta  oxidation  of  fatty  acids  so  the  PDH  doesn’t  need  to  function)  

     

  • Metabolic  Biochemistry  Lecture  5  

     Positive  regulators  (turning  PDH  on)  

    -‐ An  abundance  of  AMP  of  CoA  -‐ Indicates  the  cell  is  low  in  energy  –  needs  acetyl  CoA  therefore  the  PDH  cycle  must  run    

     Regulation  step  2  

    -‐ Exergonic  reactions  that  need  reactants  otherwise  the  whole  cycle  is  slowed  down    -‐ Cycle  therefore  products  act  as  reactants  in  the  next  step    -‐ AKA  rate  limiting  steps,  these  are:  

    o Citrate  synthase  o Isocitrate  dehydrogenase  o A-‐ketoglutarate  dehydrogenase  

    -‐ Act  as  negative  inhibitors    o Stopped  by  product  inhibition  (when  products  of  the  enzyme  build  up  in  the  cell  so  the  enzyme  will  

    shut  down  –  stopping  the  citric  acid  cycle)  -‐ Calcium  is  an  activator  for  isocitrate  and  A-‐ketoglutarate,  that  is  used  to  indicate  the  muscles  are  contracting  

    meaning  the  cells  require  more  energy  to  be  produced                                    PDH  Complex  Regulation      

    -‐ Control  of  PDH  particular  E1  of  complex  -‐ Allosterically  controlled  through  

    phosphorylation    -‐ 2  enzymes  are  used    

    1.  PDH  Kinase  –  phosphorylates  (turns  off  PDH)  2.  PDH  Phosphatase  –  dephosphorylates  turning  PDH  on      

    -‐ When  there  is  plenty  of  energy  (e.g.  ADP,  NADH,  Acetyl  CoA)  then  PDH  kinase  is  turned  off  phosphorylating  E1  turning  it  off  

    -‐ When  cell  needs  energy  (indicated  by  NAD,  ADP  and  Pyruvate)  PDH  phosphatase  is  turned  on  which  then  activates  the  PDH  complex  by  dephosphorylating  the  enzyme    

    -‐ PDH  is  activated  by  signals  of  work  e.g.  muscle  contraction            

  • Metabolic  Biochemistry  Lecture  5  

     Clinical  Study:  Vertebrate  Poison  1080      

       

    -‐ Poison  permanently  binds  and  inhibits  aconitase    -‐ Shuts  down  the  whole  citric  acid  cycle    -‐ Used  as  a  poison  to  control  pest  animals    -‐ Native  Australian  species  have  developed  a  tolerance  for  sodium  monofluroacetate  (immune  to  poison  

    1080)      Clinical  Study  –  Citrate      

    -‐ Step  1  of  Citric  Acid  Cycle    -‐ Citrate  is  a  metal  chelator    

    o Binds  metal  ions  to  inhibit  the  metal    o Citrate  synthase  produced  on  a  large  scale  from  the  fungus  aspergillus  niger    o This  is  excreted  by  root  cells  and  builds  up  those  metals  in  the  soil  and  can  be  taken  up  by  other  

    plants  that  don’t  make  it  themselves  o Idea  of  creating  genetically  engineered  crops  to  do  this  o GMO’s  increase  crop  survival  and  therefore  yield