ME 603 AEP Introduction 1

Embed Size (px)

Citation preview

  • 8/20/2019 ME 603 AEP Introduction 1

    1/86

    ME 603: Applied Elasticity and Plasticity 

    INTRODUCTIONINTRODUCTION--11

    Prof. S.K.Sahoo

  • 8/20/2019 ME 603 AEP Introduction 1

    2/86

    INTRODUCTION

    • Objective – Understand different methods that used to analysestress and strain in solid body.

     – Apply various principles to solve problems in a

     practical situation and compare its solution with t at o ta ne y so mec an cs approac .

     – Analyze stresses inside solid body cause byexternal and internal forces.

     – Examine different yield criteria in diverse failuresituations.

     – Relate theory of plasticity to manufacturing.

  • 8/20/2019 ME 603 AEP Introduction 1

    3/86

    INTRODUCTION (Cont…)

    • Learning Outcome1.0 Can explain the stress, strain, torsion and bending properties.

    2.0 Apply the concepts of stress, strain, torsion and bending and deflectionof bar and beam in engineering field

    3.0 Calculate and determine the stress, strain and deflection of solid bodythat subjected to external and internal load.

     4.0 Enable to design the optimum dimension of the body in a variety of situations where specific properties are required.

    5.0 Relates the basic theory of elasticity and plasticity with application of 

    solid mechanics.6.0 It provides an understanding how the stress-strain characteristics affectultimate failure of materials.

    7.0 Able to relate theory of plasticity to design tooling in manufacturinginstead of using ‘thumb rule’.

  • 8/20/2019 ME 603 AEP Introduction 1

    4/86

    TOPICS TO COVER 

    • Analysis of stress and strain; Notation of stress, Signconvention, Stress tensor, St. Venant principles, Bauschinger effect, Principle of Superposition, Differential equation of Equilibrium, Generalised Hooke’s Law, Compatibility andconstitutive equations; Plane stress and plane strain problems,

    • Stress functions; with and without body forces, Applications tos mp e pro ems; pp cat on n rectangu ar an po ar  coordinates.

    • 3D stress and strain system, Principal stresses and principal

    axes, Stress invariants, hydrostatic stress, stress deviator,examples.

    • Introduction to complex potentials in two dimensional andaxisymmetric problems; Variational methods; Anisotropicelasticity; Finite deformation elasticity

  • 8/20/2019 ME 603 AEP Introduction 1

    5/86

    TOPICS (Cont…)

    • Yield Criteria, Yield surfaces. Deformationand flow theories;

    • Theory of plastic constitutive equations;Axis mmetric and s hericall s mmetric

     problems;

    • Slipline and upper bound theory and

    application to simple problems of forgingextrusion, drawing and indentation;

    • Introduction to wave propagation in plasticmaterials.

  • 8/20/2019 ME 603 AEP Introduction 1

    6/86

    MappingObjectives/Topics and Outcomes

    Analysis of stress and strain, Differential equation of Equilibrium, Compatibility and constitutive equations;Plane stress and plane strain problems

    Stress functions; with and without body forces,Applications to simple problems; Application inrectangular and polar coordinates.

     

    Outcome(s)

    1.03.0

    2.05.0

    4.07.0

      ,stresses and principal axes, Stress invariants,hydrostatic stress, stress deviator, examples.

    Theory of plastic constitutive equations; Axisymmetricand spherically symmetric problems

    Slipline and upper bound theory and application tosimple problems of forging extrusion, drawing and

    indentation

    Yield Criteria, Yield surfaces.

    Deformation and flow theories4.07.0

    4.0

    6.0

    1.03.0

    5.0

  • 8/20/2019 ME 603 AEP Introduction 1

    7/86

    REFERENCES1. Timeshenko & Goodier, Theory of Elasticity - McGraw Hill, 3th

    ed. 1982

    2. J. Chakrabarty, Applied Plasticity- Springer, New York, 1st ed.,2000

    3. Hoffman and Sachs, Theory of Plasticity - McGraw Hill., 2nd ed.

     4. Johnson and Mellor, Engineering Plasticity- Van-Nostrand., 1stedition, 1983

    5. Computational Elasticity – M Ameen, Narosa Publishing House.

    6. Advanced Mechanics of Materials – A P Boresi and R J Schmidt,John Wiley & Sons, Inc.

    7. Advanced Mechanics of Solids – L S Srinath, Tata McGraw-Hill

  • 8/20/2019 ME 603 AEP Introduction 1

    8/86

    dx

    Example: Find the extension of a uniform cross section bar 

    subjected to uniformly varying tension due to self weight.

    PX=   A x (=weight density of bar )d = PX dx / A E;

    = PX dx/AE= A x dx/AE

     

    L

    0

    L

    0LX

    L

    P + dP

    P

    d

     

    = ( /E) x dx= ( L /2E)

    If total weight of bar W=  A L   = W/AL

    =WL/2AE

    0

    =P/A , / =E , = /L

    So,  = PL / A E

  • 8/20/2019 ME 603 AEP Introduction 1

    9/86

    F

       L

       D

       d   1

       d  x

    Example: Find the extension of a bar of tapering

    cross section from diameter d to D by the load F.

     

    =F/A , / =E , = /L

    So,  = FL / A E

    F

    X

       d

    Bar of Tapering Section:

    d1 = d + [(D - d) / L] * X

    So, extension of strip of thickness dx is, = F dx / E[(/4){d + [(D - d) / L] * X}2]

  • 8/20/2019 ME 603 AEP Introduction 1

    10/86

    Hence, total extension is,

    = 4 F dx /[E {d+kx}2 ]

    = - [4F/  E]  1/k [ {1 /(d +kx)}] dx

     

    L

    0

    L

    0

     

    =- [4FL/  E(D-d)] {1/(d+D -d) - 1/d}

    = 4FL/( E D d)

    Check :- When both diameter is same =dWhen d = D=d =FL/ [( /4)* d2E ] = FL /AE

  • 8/20/2019 ME 603 AEP Introduction 1

    11/86

    PP

    X

     b2  b1 bx

    x

    Example: Find the extension of a tapering bar of 

    uniform thickness t & width varies from b1 to b2.

    Bar of Tapering Section:

     bx = b1 + [(b2 - b1) / L] * X = b1 + k*x,Where, k = (b2 - b1) / L

    = Px / [Et(b1

    + k*X)]

  • 8/20/2019 ME 603 AEP Introduction 1

    12/86

    = P/Et ∫ x / [ (b1 - k*X)],

     

    L =   = Px / [Et(b1 - k*X)],

    L

    0

    L

    0

    0

    L

     

    = - P/Etk * loge [ (b1 - k*X)]0 ,

    = PLloge(b

    1/b

    2) / [Et(b

    1 – b

    2)]

  • 8/20/2019 ME 603 AEP Introduction 1

    13/86

    Example: Find Elongation of a Bar of circular tapering

    section due to self weight.from  =PL/AE

    =Wx*x/(AxE)

    now Wx=1/3* AxX 

    where Wx=Wt.of the bar  

    x

    d

    A B  

    =Wt. density

    so   = X *x/(3E)so now

    L=  = X  *x/(3E)=  /(3E) Xdx= [/3E ] [X2 /2]

    = L2/(6E)

    L

    0

    L

    0

    X

    L

    0

  • 8/20/2019 ME 603 AEP Introduction 1

    14/86

    Let W=total weight of bar = (1/3)*(/4*d2)L =12W/ (*d2L)

    so, =

    =2WL/ (*d2E)

    =WL/[2*(*d2/4)*E]

    =WL /2*A*E

  • 8/20/2019 ME 603 AEP Introduction 1

    15/86

    Example: Find the extension of a bar of uniform strength:(i.e.

    stress is constant at all points of the bar) due to self weight.

    Down ward force of strip = w*A*dx

    w is wt. density

     p is stress

    Area = A1

    dx

    L

    x

    A

    B C

    DForce = p*A

    Force = p*(A+dA)

    dxB CA D

    comparing force at BC &AD level of strip of thickness dx

     p* (A + dA) = p*A + w*A*dx,

    dA/A = wdx/p, Integrating logeA = wx/p + C,at x = 0, A = A2 and x = L, A = A1, C = A2

    loge(A/A2) = wx/p or  A = ewx/p

    Area = A2

    (where A is cross section area at any level x of bar of uniform strength )

  • 8/20/2019 ME 603 AEP Introduction 1

    16/86

    Example: A rod of length L and cross sectional area A is snugly fitted(no compression

    or tension of the spring) between a rigid support at its left and a spring at its right.

    The spring has stiffness k. Derive a equation for the stress in the rod due to increase

    in temperature of t0C. Thermal expansion coefficient is α.

    Strain due to temperature rise: α t

    Strain due to compressive force: σ/E

     

    K x = σ A so, x/L = σ A/kL

     

    Both are balanced by strain by spring force = - σA/kL

    So, σ/E+ α t = - σA/kL Gives, σ = - (E α t)/(1+EA/kL)

    Let P be the balanced force. The free thermal expansion becomes two part,

    by elastic force and by spring

    - α t L = PL/AE + P/k

    Gives, P/A= σ = - (E α t)/(1+EA/kL)

  • 8/20/2019 ME 603 AEP Introduction 1

    17/86

    Example: A material is subjected to tensile stress of σx & σy at right

    angle to each other (σx > σy). Find the condition that the resultant

    stress makes maximum inclination to its normal.

    σxσx

    σy

    σy

    θφ

    NR

  • 8/20/2019 ME 603 AEP Introduction 1

    18/86

    Example: A material is subjected to tensile stress of σx & σy at right

    angle to each other (σx > σy). Find the condition that the resultant

    stress makes maximum inclination to its normal.

          

        222

    Cos y x y x

    n

       

       

           2

    22

    2SinSin

      y x x y

     s

         

       

     

      

    222

    22tan

    Cos

    Sin

     y x y x

     y x

    For max. value of φ wrt θ, tanφ should be max. or    0tan  d 

    σxσx

    σy

    σy

    θφ

    NR

    φσn

    τ

    02)2(2

    22

    2cos22

    222

     

     

       

       

       

        SinSinCos

      y x y x y x y x y x

       

          

    22

    2cos222

    2SinCos  y x y x y x

     

     

    )90tan(cot

    22

    2222tan     

     

     

       

         

       

      n

     y x

     y x y x

    Sin

    Cos

          902

     

     y x

     y x

      

           1sin

    22

    1

    Value of θ at Maximum value of φ  

        

       

     

    2sin22

    cos2tan

    max

    max

    max

    Cos y x y x

     y x

    )sin1()sin1(

    cos)(

    cos

    sin

    maxmax

    max

    max

    max

        

       

     

     

     y x

     y x

    max

    max

    sin1

    sin1

     

     

     

     

     y

     x

     y x

     y x

      

       

    maxsin givessolving

  • 8/20/2019 ME 603 AEP Introduction 1

    19/86

    Example:  A plate of uniform thickness 1 cm and dimension 3 x 2 cm is acted upon by

    the loads shown. Taking E = 2 x 107 N/cm2, determine     x yand  . Poisson’s ratio is

    0.3. 42 kN

      y

      18 kN 2 cm 18 kN

      x

      42 kN  3cm 

      N  N cm

    180009000   2/

     

     xcm x cm2 1

      y N 

    cm x cm N cm

    42000

    3 114000   2/

    Hooke’s law in two dimensions states that:

      x x y E x

     x   1 1

    2 109000 0 3 14000 240 10

    7

    6[ ] [ . ( ]

    and     y y x E x  x

      1 1

    2 10 14000 0 3 9000 565 1076

    [ ] [ . ( ]

  • 8/20/2019 ME 603 AEP Introduction 1

    20/86

    Example: A composite bar made up of aluminum and steel is held between two supports. The bars are stress free at 400c. What will be thestresses in the bars when the temp. drops to 200C, if 

    (a) the supports are unyielding

    (b)the supports come nearer to

    each other by 0.1 mm.

    Take E al =0.7*105 N/mm2 ;al =23.4*10-6 /0C

     

    Steel Aluminum

    60cm 30cm

    2 cm2 3 cm2

     

    ES=2.1*105 N/mm2 s =11.7*10-6 /0C

    Aal=3 cm2 As=2 cm2

  • 8/20/2019 ME 603 AEP Introduction 1

    21/86

    contraction of steel bar  s = (s/Es)*Ls =[600/(2.1*105)]* s

    contra.of aluminum bar  al = (al/Eal)*Lal =[300/(0.7*105)]* al

     

    Free contraction =Ls s t+ LALAlt

    =600*11.7*10-6*(40-20)+300*23.4*10-6*(40-20)=0.2808 mm.

    Since contraction is checked tensile stresses will be set up. Force beingsame in both As s=Aal al 2 s= 3 al ==> s=1.5 al

     

    (a) When supports are unyielding,   s + al  =  (free contraction)

    =[600/(2.1*105)]* s +[300/(0.7*105)]* al =0.2808 mm

    s=1.5 al so, al =32.76 N/mm2(tensile)   s =49.14 N/mm2(tensile)(b) Supports are yielding:   s + al = ( - 0.1mm

    so, al =21.09 N/mm2(tensile) s =31.64 N/mm2(tensile)

  • 8/20/2019 ME 603 AEP Introduction 1

    22/86

    Example: A circular section tapered bar is rigidly fixed as shown infigure. If the temperature is raised by 300 C, calculate the maximumstress in the bar. Take E=2*105 N/mm2 ; =12*10-6 /0C

    1.0 m

       D   2  =   2   0   0  m  m

       D   1  =   1   0   0  m  m

    X dX

    P P

    AB

     all c/s.

    Free expansion = L  t = 1000*12*10-6*30 =0.36 mm

    Force P induced will prevent a expansion of 0.36 mm = 4PL/(E*d1*d2) = L t

    or P = (/4)*d1*d2  t E=1130400 N

     Now Max. stress = P/(least c/s area) =1130400/(.785*1002) = 144MPa

  • 8/20/2019 ME 603 AEP Introduction 1

    23/86

    Elastic Deformation

    1. Initial 2. Small load 3. Unload

     bondsstretch

    return toinitial

    Elastic means reversible, ie, No permanent deformation

     F  F  Linear-

    elastic Non-Linear-elastic

  • 8/20/2019 ME 603 AEP Introduction 1

    24/86

    Plastic Deformation (Metals)

    1. Initial 2. Small load 3. Unload

     planesstillsheared

     bondsstretch& planesshear 

    Plastic means permanent.

     F 

    elastic + plastic  plastic

     F 

    linear elastic

    elastic plastic

  • 8/20/2019 ME 603 AEP Introduction 1

    25/86

    Elastic Recovery During Plastic Deformation

    Total Strain,  =  elastic +   plastic= /E +   plastic

    •Material has permanent strain when deformed plastically and loadis released. The unloading line is parallel to elastic line as E is a

    material property. The amount of strain get back is called elasticrecovery.•If stress is reapplied, material again responds elastically at the beginning up to a new yield point that is higher than the originalyield point.

  • 8/20/2019 ME 603 AEP Introduction 1

    26/86

    Stress-Strain Diagram

    4

    2

    3

    5

    Elastic

    Region Plastic

    Region

    Strain

    Hardening

    ultimatetensile

    strengthnecking

    yieldstrength

    UTS 

    Elastic

    limit Rate of increase of  

    Rate of increase of strength is less thanrate of decrease of strength due todecrease of diameter 

    Strain ( ) ( L/Lo)

    rac ure

    Elastic regionslope =Young’s (elastic) modulusyield strength

    Plastic regionultimate tensile strengthstrain hardeningfracture

    εEσ 

    ε

    σE    

    Proportionallimit

    Offset

     

    more than rateof decrease of strength due todecrease of diameter 

    = 0.002

    = 0.2%

  • 8/20/2019 ME 603 AEP Introduction 1

    27/86

    Strain /Work Hardening

    • Curve fit to the stress-strain response:

    • An increase in  y due to plastic deformation.

    large

    hardening y1

    - Locking up of grains => increase in strength- Under plastic strain, grains slipping along boundaries

    - We can see this in the true-stress-strain curve also

    T   K  T n

    “true” stress( F / A) “true” strain: ln( L/ Lo)

    hardening exponent:n = 0.15 (some steels)to n = 0.5 (some coppers)

    hardening y0

    Applications:- Cold rolling, forging: part isstronger than casting

  • 8/20/2019 ME 603 AEP Introduction 1

    28/86

    • Ductility may be expressed as either  percent elongation (%

     plastic strain at fracture) or  percent reduction in area.• %AR > %EL is ossible if internal voids form in neck.

    Ductility, %ELDuctility is a measure of the plastic

    deformation that has been sustained at fracture.Measures how much the material can be stretched before fracture

     L f  Ao

     A f  Lo

    Engineering tensile strain, 

    Engineeringtensilestress, 

    smaller %EL(brittle if %EL5%)

    100%   x A

     A A AR

    o

     f  o 

     

    100%   xl 

    l l  EL

    o

    o f   

    A material that suffers very little plastic deformation is brittle.

    High ductility: platinum, steel, copper Good ductility: aluminum

    Low ductility (brittle): chalk, glass, graphite

  • 8/20/2019 ME 603 AEP Introduction 1

    29/86

    • Stress at which noticeable plastic deformation has occurred.

    It is difficult to distinct this point.Hence, many cases stress value at  p = 0.002 offsetis taken for this purpose.Stress at this strain value is also called Proof stress.

    Yield Strength, y

     

    tensile stress,

     y

    for 250 mm sample,  y is at

    = 0.002 =  z / z 

     z = 0.5 mm

    engineering strain,

     p = 0.002 y = yield strength

  • 8/20/2019 ME 603 AEP Introduction 1

    30/86

     Example: Calculate deflection if the proof stress is applied and 

    then partially removed to a stress, MPa) E is the Young’smodulus (200 Gpa).

    Yield Plastic

    Failure

    proof stress

    Stress

    Strainx

  • 8/20/2019 ME 603 AEP Introduction 1

    31/86

     Example: Calculate deflection if the proof stress is applied and 

    then partially removed to a stress, MPa) E is the Young’smodulus (200 Gpa).

    Yield

    0.2% proof stress

    Plastic

    Failure

    Stress

    Strain0.2%

    0.002 /E

    The sample is loaded up to the 0.2% proof stress and then unloaded to a stress, kPa)the strain x = 0.2% + /E = 0.002 + 200/200000= 0.002+0.001 = 0.003

  • 8/20/2019 ME 603 AEP Introduction 1

    32/86

    Ideal Stress Strain Curves

  • 8/20/2019 ME 603 AEP Introduction 1

    33/86

    Typical Stress-Strain Curves for Materials

     

    Rubber

    Aluminium alloy

    Cast Iron

  • 8/20/2019 ME 603 AEP Introduction 1

    34/86

    Tensile Strength, TS

     y

     F = fracture or 

    ultimate

    strength

     

      r   i  n  g

    TS 

      s  s

    • Maximum stress on engineering stress-strain curve.

    • Metals: occurs when noticeable necking starts.• Polymers: occurs when polymer backbone chains are

    aligned and about to break.

    strain

    Typical response of a metal

     

     Neck – actsas stressconcentrator 

      e  n  g   i  n  e

      s   t  r

    engineering strain

  • 8/20/2019 ME 603 AEP Introduction 1

    35/86

    • Energy to break or Energy absorbed breaking a unit volume of material• Approximately, the area under the true stress-strain curve.

    Toughness

    Tensile

    small toughness (ceramics)

    large toughness (metals)fracture

    Brittle fracture: elastic energyDuctile fracture: elastic + plastic energy

    very small toughness(unreinforced polymers)

    Tensile strain,

    stress,

    fracture

    fracture

  • 8/20/2019 ME 603 AEP Introduction 1

    36/86

    Toughness Again….

    • The area under the wholestress/strain curve is theenergy (per unit volume)needed to make it fail.

    • But you get some energy back 

    in elastic recovery (the black  

    .• The remaining area is the

    energy absorbed by thematerial in failing. This is onemeasure of the “toughness”

    of the material.

           S       t     r     e     s     s  ,

    Strain,

    X

    O

    Elastic

    recovery

  • 8/20/2019 ME 603 AEP Introduction 1

    37/86

    • Energy to break or Energy absorbed breaking a unit volume of material• Approximately,  by the area under the true stress-strain curve.

    Toughness

    Tensile

    small toughness (ceramics)

    large toughness (metals)fracture

    Brittle fracture: elastic energyDuctile fracture: elastic + plastic energy

    very small toughness(unreinforced polymers)

    Tensile strain,

    stress,

    fracture

    fracture

  • 8/20/2019 ME 603 AEP Introduction 1

    38/86

    Resilience, U r  and Elastic energy

    • Ability of a material to store energy

     – Energy stored best in elastic region

    • If you load up a material in its elastic region, tosome stressthen the area under the line is a measure of the

    energy you used to do it. This area is actuallythe ener er unit volume of material in the 

    If we assume a linear stress-straincurve this simplifies to  y yr  2

    1U 

      y

    d U r  

      0

     

    sample. It is called Elastic energy.• This energy is stored in the material and will

     be released if you unload it.

  • 8/20/2019 ME 603 AEP Introduction 1

    39/86

    FatigueFracture/failure of a material subjected cyclic stresses

    • Fatigue properties are shown onS-N diagrams.

    • When the stress is reduced belowthe endurance limit , fatiguefailures do not occur for anynumber of cycles.

    • A member may fail due to fatigueat stress levels significantly belowthe ultimate strength if subjectedto many loading cycles.

  • 8/20/2019 ME 603 AEP Introduction 1

    40/86

     Non-Linear Elasticity, Hysteresis

    • In some materials (e.g. some polymers) the stress/strain line iscurved in the elastic region…

    • …and sometimes the loading and  .

    • In that case E is not constant…

    • …and some energy is lost, (given by

    the area between the lines). This iscalled hysteresis.

  • 8/20/2019 ME 603 AEP Introduction 1

    41/86

    Residual Stresses

    • When a single structural element is loaded uniformly

     beyond its yield stress and then unloaded, it is permanentlydeformed but all stresses disappear. This is not the generalresult.

    •  Residual stresses will remain in a structure after loading

    and unloading if  

    • Residual stresses also result from the uneven heating or cooling of structures or structural elements

     

    - only part of the structure undergoes plastic deformation

    - different parts of the structure undergo different plasticdeformations

  • 8/20/2019 ME 603 AEP Introduction 1

    42/86

    Bauschinger Effect

    • The Bauschinger effect refers toa decrease in the compressiveyield stress due to work hardening in tension.

    • It can also refer to a decrease in 

    Tension stress-strain curve

    Unload

     

    work hardening in compression.

    • Work hardening can be used to

    increase the yield strength of amaterial, but it does so at thecost of a lower yield stress inthe reversed direction of loading.

    stress strain curve

    in compression

    Actual compression

    stress-strain curve

    following tensile work

    hardening

    c c

  • 8/20/2019 ME 603 AEP Introduction 1

    43/86

    Principle of Superposition

    • It states that the effects of several actions taking placesimultaneously can be reproduced exactly by addingthe effect of each action separately.

    • The principle is general and has wide applications

    • (i) The structure is elastic• (ii) The stress-strain relationship is linear 

    • (iii) The deformations are small.

  • 8/20/2019 ME 603 AEP Introduction 1

    44/86

    Saint-Venant’s Principle

    • Loads transmitted through rigid plates result in uniform distributionof stress and strain.

     

    • Concentrated loads result in largestresses in the vicinity of the loadapplication point.

    • Saint-Venant’s Principle:Stress distribution may be assumedindependent of the mode of loadapplication except in the immediatevicinity of load application points.

    • Stress and strain distributions become uniform at a relatively shortdistance from the load application

     points.

  • 8/20/2019 ME 603 AEP Introduction 1

    45/86

     Saint-Venant’s Principle

    The Stress, Strain and Displacement Fields Due to TwoDifferent Statically Equivalent Force Distributions onParts of the Body Far Away From the Loading Points AreApproximately the Same.

     x

     P 

     x

     P/2  P/2

     y  y

     xy y

     x

     xy y

     x

     Stresses Approximately Equal 

  • 8/20/2019 ME 603 AEP Introduction 1

    46/86

    Stress - Strain Terminology

  • 8/20/2019 ME 603 AEP Introduction 1

    47/86

    Engineering Stress

    • Shear stress, :

     Area, A

    F t 

    F s

    F • Tensile stress, :

     Area, A

    F t 

    Stress has units:

    N/m2 or kgf/cm2 or Pa

    F t F 

    F s

    =  F s

     Ao

    original area

    before loading

    F t 

    = F t 

     Ao2m

    N=

  • 8/20/2019 ME 603 AEP Introduction 1

    48/86

    • Tensile strain: • Lateral strain:

    Engineering Strain

    Lo

    LL

    w o

    /2

    Low o

    • Shear strain:

    90º

    90º -y 

     x = = tan =   x /y 

    L/2

  • 8/20/2019 ME 603 AEP Introduction 1

    49/86

    When pure shear acts on an element, the

    element deforms into a rhombic shape.

    For convenience the element is rotated by anangle and represented as shown.

     A’ y ’ 

    Shear strain…

    Ξ

    τ x

     A 

    xD C

    For small angles = → tan = AA’ 

     AD(radians)

  • 8/20/2019 ME 603 AEP Introduction 1

    50/86

     A pure shear strain is produced in torsion.

    B

    =

     AB

     AA’ 

     A’  A 

    Shear strain…

     A   A’ 

    L

    θ: Angle of twist of radial line AB to position A’B

    r: radius of cross-sectional area

     =r

    =Lr θ

  • 8/20/2019 ME 603 AEP Introduction 1

    51/86

    Torsion test : Modulus of rigidity : Shear stress

    L

     A

     A’ 

    LT 

    D

    d

    T = Applied torque,J = Polar moment of inertiaJ =  r 2 dA

    Cylindrical shell: J = D4

    d4

    )/32R= Outer radiusr = radius of consideration

    Shear strain = = r /LAngle of twist: = TL/GJShear stress: = Tr/J

    Maximum shear stress = max = TR/J

    G: Modulus of rigidity

    = G

    = =

  • 8/20/2019 ME 603 AEP Introduction 1

    52/86

    Tensile test : Young’s modulus : Tensile strength

    Final

    Necking

    In the linear elastic range:  Hooke’s law: /e = E or, e

     E : Young’s modulus

    rac ure

  • 8/20/2019 ME 603 AEP Introduction 1

    53/86

    Shear strength and Tensile strength

    [approximate relation between shear and tensile strengths]

    Material Tensile-Relation Yield-Relation

    Ultimate Tensile Strength = Su Ultimate Shear Strength = SsuTensile Yield Strength = Syp Shear yield point = Ssyp

    Wrought Steel & alloy steel Ssu ≈ 0.75 x Su Ssyp = Approx 0,58 x Syp

    Ductile Iron Ssu ≈ 0.90 x Su Ssyp = Approx 0,75 x Syp

    Cast Iron Ssu ≈ 1.3 x Su -

    Copper & alloys Ssu ≈ [0.6-0.9] x Su -

     Aluminum & alloys Ssu ≈ 0.65 xSu Ssyp = Approx 0,55 x Syp

  • 8/20/2019 ME 603 AEP Introduction 1

    54/86

    Thermal Stresses

    • A temperature change results in a change in length or thermal strain. There is no stress associated with thethermal strain unless the elongation is restrained bythe supports.

     

     PL

    • Treat the additional support as redundant and applythe principle of superposition.

    coef.expansionthermal

      AE 

     P T 

      0

    0

     AE 

     PL LT 

     P T 

     

       

    • The thermal deformation and the deformation fromthe redundant support must be compatible.

    T  E  A

     P 

    T  AE  P  P T 

      

     

          0

  • 8/20/2019 ME 603 AEP Introduction 1

    55/86

    Poisson's ratio,• Poisson's ratio, nu :

     L L

    ametals: ~ 0.33ceramics: ~ 0.25 polymers: ~ 0.40

    Ratio of lateral to axial strain calledPoisson's ratio .

     F 

     Ao

    /2

    Units:: dimensionless

    > 0.50 Volume decrease with tensile stress

    Volume increase with compressive stress

    -

     L/2

    owo

    Limit of 

    -1 < ν ≤ 0.5

  • 8/20/2019 ME 603 AEP Introduction 1

    56/86

    Volume of cube is (assume the extensions are small)

    Let consider the volume change for a cube

    and since it follows that   ≤0.5

    Change in volume

    0

  • 8/20/2019 ME 603 AEP Introduction 1

    57/86

    • Elastic Shearmodulus, G :

    G

    = G 

    Other Elastic Properties and Relationship

    simpletorsiontest

     M 

     M 

    • Special relations for isotropic materials:

    2(1 )

     E G 

    3(1 2 )

     E  K 

     

    modulus, K:

     pressuretest: Init.

    vol =V o.Vol chg.= V 

     P P  P = - K  V 

    V o

     K V o

  • 8/20/2019 ME 603 AEP Introduction 1

    58/86

    Relationship between Elastic Modulus (E) and Bulk Modulus, K 

       

       

       

      

      

     x x y z

     x y z

     x

     E 

     F o r h y d r o s t a t ic s t r e s s

    i e

     E E 

    1

    12 1 2

    ( )

    ,

    . .

      

       

      

      

      

      

      

      

      

      

      

      

     y z

    v x y z

    v

    v

    v

    S im ila rly a n d a r e e a c h E 

    V olu m e t ric st ra in

     E 

     E 

     B u l k M o d u l u s K   V olu m e tric o r h yd ro st a t ic s t re ss

    V olu m e tr ic st ra in

    i e E K a n d K    E 

    1 2

    31 2

    3 1 2

    3 1 23 1 2

    ,

    ,

    . .

  • 8/20/2019 ME 603 AEP Introduction 1

    59/86

  • 8/20/2019 ME 603 AEP Introduction 1

    60/86

  • 8/20/2019 ME 603 AEP Introduction 1

    61/86

    Example: A bar made of mild steel has the dimensions shown. If an axialforce of P is applied to the bar, determine the change in its dimensionsafter applying the load. The material is in elastic zone.

    E= 200 Gpa

    = P/A   Pa100.161080   6

    3

     P  z 

     

    z = / E

    Lz = L * z

    x = y = - zLx = L * xLy = L * y

    ..

      mm/m108010200

    100.16   69

    6

     st 

     z z

     E 

      

      (Ans)m1205.11080   6z            z z   L

      m/m6.25108032.0   6           z st  y x   v

      (Ans)m28.105.0106.25

    (Ans)m56.21.0106.25

    6

    6

       

       

     y y y

     x x x

     L

     L

  • 8/20/2019 ME 603 AEP Introduction 1

    62/86

     Normal & Shear components of stress 2D Case

     

     xy

      yy

       xy

      xx

       xy

     

     xx   n     x     x

          x      y

          y      x     y

         y

       xy

      yy

         

     

           

     

    2cos2sin

    2

    2sin2cos22

     xy

     y x

     xy

     y x y x

    n

    Considering the conditions for equilibriumof a triangular/ prismatic element

  • 8/20/2019 ME 603 AEP Introduction 1

    63/86

    Principal StressesPrincipal stresses: Maximum and minimum normal stresses

    Principal planes : Planes on which the principal stresses act

           

        2sin2cos22

      xy

     y x y x

    n  

    0 d    n

         

    2cos22sin2  x y x

    : p  The angle defines the orientation of the principal planes.

     y x

     xy p

      

      

      22tan

    - Principal directions are orthogonal to each other -- No Shear stress along principal directions

  • 8/20/2019 ME 603 AEP Introduction 1

    64/86

    2

    2

    22  xy

     y x y x

    n I         

        

     

     

     

       

    Principal Stresses…..

    OR 

     II  I        2

    2

    22  xy

     y x y x

    n II         

          

      

       

  • 8/20/2019 ME 603 AEP Introduction 1

    65/86

    Maximum Shear Stresses

     

    22

    212

    2

    max

       

       

     

     

      

          xy

     y x

    1 1

    2 1

    4

    4

     s p

     s p

     

       

    The angle defines the orientation of the maximum shear stress planes.

    - Maximum shear stress directions are orthogonal to each other -- Maximum Shear stress direction is 450 to principal directions

  • 8/20/2019 ME 603 AEP Introduction 1

    66/86

    Plane (2D) Strain

      

        

      

         

     

    2cos2

    2sin22

    2sin2

    2cos22

    11

    1

     xy y x y x

     xy y x y x

     x

     Normal and shear strain on a plane making angle  with y-axis

    Differentiating wrt   , 

    22

    22

    222

    222

      

      

      

        

     

      

     

     

      

       

     xy y x y x II 

     xy y x y x

     I 

          

          Principal Strains:

    tan 2   xy P  x y

      

     

     we have:

    M h ’ Ci l f Pl St

  • 8/20/2019 ME 603 AEP Introduction 1

    67/86

    Mohr’s Circle for Plane Stress

    • Mohr’s circle for plane stress may be appliedwith simple geometric considerations to

    estimate graphically the principal stresses,max. shear stress, normal & shear stress on adefined plane.

    • For a known state of plane stress plot the points P and P’ and construct thecircle centered at C .

     xy y x         ,,

    2

      2

    22  xy

     y x y x

    a ve   R         

     

    • The principal stresses are obtained at Q & Q’.

     y x

     xy

     pa ve II  I    R  

        

      22tan&,

    •CP is the x-axis and CP’ is y-axis•Angle doubles and rotate in opposite direction

    • To find stress at an angle with respect to the yaxis, a new line CB may be drawn at an angle2 with respect to C P location point B on circle

     gives the stress values.

    I t ti t d M h ’ Ci l

  • 8/20/2019 ME 603 AEP Introduction 1

    68/86

    Instruction to draw Mohr’s Circle

    1. Identify the stresses σx, σy, and τxy = τyx with the proper sign.2. Draw a set of σn - τ coordinate axes with σn being positive to the right

    and τ being positive in the upward direction. Choose an appropriate scale for theeach axis. Locate the σx ( point L) and σy (point M) on σn axis.

    3. Plot the stresses on the x- face of the element in this coordinate system ( point P ). Repeat the process for the y -face ( point P’  ).

    4. Draw a line between the two point P and P’. The point where this linecrosses the σn axis establishes the center of the circle.

    5. Draw the complete circle. Radius gives value of maximum shear stress. 6. The line from the center of the circle to point P identifies the x axis or 

    reference axis for angle measurements (i.e. θ = 0). Note: The angle between the reference axis and the σn axis is equal to 2θ p, (

    angle PCQ) one of the principal plane angle.7. The circle cross the σn axis is at point Q and Q’. OQ represents first

     principal stress σI and OQ’ represents second principal stress σII. The anglemade by CQ’ with CP gives other principal plane angle 2θ p +.

    8. To find stress at an angle with respect to the y axis, a new line CB may be drawn at an angle 2 with respect to C P location point B on circle gives the stress values, ie, BN= σn and BS= τ

    M h ’ Ci l f Pl St

  • 8/20/2019 ME 603 AEP Introduction 1

    69/86

    Mohr’s Circle for Plane Stress

    • Mohr’s circle for centric axial loading:

    0,     xy y x A

     P    

     A

     P  xy y x

    2

         

    • Mohr’s circle for torsional loading:

     J 

    Tc xy y x           0   0   xy y x

     J 

    Tc   

    M h ’ Ci l f Pl St i

  • 8/20/2019 ME 603 AEP Introduction 1

    70/86

    Mohr’s Circle for Plane Strain

    • The equations for the transformation of  plane strain are of the same form as theequations for the transformation of planestress - Mohr’s circle techniques apply.

    • Abscissa for the center C and radius R ,22

    222  

     

     

     

       

      xy y x y x

    a ve   R

         

     

    • Principal axes of strain and principal strains,

     R R a vea ve

     y x

     xy p

        

      

      

    minmax

    2tan

      22max   2  xy y x R         

    • Maximum in-plane shearing strain,

    St i Thi W ll d P V l

  • 8/20/2019 ME 603 AEP Introduction 1

    71/86

    Stresses in Thin-Walled Pressure Vessels• Cylindrical vessel with principal stresses

    1 = hoop stress

    2 = longitudinal stress

     pr 

     xr  p xt  F  z

      1   220    

    • Hoop stress:

     

    21

    2

    2

    2

    2

    2

    20

      

     

       

     pr 

    r  prt  F  x

    • Longitudinal stress:

    St i Thi W ll d P V l

  • 8/20/2019 ME 603 AEP Introduction 1

    72/86

    Stresses in Thin-Walled Pressure Vessels

    • Points A and B correspond to hoop stress, 1,and longitudinal stress, 2

    • Maximum in-plane shearing stress:

     pr 

    42

    12) planeinmax(       

     • Maximum out-of-plane shearing stresscorresponds to a 45o rotation of the planestress element around a longitudinal axis

     pr 

    22max     

    Stresses in Thin Walled Pressure Vessels

  • 8/20/2019 ME 603 AEP Introduction 1

    73/86

    Stresses in Thin-Walled Pressure Vessels

    • Spherical pressure vessel:

     pr 

    221     

    • Mohr’s circle for in-planetransformations reduces to a point

    0 plane)-max(in    

    • Maximum out-of-plane shearingstress

     pr 

    412

    1max       

    True Stress () and Strain ()

  • 8/20/2019 ME 603 AEP Introduction 1

    74/86

    True Stress () and Strain ()

    i A

     P  

    0

    ln

    0 L

     L

     L

    dL L

     L

     Ai → instantaneous area P → applied load

    d → strain increament

     P  s   0   L L Le   i  

    The definitions of true stress and true strain are based oninstantaneous values of area (Ai) and length (Li).

    Final

    NeckingFracture

    • In engineering/nominal stress/strain since we divide by

    original area, A0 and original length L0. 

     L

    dLd      →

    0   00

    engg strain  L/Lo true strain ln(L/Lo)

       t  r  u  e  s   t  r  e  s  s   P   /   A   i

      e  n  g  g  s   t  r  e  s  s

       P   /   A

      o

    fracture

    fracture

    • nce vo ume rema ns constant n t e p ast cregion of the test, true strain can be expressed as

     

      

     

     

      

     

     

      

     

     

      

     

     D

     D

     D

     D

     A

     A

     L

     L 02

    00

    0

    ln2lnlnln 

     AL L A   00

     DL L D   00

    If, specimen is a round rod and D indicate

    diameter 

    Comparison between “Engineering” and “True” quantities

  • 8/20/2019 ME 603 AEP Introduction 1

    75/86

    e)( ε     1ln

    e) s(     1 

    Comparison between Engineering and True quantities

    00 0 i i

    0

    From volume constancy A L =A L   i

    i

     A L

     A L

    Valid tillnecking starts

     

    Let A0, L0 are original dimensions and Ai and Li are dimensionsat a particular instant.

    0

    0 0 0

    1 1 (1 )i i

    i

     A L L P  s s s e

     A A L L 

    0

    ln

    0 L

     L

     L

    dL L

     L

     

    i A

     P  

    0

    ln 1 1 ln(1+e) L

     L 

    Comparison between true strain and engineering strain

    True strain () 0.01 0.10 0.20 0.50 1.0 2.0 3.0 4.0Engineering strain (e) 0.01 0.105 0.22 0.65 1.72 6.39 19.09 53.6

     Note that for strains of about 0.4, ‘true’ and ‘engineering’ strains can be assumed to be equal. At large strains the deviations between the values are large.

    As we shall see that during the tension test localized plastic deformation occurs after some strain (called necking). This leads to inhomogeneity in the stress across thelength of the sample and under such circumstances true stress should be used.

    T t t t i

  • 8/20/2019 ME 603 AEP Introduction 1

    76/86

    True stress–true strain curves• A typical true stress–true strain curve is typically approximated

     by the equation.

     

     K n

    “true” stress ( P / Ai) “true” strain: ln( L/ Lo)

    hardening exponentn = 0.15 (some steels)to n = 0.5 (some coppers)

    strength coefficient

     

    • Note that ‘n’ is always positive and that the slope decreaseswith increasing strain.

    YYield StressYf  flow stress

    K  strength coefficient

    n K    

  • 8/20/2019 ME 603 AEP Introduction 1

    77/86

    Example: A cylinder pressure vessel 10 m long has closedends, a wall thickness of 5 mm, and a diameter at mid-

    thickness of 3 mm. If the vessel is filled with air to a pressureof 2 MPa, how much do the length, diameter, and wallthickness change, and in each case state whether the change isan increase or a decrease. The vessel is made of a steel havingelastic modulus E = 200,000 MPa and the Poisson’s ratio  =

    0.3. Ne lect an effects associated with the details of how the ends are attached.

    z-axis is normal to the surface

  • 8/20/2019 ME 603 AEP Introduction 1

    78/86

    The ratio of radius to thickness, r/t, is such that it is reasonable to employ the thin walledtube assumption, and the resulting plane stress equations.Denoting the pressure as p, we have

     M Pamm

    mm M Pa

     pr 

     M Pamm

    mm M Pa

     pr 

     y

     x

    6005

    )1500)(2(

    300)5(2

    )1500)(2(

    2

     

     

     z 

    0 z 

    The value of varies from -p on the insidewall to zero on the outside, and for a thinwalled tube is everywhere sufficiently smallthat can be used. Substitute thesestresses, and the known E and v into Hooke’sLaw, which gives   410*00.6    x 

      310*55.2    y

       310*35.1    z 

     These strains are related to the changes in length , circumference, diameter , and thickness , as follows:

    Substituting the strains from above and the known dimensions gives

    Thus, there are small increases in length and diameter, and a tinydecrease in the wall thickness.

     L

    )(   d     d    t 

     L

     L x

     

    d  y

     

      

      )(

    t  z

     

    mm L   6   mmd    65.7   310*75.6   t 

    Example

  • 8/20/2019 ME 603 AEP Introduction 1

    79/86

    Example

    Answer:

  • 8/20/2019 ME 603 AEP Introduction 1

    80/86

    Example

  • 8/20/2019 ME 603 AEP Introduction 1

    81/86

    Example

    Answer:

    Example

  • 8/20/2019 ME 603 AEP Introduction 1

    82/86

    Example

    Answer:

  • 8/20/2019 ME 603 AEP Introduction 1

    83/86

    Example

  • 8/20/2019 ME 603 AEP Introduction 1

    84/86

    Example

    Answer:

  • 8/20/2019 ME 603 AEP Introduction 1

    85/86

  • 8/20/2019 ME 603 AEP Introduction 1

    86/86