59
Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Embed Size (px)

Citation preview

Page 1: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Measuring Activation and Causality using multiple Prior Information

Pedro A. Valdés-Sosa

Cuban Neuroscience Center

Page 2: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Mapping

Page 3: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Brain Maps

Page 4: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Multimodal T1-Nissl-cryotomy-PET-myelin stain

Page 5: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Localization versus Connectivity

Hiparcus ( II BC)

Jackson

US air Traffic

Luria

Page 6: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Localization versus Connection

Anatomical Physiological

Localization Morphometry:•Voxel based•Region based •Cortical thickness

Activation:•EEEG/MEG•fMRI

Connection Anatomical Connectivity•Diffusion Weighted

Functional Connectivity

Effective Connectivity

Page 7: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Brain Tomographies

Physical Model of some brain characteristic

Prediction of measurement

Direct Problem

Image

of some brain characteristic

measurement

Inverse Problema Priori Information

Page 8: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

EEG/MEG Forward Problem

K

Primary

current j

EEG/MEG

v

,P Hv j

Page 9: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

EEG inverse Problem

1 1 21 2j jv k k

1vBayesian Inference!!

1 1 1N N p p N y X β e

2

2 2 2expc p y Xβ β

Page 10: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Methods for Regression Data

• VARETA

• LORETA

• ICA

• Non Negative Matrix Factorization

• In fact can be unified or combined

Page 11: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

L0 Norm “Sparsness”

0 0 0( ) expp c β β

0 0 0ln ( ) lnp c β β

22 1 0

( ; )f β y y Xβ β

AIC, BIC, TIC, RIC

“subset selection” “Matching Purusit” “Dipoles”

Page 12: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

L1 Norm “Sparseness”

1 1 1( ) expp c β β

1 1 1ln ( ) lnp c β β

22 1 1

( ; )f β y y Xβ β

“Lasso” “Basis Pursuit” “FOCUSS”

Connection with ICA

Page 13: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Fast LARS Algorithm (Friedman, Hastie, Tibshirani)

Regularization path for diabetes data

22 1 1

y Xβ β

Page 14: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

L2 Norm “Minimum Norm”

2

1 2 2( ) expp c β β

2

2 2 2ln ( ) lnp c β β

222 1 2

( ; )f β y y Xβ β

“Ridge” “Frames” “Minimum Norm”

Page 15: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Simplest EEG inverse Problem

1 1 21 2j jv k k

1vBayesian Inference!!

Page 16: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Multiple Priors

Sparseness Minimal Norm

Non smooth Dipoles=FOCUSS Minimum Norm

Smooth VARETA LORETA

222 1 2

y Xβ β

222 1 2

y Xβ Lβ

22 1 1

y Xβ β

22 1 1

y Xβ Lβ

Page 17: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Which inverse solution to choose?: let the data decide combining all solutions

Page 18: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Bayesian Model Averaging

1M

2M

kM

1kM

NM

For 69 compartments2010N

3M 2kM

1

,N

k kk

E E M P M

j v j v v

Page 19: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Simulations with Bayesian Model Averaging

Page 20: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

BMA during concurrent EEG/fMRI

Page 21: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Combining Priors

22 1 31 1

( ; )f β y y Xβ β Lβ

222 1 2 21

( ; )f β y y Xβ Lβ Lβ

Fused Lasso

VARETA-LORETA

Page 22: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Combining penalties

(L1,I) (L1,L) (L1,I) (L1,L)

Page 23: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Between LORETA and VARETA

LORETA

VARETA

Solution Chosen

Page 24: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Further Combination: Multiple Priors plus (semi) Non Negative Matrix Factorization

• Non Negative Matrix Factorizations used for data reduction

• Equivalent to Cluster Analysis

Page 25: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Multiple Priors plus (semi) Non Negative Matrix Factorization

22 1 2 11

( , ; )f

M B y y XMB M LM

M 0

0

N T N p p k k t N T

Y X M B E

M

Page 26: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Fast Non-negative LARS Algorithm (Morup)

Regularization paths for diabetes data

Page 27: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Results for a Simulation 64 Channels, 1 Patch complex time series

BIC

Regularization path

Page 28: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Results of a Simulation

Page 29: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Localization versus Connection

Anatomical Physiological

Localization Morphometry:•Voxel based•Region based •Cortical thickness

Activation:•EEEG/MEG•fMRI

Connection Anatomical Connectivity•Diffusion Weighted

Functional Connectivity

Effective Connectivity

Page 30: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Effective vs. Functional Connectivity(Karl Friston)

Page 31: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Statistical Analysis of Causal Modeling

"Beyond such discarded fundamentals as 'matter' and 'force' lies still another fetish amidst the inscrutable arcana of modern science, namely, the category of cause and effect.“ Karl Pearson (1911)

Page 32: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Granger (Non) Causality for TWO time series

1, 11 1, 1 2, 1 1,

2, 21 1, 1 22 2,

12

1 1,

t t t t

t t t t

y a y y e

y

a

a y a y e

1

2

0 12 2 1: 0 0H a I

1

2

Granger Non Causality

t t-1

t t-1

t =1,…,N

Page 33: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Granger Causality of EEG signals

3 4

4 3

0

0C C

C C

I

®

>

=

Freiwald et al. (1999) J. Neurosci. Methods. 94:105-119

C3

C4

t t-1

{ }3, 4C CW=

Page 34: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

What happens when you have a LOT of time series?

1

2

p

t t-1

1, 1,1 1,2 1, 1, 1 1,

2, 2,1 2,2 2, 2, 1 2,

, ,1 ,2 , , 1 ,

t p t t

t p t t

p t p p p p p t p t

y a a a y e

y a a a y e

y a a a y e

1t t ty A y e t =1,…,N

Long history: Bressler, Baccala, Kaminski, Eichler, Goebel

Page 35: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Problems with the Multivariate Autoregressive Model for Brain Manifolds

1, 1,1 1,2 1, 1, 1 1,

2, 2,1 2,2 2, 2, 1 2,

, ,1 ,2 , , 1 ,

t p t t

t p t t

p t p p p p p t p t

y a a a y e

y a a a y e

y a a a y e

1t t ty A y e

p→∞ 22 ( )

2

p pg r p

+= × +# of parameters

1,t tp y y Alikelihood

Page 36: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Regions of Interest

Alemán-Gómez Y. et al. PS0103

( )1

, ,g

G

gg

ROIg ty y s t ds

=

W

W= W

= òòò

U

Page 37: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Point influence Measures

s uI ® ( )0 : , 0H a s u =

,s u Î W

is the simple test

Page 38: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

38

Spike and Wave

Page 39: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

39

Spike and Wave

Page 40: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

What happens when you have a LOT of time series?

1

2

p

t t-1

1, 1,1 1,2 1, 1, 1 1,

2, 2,1 2,2 2, 2, 1 2,

, ,1 ,2 , , 1 ,

t p t t

t p t t

p t p p p p p t p t

y a a a y e

y a a a y e

y a a a y e

1t t ty A y e t =1,…,N

Long history: Bressler, Baccala, Kaminski, Eichler, Goebel

Page 41: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

a) Teat CG as a Random Field

Concept applied to correlation fields by Worsley

Usual SPM: RF is the brain

New Idea RF is Cartesian product of Brain by Brain

=

=X1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

p

p

p p p p

a a a

a a a

a a a

1

1

p

a

a

a

Page 42: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Granger Causality must be measured on a MANIFOLD

surface of the brainW=

( ) ( ) ( ) ( )1

, , , ,r

kk

y s t a s u y u t k du e s t= W

= - +å òòò

Page 43: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Influence Measures defined on a Manifold

sI ®W0 :H ( ), 0a s u =

s Î W u Î W

An influence field is a multiple test and all for a given

Page 44: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

( ) ( ) ( ) ( )1

, , , ,r

kk

y s t a s u y u t k du e s t= W

= - +å òòò

1;

;

; 1

t

i tt

p t p

y

y

é ùê úê úê úê ú= ê úê úê úê úê úë û

y

M

M

( )( ), ,

i

i ts

y y u t duD

= òòò

1

r

t k t k tk

-=

= +åy A y e

Discretization of the Continuos AR Model

( ) ( )( ), ,

i i

ki j k i j

s ua a s u ds du¢ ¢

D ´ D¢ ¢= ò òL

( )0,t N~e

Page 45: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Influence Fields and Bayesian Estimation

x BI ® Influence field

x

B

1, 1,1 1, 1, 1 1,

, 2,1 2,

1,

2,

,

2, 1 2,

, ,1 , , 1 ,

t p t t

x t p

x

x

p x

t t

p t p p p p t p t

y a a y e

y a a y e

y a a

a

e

a

ya

1,t tp y y A

likelihood

p A

prior

Page 46: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Influence Fields

Outield Infield

Page 47: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Priors for Influence Fields

x BI ® maximal SMOOTHNESS

Valdés-Sosa PA Neuroinformatics (2004) 2:1-12Valdés-Sosa PA et al. Phil. Trans R. Soc. B (2005) 360: 969-981

1, 1,1 1, 1, 1 1,

, 2,1 2,

1,

2,

,

2, 1 2,

, ,1 , , 1 ,

t p t t

x t p

x

x

p x

t t

p t p p p p t p t

y a a y e

y a a y e

y a a

a

e

a

ya

x

B

Minimum norm I

Minimum spatial laplacian L

p A

prior

Page 48: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

vs

FFA

Amigdala

Fear Static + Fear Dynamic Neutral

Neural basis of emotional expression processing

Page 49: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Emotional Network (Dipole)

Page 50: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Cuban Neuroscience Center

Concurrent EEG-fMRI recordingsEKG

EOGV

EOGH

Fp1

Fp2

F3

F4

C3

C4

P3

P4

O1

O2

F7

F8

T7

T8

P7

P8

Iz

Cz

Pz

FC1

FC2

CP1

CP2

FC5

FC6

CP5

CP6

TP9

TP10

Eog200 µV

EKG

EOGV

EOGH

Fp1

Fp2

F3

F4

C3

C4

P3

P4

O1

O2

F7

F8

T7

T8

P7

P8

Iz

Cz

Pz

FC1

FC2

CP1

CP2

FC5

FC6

CP5

CP6

TP9

TP10

Scan Start Scan Start

50 µV

Fine time scale

Page 51: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Cuban Neuroscience Center

Concurrent EEG-fMRI ( Rhythm)

-3

-2

-1

0

1

2

3

10 20 30 40 50 60 70 80 90 100

2000

4000

6000

8000

10000

12000

Page 52: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Basis of concurrent EEG/MEG-fMRI analysis-voxel level Trujillo et al. IJBEM (2001)

BOLD

Vasomotor Feed Forward

Signal

VFFS

*h t

Ensemble of Postsynaptic Potentials

ePSP

net Primary Current Density

nPCD

EEG/MEG

* sK

Page 53: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

EEG/MEG-fMRI-voxel Inverese solution Association

BOLD

VFFS

ePSPnPCD

EEG/MEG

*inverse s K *inverse h t

Page 54: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

correlationlog BOLD-log j

Page 55: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

First order Autoregressive Model for fMRI and EEG

10 20 30 40 50 60 70 80 90 100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

EEGfMRI

r=-0.62

1

2

fff fst t t

ssf sst t t t

A Af f eA As s e

Page 56: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Estimated A for fMRI-EEG (f,s) using L1 regularizer

2

2 1Y = A X + A

ts

ts

tftf

ff fs

sf ss

A A

A A

Page 57: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

EEG-fMRI influence Fields

Maximal Evidence

dipole

MN

non smooth smooth nonsmooth+smooth

dipole+MN

Page 58: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

http://journals.royalsociety.org/content/md5e04y6bgm8/

Page 59: Measuring Activation and Causality using multiple Prior Information Pedro A. Valdés-Sosa Cuban Neuroscience Center

Localization versus Connection

Anatomical Physiological

Localization Morphometry:•Voxel based•Region based •Cortical thickness

Activation:•EEEG/MEG•fMRI

Connection Anatomical Connectivity•Diffusion Weighted

Functional Connectivity

Effective Connectivity