20
Mechanical Vibration Iva Petríková Department of Applied Mechanics Department of Applied Mechanics

Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

  • Upload
    others

  • View
    5

  • Download
    3

Embed Size (px)

Citation preview

Page 1: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Mechanical Vibration

Iva Petríková

Department of Applied MechanicsDepartment of Applied Mechanics

Page 2: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Introduction, basic definitions

• Oscillatory process – alternate increases or decreases of physical

quantities (displacements, velocities, accelerations)

• Oscillatory motion is periodic motion• Oscillatory motion is periodic motion

• Vibration of turbine blades, vibration of machine tools, electrical

oscillation, sound waves, vibration of engines, torsional vibration

of shafts, vibration of automobiles etc.

• Mechanical vibration - mechanisms and machines, buildings,

bridges, vehicles, aircrafts – cause mechanical failure

• Harmonic, periodic general motion

1.3.2018 2

Page 3: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Elastic elements

• Discrete elements (masses) +

linear and torsional springslinear and torsional springs

• Continuos structural elements –

beams and plates

• Number of degrees of freedom

(DOF) – minimum number of

coordinates

Single degree of freedom systems

System with infinite number DOFTwo degree of freedom systems

Page 4: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Oscillatory motions

• Periodic motion with

harmonic components

• Harmonic motion

harmonic components

Periodic motion repeating itself The simplest form of periodic motion isPeriodic motion repeating itself

after a certain time interval.

The simplest form of periodic motion is

harmonic motion – sin, cos

Page 5: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Harmonic motion

• Displacement of harmonic motion is given:

( )sinx X tω ϕ= +

• x, x(t) ... displacement [m]

• X ... amplitude of displacement [m]

• ... phase

• ω ... angular velocity [s-1]

• T ... natural period of oscillation [s]

( )tω ϕ+

2T

πω

=• T ... natural period of oscillation [s]

• f ... frequency [s-1], [Hz] - Hertz

• ϕ ... phase angle

=

2 fω π=

Page 6: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

• velocity:

• ωX ... amplitude of velocity [ms-1]

( )cosdx

x X tdt

ω ω ϕ= = +ɺ

• ωX ... amplitude of velocity [ms ]

• acceleration:

( )2

22

sind x

x X tdt

ω ω ϕ= = − +ɺɺ

• -ω2X ... amplitude of acceleration [ms-2]

Page 7: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Simple degree of freedom systems

mass, spring, damper, harmonic excitation

( )mx bx kx F t+ + =ɺɺ ɺForcing function –

harmonic excitation

0mx bx kx+ + =ɺɺ ɺDamped free vibration

0mx kx+ =ɺɺUndamped free vibration

Page 8: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Simple degree of freedom systems

( )mx bx kx F t+ + =ɺɺ ɺ

0( ) sinF t F tω=

m ... mass

b ... (viscous) damping coefficient

k ... stiffness coefficient

F0 ... amlitudes of force

ω ... frequency of harmonic force

bcr ... critical damping coefficient

ζ ... damping factor

k... natural (circular) frequency

... frequency ratio

k

mΩ =

ωη =Ω

Page 9: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Undamped free vibration0+ =ɺɺmx kx

Solution of the 2nd order differential equation

Assumed solution

Characteristic equation: ( ) Ω − Ω= +i t i tx t Ae Be free vibration

( ) tx t Aeλ=

Characteristic equation: 2 0λ + =m k

1,2

1,2

λ

λ

= ±

= ± Ω

ki

mi

2 0λ + =k

m2λ = − k

m

Two arbitrary constants A a B, determinedfrom initial conditions:

( ) ( )0 00 , 0= =ɺx x x v

( ) ( )i t i tx t i Ae BeΩ − Ω= Ω −ɺ

0x A B= +

( )0v i A B= Ω −1,2

Ω = k

mNatural frequencyof the single DOF systems

0k

x xm

+ =ɺɺ2 0x x+ Ω =ɺɺ

0 01

2

ix vA

i

Ω + = Ω

0 01

2

ix vB

i

Ω − = Ω

Page 10: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Damped free vibration0mx bx kx+ + =ɺɺ ɺ

Solution of linear differential equation of 2nd order:

2 0m b kλ λ+ + = ( ) ( ) ( )2 21 1ζ ζ ζ ζ− + − Ω − − − Ω= +

t tx t Ae Be

21,2

14

2 2

bb mk

m mλ −= ± −

2

2

1,2 2

41

2 2 242

b mk b b k bi i

m m m mm km

m

λ

− − = ± − = ± −

2

21,2 1 1

2 22

b b bi i

m mkmλ ζ− − = ± Ω − = ± Ω −

2 CR

b b

bkmζ= = damping factor

=

1

1

1

ζζζ

><=

overdamped system

underdamped system

critically damped system

0

0.02

0.04

x t( )

x1 t( )2=CRb km critical damping coefficient

21 ζΩ − = Ω Ddamped natural frequency

( )21,2 1λ ζ ζ= − ± − Ω

0 5 10

0.04−

0.02−

0x1 t( )

t

Undamped --- and damped free vibration ---

Page 11: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Damped free vibrationOverdamped system: displacement becomes the sum of

two decaying exponentials with initial value of A+B, no

vibration takes place, the body tends to creep back to the

equilibrium position – APERIODIC MOTION (Fig.1)

1ζ >

Underdamped system: displacement is oscillatory with

diminishing amplitude (Fig.2). Frequency of oscillation is

less than that of the undamped case by the factor .

( ) ( )2 21 1t tx Ae Be

ζ ζ ζ ζ− + − Ω − − − Ω= +

21 ζ− Fig. 1

( )

( )

2 21 11 2

cos sin

[ ]t

i t i tt

D De A t B t

x e C e C eζ

ζ ζζ

− Ω

− Ω − − Ω− Ω

Ω + Ω =

= + =

=

1ζ <

1ζ >

Critical damping:

[ ] −Ω= + tx A Bt eObr. 2Fig. 2

( )

( )2sin 1t

D D

Ce tζ ζ γ− Ω= − Ω +

1ζ =

Page 12: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Damped free vibration – Logarithmic decrement

Natural logarithm of the ratio of any two amplitudes

( )( )

( )( ) ( )

1

2

cos sinln ln ln

cos sin

1 2 2ln

tD D

t TD D

x t e A t B tx

x x t T e A t B t

T

ζ

ζδ

π πζζ ζ

− Ω

− Ω +

Ω + Ω= = = =

+ Ω + Ω

= = Ω = Ω =2

ln1

2

TT

Te ζ ζ ζ

ζδ πζ

− Ω= = Ω = Ω =Ω −

≐ for CRb b<<

( )( )

ln 22

x tn damping factor

x t nT n

δδ π ζ ζπ

= =+

CR

b

b

Page 13: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Forced vibration, harmonic excitation

0

( )

sin

mx bx kx F t

mx bx kx F tω+ + =+ + =ɺɺ ɺ

ɺɺ ɺ

1. Forced undamped vibration1. Forced undamped vibration

- homogenous solution of equation

- particular solution of equation

Solution of dif. equation with right side → steady state oscillation (response)

Assumed solution in the form of harmonic function:

dif. equation:

0+ =ɺɺmx kx

( )1 2

2 21 2

sin cos

sin cos

ω ω

ω ω ω ω

= +

= − = − +ɺɺ

p

p p

x a t a t

x x a t a t

0 sin ω+ =ɺɺmx kx F t

( ) ( )2 2sin cos sinω ω ω ω ω− + − =k m a t k m a t F tdif. equation:

Comparing of coeficients at function sin a cos on the both side of the equation →

amplitude a1

( ) ( )1 2 0sin cos sinω ω ω ω ω− + − =k m a t k m a t F t

01 22

, 0ω

= =−

Fa a

k m

Page 14: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Particular solution:

Forced vibration, harmonic excitation0

2sin ω

ω=

−p

Fx t

k m

0 0 1 1= = = ST

F Fa a

0

10

20

xp t( )

resonance – frequency of exciting force equels

0=ST

Fa

k

2 22 11ω ηω

= = =− −−

STa amkk mk

2

1

1 η=

−ST

a

a

0 0.5 1 1.5 220−

10−

t

Vibration of the single DOF system in resonance.

resonance – frequency of exciting force equels

to natural frquency of the system

1η ω= = Ω → ∞ST

a

aResonance curve – undamped system

Page 15: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Forced vibration

( )0

( )

sin 1

mx bx kx F t

mx bx kx F tω+ + =+ + =ɺɺ ɺ

ɺɺ ɺharmonic force

1. homogenous solution0mx bx kx+ + =ɺɺ ɺ1. homogenous solution

2. → steady-state solution (response)

0mx bx kx+ + =ɺɺ ɺ

( )sin ω ϕ= −x a t

( ) ( )0 0

2 2 22

1F Fa

k= =

0 sin ω+ + =ɺɺ ɺmx bx kx F t

( ) ( ) ( )20sin cos sin sinω ω ϕ ω ω ϕ ω ϕ ω− − + − + − =ma t ba t ka t F t

assumed solution of differential equation (1)

( ) ( )2 2 22221

ak m bk m b

k kω ω ω ω

= = − + − +

2tan

b

k m

ωϕω

=−

Vectors’ diagram

Page 16: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Single degreee of freedom system

Free damped vibration Free undamped vibration Forced damped vibration

Homogenous solution Homogenous solution

( )mx bx kx F t+ + =ɺɺ ɺ0+ + =ɺɺ ɺmx bx kx 0+ =ɺɺmx kx

Homogenous solution Homogenous solution

Initial conditions Initial conditions Amplitude of steady stateoscillation, steady state

response

( )

1 2

cos sin

sin

i t i th

h

h

x C e C e

x A t B t

x C t γ

Ω − Ω= += Ω + Ω= Ω +

( )

( )

2 21 1

2

[ ]

cos sin

sin 1

i t i tth

tD D

t

x e Ae Be

e A t B t

Ce t

ζ ζζ

ζ

ζ ζ γ

− Ω − − Ω− Ω

− Ω

− Ω

= + =

= Ω + Ω =

= − Ω +

( )0 0x t x= ( )0 0x t v=ɺ

( )sinpx a tω ϕ= −

h px x x= +0 sinmx bx kx F tω+ + =ɺɺ ɺ

( )0 0x t x= ( )0 0x t v=ɺ

response

( )( )

( ) ( )

2 21 1

0

2 22

[ ]

sin

i t i ttx t e Ae Be

F t

k m b

ζ ζζ

ω ϕ

ω ω

− Ω − − Ω− Ω= +−

+− +

Page 17: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Forced vibration - magnification factor and phase angle

( ) phx t x x= +

( ) ( )

( ) ( )02

2 22

sinsin 1t F t

x t Ce tk m b

ζ ω ϕζ γ

ω ω− Ω

−= − Ω + +

− +

Solution of equation (1):

a STa

a STa

a STa

a STa

Pha

se A

ngle

φ

( ) ( )0 0

2 2 22 22

1

1

F Fa

k m bk m b

k k

ωω ω ω

= = − + − +

0ST

Fa

k=

Values C a are derived from initial conditions.Amplitudes of steady-state oscillation:

γ

statical deflection of the spring masssystem under the action of steady force F0

η ω=Ω frequency ratio

Ω

ω

Ω

ωΩ

ω

Ω= ωη

Ω= ωη

Ω

ω

Ω

ωΩ

ω

Ω= ωη

Ω= ωη

Pha

se A

ngle

Transient motion, under resonance

( ) ( )2 22

1

1 2ST

a

a η ζη=

− +

Ω

magnification factor

2

2arctan

1

ξηϕη

=− phase angle

Page 18: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Vibration isolation and transmissibilityMachine or engines rigidly attached to a supporting

structure, vibration is transmitted directly to the

support (often undiserable vibration). Disturbing

source must be isolated. Force is trasmitted through

a) ω = const. → η = const. ω >> Ω, η >> 1,

small damping factor ζ

b) ω ≠ const. → isolation, support with

dampingsprings and damper.

damping

ω=η

Pha

se A

ngle

φ

Ω= ωη

Ω

ω=η

Page 19: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Rotating unbalanceRotating unbalance systems (gears, wheels,

shafts disks which are not perfectly uniform,

produce unbalance force which cause

excessive vibrations.

m0 ... unbalance mass

e … eccentricity

m

0

ma

m e

b

0me

m

20

( )

sin

mx bx kx F t

mx bx kx m e tω ω+ + =+ + =

ɺɺ ɺ

ɺɺ ɺ

( ) ( )

2

2 22

01 2

am em

η

η ζη=

− +22

2tan

1

b

k m

ω ξηϕηω

= =−−

ωΩ

Page 20: Mechanical Vibration - Technical University of Liberec · 2020-03-07 · • Vibration of turbine blades, vibration of machine tools, electrical oscillation, sound waves, vibration

Base motion, relative motionForced vibration of mechanical systems can be

caused by the support motion (vehicles,

aircrafts and ships)

harmonic motion 0ω= i ty y eharmonic motion

( ) ( )

20

0

ωω

+ − + − =+ + = −

+ + =

ɺɺ ɺ ɺ

ɺɺ ɺ ɺɺ

ɺɺ ɺ

r r r

i tr r r

mx b x y k x y

mx bx kx my

mx bx kx m y e

m

0

ma

m e

0

solution

( )ω ϕ−= i tp rx a e

20m y

aω=

0

ra

y

( ) ( )

2

2 220 1 2

ra

y

η

η ζη=

− +2

2tan

1

ξηϕη

=−

( ) ( )0

2 22r

m ya

k m b

ω

ω ω=

− +