mechanics of solids week 13 lectures

Embed Size (px)

Citation preview

  • 8/12/2019 mechanics of solids week 13 lectures

    1/8

    Week 13 - Review 2013 (Part 2)

    1

    Chapter 7 Plasticity and Failure

    Strain energy density(strain energy per unit volume) (SED)

    )(22

    1zxzxyzyzxyxyzzzzyyyyxxxxU

    (DED)densityenergydistortioncalledstress,sheartoduechangeShape

    213

    232

    221

    stresschydrostatibycausedchangevolumetodueSED

    2

    1

    13322123

    22

    21

    )()()(6

    1

    2

    1

    )(2)(2

    1

    EIK

    EU

    Tresca criterion

    Tresca observed that material flow seems to be along the direction of maximum shear stress.

    Tresca stress: 312

    1 Tresca

    Tresca criterion: Y 31

    Failure criterion (Ductile materials):

    Y 31

    Von Mises criterion:

    plastic yielding occurs when the distortion energy density equal or exceeds that of the same

    material under uniaxial tension.

    Von Mises stress: 213232221 )()()(2

    1 vm

    Von Mises criterion 22132

    322

    21 2)()()( Y

    Von Mises Failure criterion (Ductile materials):

    2

    213

    232

    221

    2)()()( Y

    Brittle materials

    There is no yield for brittle material in general.

    The maximum normal stress theory

    f1

    f is the failure normal stress

    The maximum normal strain theory

    f1

    f

    is the failure normal strain.

    Since from Hookes law: )(1

    3211 E

    f )( 321

  • 8/12/2019 mechanics of solids week 13 lectures

    2/8

    Week 13 - Review 2013 (Part 2)

    2

    Chapter 8 Finite Element Method1D elements:Spring element, Bar element, Beam element and their combination

    Spring element Bar element Beam element

    dof=2:

    j

    i

    j

    i

    f

    f

    u

    u

    kk

    kk

    dof =2:

    j

    i

    j

    i

    f

    f

    u

    u

    L

    EA

    11

    11 dof =4

    2D element: CST (T3), LST (T6), Q4, Q8 element

    Displacement Shape function Strain

    T3,

    3-node

    constant strain triangle

    (CST)

    Linear:

    ybxbbv

    ybxbbu

    654

    321

    (6 d.o.f.)

    )(2

    1yx

    AN iiii

    (i=1,2,3)

    33

    22

    11

    1

    1

    1

    2

    1

    yx

    yx

    yx

    A

    Constant strain

    2bx

    uxx

    6by

    vyy

    53

    2

    bb

    x

    v

    y

    uxy

    T6

    quadratic triangular

    elementlinear strain triangle

    (LST)

    Quadratic:

    21211

    210

    987

    265

    24

    321

    ybxybxb

    ybxbbv

    ybxybxb

    ybxbbu

    (12 d.o.f.)

    )1(4

    )1(4

    4

    1)1(2

    )1(

    )12(

    )12(

    6

    5

    4

    3

    2

    1

    N

    N

    N

    N

    N

    N

    Fully-linear

    ybxbbxx 542 2

    ybxbbyy 12119 2

    ybbxbb

    bbxy

    116103

    53

    222

    2

    Linear Quadrilateral

    Element (Q4)

    Bilinear

    xybyb

    xbbv

    xybyb

    xbbu

    87

    65

    43

    21

    (8 d.o.f.)

    )1)(1(4

    11 N ,

    )1)(1(4

    12 N ,

    )1)(1(4

    13 N ,

    )1)(1(4

    14 N

    Half-linear

    xbbybb

    y

    u

    x

    v

    xbby

    v

    ybbx

    u

    xy

    yy

    xx

    4386

    87

    42

    2

  • 8/12/2019 mechanics of solids week 13 lectures

    3/8

    Week 13 - Review 2013 (Part 2)

    3

    Quadratic QuadrilateralElement (Q8)

    Quadratic

    216

    215

    21413

    212

    11109

    28

    27

    265

    24

    321

    xybyxb

    ybxybxb

    ybxbbv

    xybyxb

    ybxybxb

    ybxbbu

    (16 d.o.f.)

    )1)(1)(1(41

    )1)(1)(1(4

    1

    )1)(1)(1(4

    1

    )1)(1)(1(4

    1

    4

    3

    2

    1

    N

    N

    N

    N

    )1)(1(2

    1

    )1)(1(2

    1

    )1)(1(2

    1

    )1)(1(2

    1

    28

    27

    26

    25

    N

    N

    N

    N

    Half-quadratic

    21615

    131210

    82

    7

    653

    16215

    141311

    287

    542

    2

    2

    2

    2

    2

    2

    2

    2

    ybxyb

    ybxbxb

    xybxb

    ybxbb

    xybxb

    ybybyb

    ybxyb

    ybxbxb

    xy

    yy

    xx

    3D element: Tet (4-node and 10-node) and Brick (8-node and 20-node)

    4-node tet 10-node tet 8 node brick 20 node brick

    3D

    elements

    dof 12 30 24 60

    Example 17 (Quiz 2012).In the following barspring structure as shown, use finite element

    method to (1) Derive global equilibrium equation; (2) Determine displacement at the free end

    point O, u1, mid point u2and reaction force in the right hand side wall (point C). (3) Sketch

    the displacement distribution in thex-coordinate. Assume thatEA=1,L=1, ks=6.

    Soln: Step 1:Elemental stiffness matrices

    11

    11

    11

    11

    11

    111

    L

    EA

    kk

    kkK ,

    66

    662

    ss

    ss

    kk

    kkK

    ,

    66

    663

    ss

    ss

    kk

    kkK

    Step 2:Expanded elemental stiffness matrices

    660

    660

    000

    ,

    660

    660

    000

    ,

    000

    011

    011

    321 KKK

    Step 3 (sub-question (1)):Global FE equation; FuK :

    3

    2

    1

    3

    2

    1

    12120

    12131

    011

    F

    F

    F

    u

    u

    u

    Step 4: Apply boundary conditions, 03u

    3

    2

    1

    2

    1

    012120

    12131

    011

    F

    F

    F

    u

    u

    P

    P

    F

    F

    u

    u

    4131

    11

    2

    1

    2

    1

    x

    y

    x

    y

    12

    3

    4

    5

    6

    7

    8

    1m 1m

    EA=1 ks

    xP4P

    A BC

    Oks

  • 8/12/2019 mechanics of solids week 13 lectures

    4/8

    Week 13 - Review 2013 (Part 2)

    4

    P

    P

    u

    u

    4131

    11

    2

    1

    Puu

    Puu

    413 21

    21

    4/

    4/3

    2

    1

    Pu

    Pu

    Displacement vector:

    0

    4/

    4/3

    3

    2

    1

    P

    P

    u

    u

    u

    Step 5 Plot displacement functions:

    jijjiink kk uuuNuNuNxu )1()()()()( 1

    , in which Lx /

    Element 1 (AB): local Cartesian coordinate

    )1(x is the same as global Cartesian, i.e.

    xx )1(

    PxPPxPxuLxuLxxu BAAB 4/3)4/()4/3(1)/()/1()( )1()1(

    Element 2 (BC): local Cartesian )2(x differs from global Cartesian, i.e. 1)2( xLxx 2/4/)0(1)4/()1(1)/()/1()( )2()2( PPxxPxuLxuLxxu CBBC

    Step 6: Reaction forceat the wall (use the dropped first equation)

    PP

    P

    FRC 3

    0

    4/

    4/3

    121203

    (4) If remove the load at node B and consider a stopper

    on the right hand-side as shown. Determine the

    displacements and reaction from the stopper and C.

    3

    2

    1

    012120

    12131

    011

    F

    R

    Pu

    2

    1

    131

    11

    R

    Pu

    21

    1

    13 Ru

    Pu

    PR

    Pu

    122

    1

    Displacement vector:

    12

    0

    121203

    P

    FRC

    03

    2

    1

    P

    u

    u

    u

    Example 18 (Quiz 2012): Two 3-node triangular elements are used to model a plane stress

    problem. The stress distributions are shown below. Which are the possible correct plots and why?

    a) should be the answer. Note that these two 3-node triangular elements are the constant strain

    triangular (CST) elements (need mention this, otherwise lose 3 marks), which have constant

    strain and stress.

    x

    y

    1

    2

    3

    yy

    4

    x

    y

    1

    2

    3

    yy

    4

    y

    1

    2

    3

    yy

    4

    (b)(a) (c)

    x

    3P/4

    -P/4

    u

    x

    3P/4

    -P/4

    u

    1m 1m

    EA=1 ks

    xP

    A BC

    Oks

    Stopper

  • 8/12/2019 mechanics of solids week 13 lectures

    5/8

    Week 13 - Review 2013 (Part 2)

    5

    Example 19 (Quiz 2013)A uniform beam

    (EI = 1) is fully clamped at the left end (point

    A, node 1), and supported at both the mid-

    span (point B, node 2) and the right end

    (point C, node 3) by rollers. A bending

    moment (M = 14 Nm) is applied at the mid-span as shown.

    a. Express the global equilibrium equation using a finite element formulation.b. Determine the slopes at the mid-span and at the right end.c. Find all reaction forces and moments.d. In order to make 3=1, what moment loadingM3is needed?

    Soln

    Step 1: Element stiffness matrices

    4626612612

    2646

    612612

    4626612612

    2646

    612612

    22

    22

    3

    21

    LLLLLL

    LLLL

    LL

    L

    EIKK

    Step 2: Install theGlobal FE equilibrium equation

    3

    3

    2

    2

    1

    1

    3

    3

    2

    2

    1

    1

    462600

    61261200

    268026

    612024612

    002646

    00612612

    M

    F

    M

    F

    M

    F

    v

    v

    v

    uK

    Step 3: Apply Boundary condition and external loadings

    0

    14

    0

    0

    0

    0

    462600

    61261200

    268026

    612024612

    002646

    00612612

    3

    2

    1

    1

    3

    2

    F

    F

    M

    F

    0

    14

    42

    28

    3

    2

    Step 4: Solve for the unknowns:

    1

    2

    3

    2

    Step 5: Reaction forces and moments

    0

    14

    0

    0

    0

    0

    462600

    61261200

    268026

    612024612

    002646

    00612612

    3

    2

    1

    1

    3

    2

    F

    F

    M

    F

    ;

    0

    6

    14

    6

    4

    12

    1

    2

    42

    66

    28

    60

    02

    06

    42

    66

    28

    60

    02

    06

    3

    2

    3

    3

    2

    2

    1

    1

    M

    F

    M

    F

    M

    F

    Step 6: Add boundary condition of 3=1 into the global FE equilibrium equation

    0

    14

    0

    0

    0

    0

    462600

    61261200

    268026

    612024612

    002646

    00612612

    3

    2

    1

    1

    3

    2

    F

    F

    M

    F

    A B

    L=1

    EI=1x

    L=1

    CEI=1

    1 2 3M

  • 8/12/2019 mechanics of solids week 13 lectures

    6/8

    Week 13 - Review 2013 (Part 2)

    6

    3

    3

    2

    1

    1

    2 14

    1

    0

    0

    0

    0

    462600

    61261200

    268026

    612024612

    002646

    00612612

    M

    F

    F

    M

    F

    1428 2 5.18/122 . From the last equation: 745.1242 23 M

    Example 20 (Quiz 2011): If one Gaussian point was used for the 2D Q8 element, determine

    the displacements at this Gaussian point if the nodal displacements

    are given as

    01011012

    12101101

    v

    u

    Soln: The displacement functions as per Q8s shape functions Ni

    and nodal displacements ui and vi can be expressed as:

    ii

    iii

    i vNvuNu

    4

    1

    4

    1

    ,

    25.2)0,0(

    )1()01)(01(5.0)2()01)(01(5.0)1()01)(01(5.0)0()01)(01(5.0

    )1()001)(01)(01(25.0)1()001)(01)(01(25.00)001)(01)(01(25.01)001)(01)(01(25.0

    )0,0(),(

    2222

    8877665544332211

    8

    1

    u

    uNuNuNuNuNuNuNuNuNuu ii

    i

    5.0)0,0(

    )0()01)(01(5.0)1()01)(01(5.0)0()01)(01(5.0)1()01)(01(5.0

    )1()001)(01)(01(25.0)0()001)(01)(01(25.0

    1)001)(01)(01(25.02)001)(01)(01(25.0

    )0,0(),(

    2222

    8877665544332211

    8

    1

    v

    vNvNvNvNvNvNvNvNvNvv ii

    i

    Example 21 (Quiz 2012):For the Q4 element as shown in the

    Cartesian coordinate system, the nodal displacement of the

    element that was generated from the FEA is T1,1,2,2,0,0,0,0 u .

    Use shape function to calculate the displacement (u, v) at the

    mid point E on side BE.

    Soln: TT 1,2,0,0,1,2,0,0 vu

    ii

    iii

    i vNvuNu

    4

    1

    4

    1

    ,

    4/)1)(1(1 N , 4/)1)(1(2 N , 4/)1)(1(3 N , 4/)1)(1(4 N

    A B

    L=1

    EI=1x

    L=1

    CEI=1

    1 2 3M2

    M3

    3

    3

    2

    1

    1

    2 14

    1

    0

    0

    0

    0

    462600

    61261200

    268026

    612024612

    002646

    00612612

    M

    F

    F

    M

    F

    A(0,0) B(6,0)

    C(4,6)

    D(0,3)

    x

    y

    A(0,0) B(4,0)

    C(4,6)

    D(0,3)

    x

    y

    E(4,3)

  • 8/12/2019 mechanics of solids week 13 lectures

    7/8

    Week 13 - Review 2013 (Part 2)

    7

    At the mid point E: 0,1

    1)1)(01)(11(

    4

    1)2)(01)(11(

    4

    1)0)(01)(11(

    4

    1)0)(01)(11(

    4

    1

    )1)(1(4

    1)1)(1(

    4

    1)1)(1(

    4

    1)1)(1(

    4

    14321

    4

    1

    uuuuuNu ii

    i

    1)1)(01)(11(4

    1)2)(01)(11(

    4

    1)0)(01)(11(

    4

    1)0)(01)(11(

    4

    1

    )1)(1(4

    1)1)(1(

    4

    1)1)(1(

    4

    1)1)(1(

    4

    14321

    4

    1

    vvvvvNv ii

    i

    Displacement: (1.0, 1.0)

    Example 22 (Quiz 2011)if four Gaussian points are used in a Q4

    element, determine the coordinates of Gaussian point G1 in

    Cartesian coordinate system of iso-parametric element Q4 as

    shown. Compute Jacobian matrix [J] and its determinant |J|.Soln

    Step 1:Node numbering: Node (1,2,3,4) = Node (A,B,C,D)

    Step 2:Coordinate in terms of Shape functions

    )1)(1(4

    11 N , )1)(1(

    4

    12 N , )1)(1(

    4

    13 N , )1)(1(

    4

    14 N

    Cartersian coordinate (x,y) in terms of natural coordinate (, )

    22),(

    0)1)(1(4

    14)1)(1(

    4

    14)1)(1(

    4

    10)1)(1(

    4

    1

    )1)(1(4

    1)1)(1(

    4

    1)1)(1(

    4

    1)1)(1(

    4

    1

    )1)(1(4

    1)1)(1(

    4

    1)1)(1(

    4

    1)1)(1(

    4

    14321

    4

    1

    x

    xxxx

    xxxxxNx

    DCBA

    ii

    i

    22),(

    4)1)(1(4

    14)1)(1(

    4

    10)1)(1(

    4

    10)1)(1(

    4

    1

    )1)(1(4

    1)1)(1(

    4

    1)1)(1(

    4

    1)1)(1(

    4

    1

    )1)(1(4

    1)1)(1(

    4

    1)1)(1(

    4

    1)1)(1(

    4

    14321

    4

    1

    y

    yyyy

    yyyyyNy

    DCBA

    ii

    i

    Thus G1 coordinate:

    8452.0)5774.0(2222)5774.0,5774.0( x

    8452.0)5774.0(2222)5774.0,5774.0( y

    Step 3:Jacobian matrix

    20

    02

    2222

    2222

    yx

    yx

    J

    Jacobian determinant: 422det JJ

    A(0,0) B(4,0)

    C(4,4)D(0,4)

    x

    y

    * *

    **

    G3G4

    G1 G2

  • 8/12/2019 mechanics of solids week 13 lectures

    8/8

    Week 13 - Review 2013 (Part 2)

    8

    Example 23 (Exam 2009) Given: P = 50 kN, k = 200 kN/m, L

    = 3 m, E = 210 GPa, I = 210-4m4.

    Find:Deflections, rotations and reaction forces.

    Soln: This is a combined problem of beam and spring

    elements

    Step 1: The system has 4 nodesas well as 2 beamelementsand 1 springelement.

    Step 2: Spring elementhas stiffness matrix is

    j

    i

    j

    i

    f

    f

    u

    u

    kk

    kk which is related to nodes

    #3 and #4 with displacement v3and v4

    Beam 1:

    2

    2

    1

    1

    2

    2

    1

    1

    22

    22

    3

    4626

    612612

    2646

    612612

    m

    f

    m

    f

    v

    v

    LLLL

    LL

    LLLL

    LL

    L

    EI

    Y

    Y

    Beam 2:

    3

    3

    2

    2

    3

    3

    2

    2

    22

    22

    3

    4626

    612612

    2646

    612612

    m

    f

    m

    f

    v

    v

    LLLL

    LL

    LLLL

    LL

    L

    EI

    Y

    Y

    Step 3: The global FE equations can be assembled as (where )/(' 3

    EIkLk )

    Step 4: Apply the boundary conditions

    PFMMvvv Y 3324211 ,0,0

    The reduced FE equation becomes:

    0

    0

    462

    6'126

    268

    3

    3

    2

    22

    22

    3

    Pv

    LLL

    LkL

    LLL

    L

    EI

    Step 5 Solve for the reduced FE equation:

    rad

    m

    rad

    LkEI

    PLv

    007475.0

    01744.0

    002492.0

    9

    7

    3

    )'712(

    2

    3

    3

    2

    Step 6: Reaction force and moment can be found from the eliminated equations:

    kN

    kN

    mkN

    kN

    F

    F

    M

    F

    Y

    Y

    Y

    488.3

    2.116

    78.69

    78.69

    4

    2

    1

    1

    Free-body diagram can be drawn as

    Beam element 1

    Beam element 2

    spring element