Med Power Presentation

Embed Size (px)

Citation preview

  • 8/3/2019 Med Power Presentation

    1/20

    MEDPOWER 2010 AYIA NAPA

    Numerical Modeling of PhotovoltaicApplications

    Assis. Prof. Antonis Papadakis

  • 8/3/2019 Med Power Presentation

    2/20

    MEDPOWER 2010 AYIA NAPA

    OUTLINE OF PRESENTATION

    INTRODUCTION

    CONCLUSIONS

    FUTURE WORK

    MODEL DESCRIPTION

    TRANSPORT PROPERTIES

  • 8/3/2019 Med Power Presentation

    3/20

    MEDPOWER 2010 AYIA NAPA

    MODEL DESCRIPTION

    Characterisation of thin film photovoltaics by solving :

    Continuity equations of charged particles: (electrons, holes)

    Poisson equation for the electric field

    Coordinates :

    2D Cylindrical Axisymmetric 2D Cartesian

    Initial Conditions:

    Photovoltaic cell dimensions

    Doping electron and hole densities

    Material Temperature

    Conformal Finite Element Mesh

  • 8/3/2019 Med Power Presentation

    4/20

    MEDPOWER 2010 AYIA NAPA

    MODEL DESCRIPTION

    Poissons Equation :

    Continuity Equations :

    Poisson and Continuity model are coupled viaNe, Nh

    )(. !ADeh

    NNNNVI

    eeeee

    eSNDvN

    t

    N!

    x

    x)().( 2

    hhhhh

    hSNDvN

    t

    N!

    x

    x)().( 2

  • 8/3/2019 Med Power Presentation

    5/20

    MEDPOWER 2010 AYIA NAPA

    Constitutive Equations :

    MODEL DESCRIPTION

    Simulation Limitations

    VE !

    Evee

    Q!

    Ev hh Q!

    Q

    I

    eNtrd !

    Ne

    KTLD 2

    I

    !

    Debye Length

    Dielectric Relaxation

    Electric Field

    Electron Velocity

    Hole Velocity

  • 8/3/2019 Med Power Presentation

    6/20

    MEDPOWER 2010 AYIA NAPA

    Solution Procedure

    MODEL DESCRIPTION

    PO

    Start of Time Step

    POTPCON

    TP CONV

    n

    )

    n

    86

    n Vn+1/2

    86n+1/2

    )n+1/2

    Vn+1

    End of Time Step

  • 8/3/2019 Med Power Presentation

    7/20

    MEDPOWER 2010 AYIA NAPA

    TRANSPORT PROPERTIES

    Transport Properties of electrons and holes:

    Velocities

    Generation/Recombination

    Mobilities

    Diffusion

    Generation and Recombination Processes:

    Photon transition or optical generation and recombination

    Phonon transition or Shockley-Read-Hall generation and recombination

    Auger generation and recombination or three particle transitions

    Impact ionization

  • 8/3/2019 Med Power Presentation

    8/20

    MEDPOWER 2010 AYIA NAPA

    AUGER RECOMBINATION

    +

    - -

    Auger Recombination

    Electron Capture

    +

    -

    +

    E

    Ec

    Ev

    Auger Recombination

    Hole Capture

    -

    -+

    Before After Before After

    -+

    DependencyonCarrierD

    ensity +

  • 8/3/2019 Med Power Presentation

    9/20

    MEDPOWER 2010 AYIA NAPA

    AUGER GENERATION

    -

    Auger Generation

    Electron Emission

    E

    Ec

    Ev

    Auger Generation

    Hole Emission

    -

    -+

    Before After Before After

    -++

    -

    +

    -

    + +

    DependencyonCarrierD

    ensity

  • 8/3/2019 Med Power Presentation

    10/20

    MEDPOWER 2010 AYIA NAPA

    IMPACT IONIZATION

    -

    Impact Ionization

    Electron Emission

    E

    Ec

    Ev

    Impact Ionization

    Hole Emission

    -

    -+

    Before After Before After

    -++

    -

    +

    -

    + +

    DependencyonCurrentDen

    sity

    and

    T

    emperature

  • 8/3/2019 Med Power Presentation

    11/20

    MEDPOWER 2010 AYIA NAPA

    PHONON TRANSITION-RECOMBINATION

    Phonon Transition

    Electron Capture

    E

    Ec

    Ev

    Phonon Transition

    Hole Capture

    -

    Before After Before After

    -++

    - -

  • 8/3/2019 Med Power Presentation

    12/20

    MEDPOWER 2010 AYIA NAPA

    PHONON TRANSITION-GENERATION

    Phonon Transition

    Electron Emission

    E

    Ec

    Ev

    Phonon Transition

    Hole Emission

    Before After Before After

    --

    -+ +

    -

  • 8/3/2019 Med Power Presentation

    13/20

    MEDPOWER 2010 AYIA NAPA

    PHOTON TRANSITION

    Photon Recombination

    E

    Ec

    Ev

    Photon Generation

    Before After Before After

    --

    -+ ++ -+

  • 8/3/2019 Med Power Presentation

    14/20

    MEDPOWER 2010 AYIA NAPA

    GENERATION/RECOMBINATION FORMULAS

    Impact Ionization: hhheeeion vNavNaS !bhe

    heheE

    B

    AEa ))||(exp()(

    ,

    ,, !

    Auger Recombination:

    Band to Band Recombination:

    Free Carrier Absorption:

    )()( 2222 ihhehieeheaug NNNNCNNNNCS !

    )( 2ieh

    NNNBR !

    b

    p

    a

    eFC NKNKa PP 21 !

    )()(

    2

    kT

    E

    ieh

    kT

    E

    ihe

    ieh

    SHRtt

    eNNeNN

    NNNR

    !

    XX

    Bulk Recombination Model:

  • 8/3/2019 Med Power Presentation

    15/20

    MEDPOWER 2010 AYIA NAPA

    Fig. 1. Electron mobility with respect to the donor density at a

    temperature of 300 K for silicon.

    Electron Mobility

  • 8/3/2019 Med Power Presentation

    16/20

    MEDPOWER 2010 AYIA NAPA

    Fig.2. Hole mobility versus the acceptor density at a temperature of

    300 K for silicon.

    Hole Mobility

  • 8/3/2019 Med Power Presentation

    17/20

    MEDPOWER 2010 AYIA NAPA

    Fig. 3. Electron diffusion coefficient as a function of the electric field at a

    temperature of 300 K in silicon.

    Electron Diffusion

  • 8/3/2019 Med Power Presentation

    18/20

    MEDPOWER 2010 AYIA NAPA

    Fig. 4. Hole diffusion coefficient against the electric field at a

    temperature of 300 K in silicon.

    Hole Diffusion

  • 8/3/2019 Med Power Presentation

    19/20

    MEDPOWER 2010 AYIA NAPA

    Fig. 5. Intrinsic absorption coefficient as a function of temperature

    in silicon.

    Intrinsic Absorption Coefficient

  • 8/3/2019 Med Power Presentation

    20/20

    MEDPOWER 2010 AYIA NAPA

    CONCLUSIONS/FUTURE WORK

    Streamer Propagation Across Gap

    Transport parameters are readily available for silicon

    Differential equations identified

    To simulate heating effects by solving conservation of mass,

    momentum and energy for solids

    FUTURE WORK:

    Expand the model in 3-Dimensions

    Exploit adaptive mesh techniques

    CONCLUSIONS:

    Perform thin film silicon simulations

    Compare with commercial software PC1D

    Mathematical model formulation identified