44
UC SF VA Medical Imaging Informatics 2010, Nschuff Course # 170.03 Slide 1/31 Department of Radiology & Biomedical Imaging MEDICAL IMAGING INFORMATICS: Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff Professor of Radiology VA Medical Center and UCSF [email protected]

MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

  • Upload
    others

  • View
    5

  • Download
    4

Embed Size (px)

Citation preview

Page 1: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2010, NschuffCourse # 170.03Slide 1/31

Department of Radiology & Biomedical Imaging

MEDICAL IMAGING INFORMATICS:Lecture # 1

Basics of Medical Imaging Informatics:Estimation Theory

Norbert SchuffProfessor of Radiology

VA Medical Center and [email protected]

Page 2: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 2/31

Department of Radiology & Biomedical Imaging

What Is Medical Imaging Informatics?• Signal Processing

– Digital Image Acquisition – Image Processing and Enhancement

• Data Mining– Computational anatomy– Statistics– Databases– Data-mining– Workflow and Process Modeling and Simulation

• Data Management– Picture Archiving and Communication System (PACS) – Imaging Informatics for the Enterprise – Image-Enabled Electronic Medical Records – Radiology Information Systems (RIS) and Hospital Information Systems (HIS)– Quality Assurance – Archive Integrity and Security

• Data Visualization– Image Data Compression – 3D, Visualization and Multi-media – DICOM, HL7 and other Standards

• Teleradiology– Imaging Vocabularies and Ontologies– Transforming the Radiological Interpretation Process (TRIP)[2]– Computer-Aided Detection and Diagnosis (CAD).– Radiology Informatics Education

• Etc.

Page 3: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 3/31

Department of Radiology & Biomedical Imaging

What Is The Focus Of This Course?Learn using computational tools to maximize information and

knowledge gain

ImageMeasurements Model knowledge

ImproveData

collectionRefine Model

Pro-active

Extract information

Compare with

modelRe-active

Page 4: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 4/31

Department of Radiology & Biomedical Imaging

Challenge: Maximize Information Gain

1. Q: How can we estimate quantities of interest from a given set of uncertain (noise) measurements?A: Apply estimation theory (1st lecture by Norbert)

2. Q: How can we measure (quantify) information?A: Apply information theory (2nd lecture by Wang)

Page 5: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 5/31

Department of Radiology & Biomedical Imaging

Estimation Theory: Motivation Example IGray/White Matter Segmentation

Intensity

0.0

0.2

0.4

0.6

0.8

1.0

Hypothetical Histogram

GM/WM overlap 50:50;Can we do better than flipping a coin?

Page 6: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 6/31

Department of Radiology & Biomedical Imaging

Estimation Theory: Motivation Example II

D. Feinberg Advanced MRI Technologies, Sebastopol, CA

Goal: Capture dynamic signal on a static background

High signal to noise

Poor signal to noise

Page 7: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 7/31

Department of Radiology & Biomedical Imaging

Estimation Theory: Motivation Example III

Goal:Capture directions of fiber bundles

Diffusion Spectrum Imaging – Human Cingulum Bundle

Dr. Van Wedeen, MGH

Page 8: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

Basic Concepts of Modeling

Medical Imaging Informatics 2009, NschuffCourse # 170.03Slide 8/31

Department of Radiology & Biomedical Imaging

Θ: target of interest and unknown

ρ: measurement

: Estimator - a good guess of Θ based on measurements

Θ)

Cartoon adapted from: Rajesh P. N. Rao, Bruno A. Olshausen Probabilistic Models of the Brain. MIT Press 2002.

Page 9: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

Deterministic Model

Medical Imaging Informatics 2009, NschuffCourse # 170.03Slide 9/31

Department of Radiology & Biomedical Imaging

M noiseϕ = +N NHθ

N = number of measurementsM = number of states, M=1 is possibleUsually N > M and |noise||2 > 0

The model is deterministic, because discrete values of Θ are solutions.

Note:1) we make no assumption about Θ2) Each value is as likely as any

another value

What is the best estimator under thesecircumstances?

Page 10: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 10/31

Department of Radiology & Biomedical Imaging

Least-Squares Estimator (LSE)

( )LSE

LSE

ˆ 0

0ˆϕ

ϕ

− =

− =N

T TN

θ

θ

H

H HH

Minimizing ELSE with regard to θ leads to

( ) 1

LSE ϕ−

= T TnH H Hθ

)

The best what we can do is minimizing noise:21min

2LSE NE noise=

•LSE is popular choice for model fitting•Useful for obtaining a descriptive measure But •LSE makes no assumptions about distributions of data or parameters•Has no basis for statistics “deterministic model”

Page 11: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 11/31

Department of Radiology & Biomedical Imaging

Prominent Examples of LSE

Mean Value: ( )1

1ˆN

meanj

jN

θ ϕ=

= ∑

Variance ( )( )2

var1

1ˆ ˆ1

N

iance meanj

jN

θ ϕ θ=

= −− ∑

Amplitude:1̂θ

Frequency:2̂θ

Phase:3̂θ

Decay:4̂θ

Page 12: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

Likelihood Model

Medical Imaging Informatics 2009, NschuffCourse # 170.03Slide 12/31

Department of Radiology & Biomedical Imaging

Pretend we know something about Θ

We perform measurements for all possiblevalues of Θ

We obtain the likelihood function of Θgiven our measurements ρ

Note:Θ is randomϕ is a fixed parameterLikelihood is a function of both the unknown Θ and known ϕ

Likelihood ( ) ( )|L pϕ ϕΦ = Φ

Page 13: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

Likelihood Model (cont’d)

Medical Imaging Informatics 2009, NschuffCourse # 170.03Slide 13/31

Department of Radiology & Biomedical Imaging

New Goal:Find an estimatorwhich gives the most likely probability distribution underlying

( ) ( )|L pϕ ϕΦ = ΦN

( )Lϕ Φ

Page 14: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 14/31

Department of Radiology & Biomedical Imaging

Maximum Likelihood Estimator (MLE)

( )max |MLE p ϕ= ΦΦ N

)

Goal: Find estimator which gives the most likely probability distribution underlying xN.

Max likelihood function

( )ln | 0MLE

d pd

ϕ=

Φ =Φ N

θ θ

θMLE can be found by

Page 15: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 15/31

Department of Radiology & Biomedical Imaging

Example I: MLE Of Normal DistributionNormal distribution

( ) ( )( )222

1

1| , exp2

N

jp jϕ σ ϕ

σ =

⎡ ⎤Φ ≈ −Φ⎢ ⎥

⎣ ⎦∑N

MLE of the mean (1st derivative):

( ) ( )( )21

1ln 0ˆ2 MMLLEE

MLE

N

j

d p jd

ϕσ =

− =Φ−∑)

)

( )1

1 N

jMLE j

=

Φ = ∑)

Normal Distribution

log of the normal distribution (normD)

( ) ( )( )222

1

1ln | ,2

N

j

p jϕ σ ϕσ =

Φ ≈ − −Φ∑N

Log Normal Distribution

Page 16: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 16/31

Department of Radiology & Biomedical Imaging

Example II: MLE Of Binominal Distribution(Coin Toss)

Distribution function f(y|n,w):n= number of tossesw= probability of success

y

f(y|n=10,w=3)

f(y|n=10,w=7)

Page 17: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 17/31

Department of Radiology & Biomedical Imaging

MLE Of Coin Toss (cont’d)

( | 7, 10)MLEL y nΦ = =

Goal:Given the observed data f (y|w=0.7, n=10), find the parameter ΦMLE that most likely produced the data.

Page 18: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 18/31

Department of Radiology & Biomedical Imaging

MLE Of Coin Toss (cont’d)

( ) ( )( ) ( )!| 1! !

n yynL yy n y

−Φ = ⋅Φ −Φ−

Likelihood function of coin tosses

( )

( )( ) ( ) ( )

ln |!ln ln ln 1

! !

L w yn y w n y w

y n y

=

+ + − −−

log likelihood function

Page 19: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 19/31

Department of Radiology & Biomedical Imaging

MLE Of Coin Toss

0(1 )

MLEMLE

MLE MLE

y n yn

ΦΦ

Φ Φ−

= = ⇒ =−

( ) ( )ln0

1ML MMLE E LE

d L n yydΦ Φ Φ

−= − =

Evaluate MLE equation (1st derivative)

According to the MLE principle, the distribution f(y/n) for a given n is the most likely distribution to have generated the observed dataof y.

Page 20: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 20/31

Department of Radiology & Biomedical Imaging

Relationship between MLE and LSEΘ is independent of noiseNMLE and noiseN have the same distribution

noiseN is zero mean and gaussian

Assume:

( ) ( )| |noisep pϕ ϕΦ = − Φ Φθ N N H

p(ρ|Θ) is maximized when LSE is minimized

Page 21: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

Bayesian Model

Medical Imaging Informatics 2009, NschuffCourse # 170.03Slide 21/31

Department of Radiology & Biomedical Imaging

Now, the daemon comes into play, but we knowThe daemon’s preferencesfor Θ (prior knowledge).

New Goal:Find the estimator which gives the most likely probability distribution of Θgiven everything we know.

( ) ( )prior pΦ = Φ

Prior knowledge

Page 22: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

Bayesian Model

Medical Imaging Informatics 2009, NschuffCourse # 170.03Slide 22/31

Department of Radiology & Biomedical Imaging

( ) ( ) ( )|Nposterior C L pϕ ϕ ϕ= ⋅ Φ ⋅ Φθ

Page 23: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 23/31

Department of Radiology & Biomedical Imaging

Maximum A-Posteriori (MAP) Estimator

( ) ( )ˆ max |MAP NL pθ ϕ ϕ= N θ

Goal: Find the most likely ΘMAP (max. posterior density of ) given ϕ.

Maximize joint density

( ) ( ) ( ) ( )ln | ln | ln 0d L p p pd

ϕ ϕ∂ ∂= + =∂ ∂N Nθ θ θ θ

θ θ θ

θMAO can be found by

Page 24: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 24/31

Department of Radiology & Biomedical Imaging

Example III: MAP Of Normal Distribution

We have random sample:

( ) ( ) ( )( ) ( )2 22 2

1 1

1 1ˆ ˆ ˆ ˆ ˆ ˆln | , , 0ˆ ˆ ˆ

N N

MLEj j

L p j pu ϕ

ϕ

ϕ μσ μσ ϕ μ μσ σ= =

∂=− − − =

∂ ∑ ∑Nμ

The sample mean of MAP is:

( )2

2 21

N

j

jTμ

ϕ μ

σϕ

σ σ =

=+

Φ ∑MAP

)

If we do not have prior information on μ, σμ inf or T inf

MAP MLˆ ˆ ˆ, LSE⇒μ μ μ

Page 25: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 25/31

Department of Radiology & Biomedical Imaging

Posterior Distribution and Decision Rules

Θ

p(Θ|ρ)

ΘMAPΘMSE

Page 26: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 26/31

Department of Radiology & Biomedical Imaging

Decision Rules

θ

Measurements Likelihood function

Prior Distribution

Posterior Distrribution

GainFunction

Result

Page 27: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 27/31

Department of Radiology & Biomedical Imaging

Some Desirable Properties of Estimators I:

- 0 θE E EΦ = ⇒Φ Φ =) )

Unbiased: Mean value of the error should be zero

2- 0 for large NMSE E= ΦΦ →

)

Consistent: Error estimator should decrease asymptotically as number of measurements increase. (Mean Square Error (MSE))

2 2 - - b bMSE E E= Φ +Φ)

What happens to MSE when estimator is biased?

variance bias

Page 28: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 28/31

Department of Radiology & Biomedical Imaging

Some Desirable Properties of Estimators II:

( )( ) 1- -i

T

iki k kE J −Φ Φ= Φ Φ ≥θC %

) )

Efficient: Co-variance matrix of error should decrease asymptotically to itsminimal value for large N

Page 29: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 29/31

Department of Radiology & Biomedical Imaging

Example:Properties Of Estimators Mean and Variance

( )1

1 1ˆN

jE E j N

N Nμ ϕ μ μ

=

= = ⋅ =∑Mean:

The sample mean is an unbiased estimator of the true mean

( ) ( )( )2

22 22 2

1

1 1ˆN

j

E E j NN N N

σμ μ ϕ μ σ=

− = − = ⋅ =∑Variance:

The variance is a consistent estimator becauseIt approaches zero for large number of measurements.

Page 30: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 30/31

Department of Radiology & Biomedical Imaging

Properties Of MLE

• is consistent: the MLE recovers asymptotically the true parameter values that generated the data for N inf;

• Is efficient: The MLE achieves asymptotically the minimum error (= max. information)

Page 31: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 31/31

Department of Radiology & Biomedical Imaging

Summary

• LSE is a descriptive method to accurately fit data to a model.

• MLE is a method to seek the probability distribution that makes the observed data most likely.

• MAP is a method to seek the most probably parameter value given prior information about the parameters and the observed data.

• If the influence of prior information decreases, i.e. many measurements, MAP approaches MLE

Page 32: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 32/31

Department of Radiology & Biomedical Imaging

Some Priors in Imaging

• Smoothness of the brain• Anatomical boundaries • Intensity distributions• Anatomical shapes• Physical models

– Point spread function– Bandwidth limits

• Etc.

Page 33: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 33/31

Department of Radiology & Biomedical Imaging

Estimation Theory: Motivation Example IGray/White Matter Segmentation

Intensity

0.0

0.2

0.4

0.6

0.8

1.0

Hypothetical Histogram

What works better than flipping a coin?

Design likelihood functions based onanatomyco-occurance of signal intensitiesothers

Determine prior distributionpopulation based atlas of regional intensitiesmodel based distributions of intensitiesothers

Page 34: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 34/31

Department of Radiology & Biomedical Imaging

Estimation Theory: Motivation Example II

D. Feinberg Advanced MRI Technologies, Sebastopol, CA

Goal: Capture dynamic signal on a static background

Poor signal to noise

Improvements to identify the dynamic signal:

Design likelihood functions based onauto-correlationsanatomical information

Determine prior distributions fromserial measurementsmultiple subjectsanatomy

Page 35: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 35/31

Department of Radiology & Biomedical Imaging

Estimation Theory: Motivation Example III

Goal:Capture directions of fiber bundles

Diffusion Spectrum Imaging – Human Cingulum Bundle

Dr. Van Wedeen, MGH

Improvements to identify tracts:

Design likelihood functions based onsimilarity measures of adjacent voxelsfiber anatomy

Determine prior distributions fromanatomyfiber skeletons from a populationothers

Page 36: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

MAP Estimation in Image Reconstructions with Edge-Preserving Priors

Medical Imaging Informatics 2009, NschuffCourse # 170.03Slide 36/31

Department of Radiology & Biomedical Imaging

Dr. Ashish Raj, Cornell U

Page 37: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 37/31

Department of Radiology & Biomedical Imaging

MAP Estimation In Image Reconstruction

Human brain MRI. (a) The original LR data. (b) Zero-padding interpolation. (c) SR with box-PSF. (d) SR with Gaussian-PSF.

From: A. Greenspan in The Computer Journal Advance Access published February 19, 2008

Page 38: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

Improved ASL Perfusion Results

zDFT = zero-filled DFT

By Dr. John Kornak, UCSF

Page 39: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

Bayesian Automated Image Segmentation

Medical Imaging Informatics 2009, NschuffCourse # 170.03Slide 39/31

Department of Radiology & Biomedical Imaging

Bruce Fischl, MGH

Page 40: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 40/31

Department of Radiology & Biomedical Imaging

Segmentation Using MLE

A: Raw MRIB: SPM2C: EMSD: HBSA

fromHabib Zaidi, et al, NeuroImage 32 (2006) 1591 – 1607

Page 41: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

Population Atlases As Priors

Medical Imaging Informatics 2009, NschuffCourse # 170.03Slide 41/31

Department of Radiology & Biomedical Imaging

Dr. Sarang Joshi, U Utah, Salt Lake City

Page 42: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VA

Population Shape Regressions Based Age-Selective Priors

Medical Imaging Informatics 2009, NschuffCourse # 170.03Slide 42/31

Department of Radiology & Biomedical Imaging

Age = 29 33 37 41 45 49Dr. Sarang Joshi, U Utah, Salt Lake City

Page 43: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 43/31

Department of Radiology & Biomedical Imaging

Imaging Software Using MLE And MAPPackages Applications Languages

VoxBo fMRI C/C++/IDL MEDx sMRI, fMRI C/C++/Tcl/Tk SPM fMRI, sMRI matlab/C iBrain IDL FSL fMRI, sMRI, DTI C/C++

fmristat fMRI matlab BrainVoyager sMRI C/C++

BrainTools C/C++ AFNI fMRI, DTI C/C++

Freesurfer sMRI C/C++ NiPy Python

Page 44: MEDICAL IMAGING INFORMATICS: Lecture # 1 · 2016. 6. 30. · Lecture # 1 Basics of Medical Imaging Informatics: Estimation Theory Norbert Schuff. ... • Data Mining – Computational

UCSF VAMedical Imaging Informatics 2009, NschuffCourse # 170.03Slide 44/31

Department of Radiology & Biomedical Imaging

Literature

Mathematical• H. Sorenson. Parameter Estimation – Principles and Problems.

Marcel Dekker (pub)1980. Signal Processing• S. Kay. Fundamentals of Signal Processing – Estimation Theory.

Prentice Hall 1993.• L. Scharf. Statistical Signal Processing: Detection, Estimation, and

Time Series Analysis. Addison-Wesley 1991. Statistics:• A. Hyvarinen. Independent Component Analysis. John Wileys &

Sons. 2001.• New Directions in Statistical Signal Processing. From Systems to

Brain. Ed. S. Haykin. MIT Press 2007.