21
Mehdi Alimadadi, Samad Sheikhaei, Guy Lemieux, Shahriar Mirabbasi, Patrick Palmer University of British Columbia (UBC) Vancouver, BC, Canada A 3GHz Switching DC-DC Converter Using Clock-Tree Charge- Recycling in 90nm CMOS with Integrated Output Filter

Mehdi Alimadadi, Samad Sheikhaei, Guy Lemieux, Shahriar Mirabbasi, Patrick Palmer University of British Columbia (UBC) Vancouver, BC, Canada A 3GHz Switching

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Mehdi Alimadadi, Samad Sheikhaei,

Guy Lemieux, Shahriar Mirabbasi, Patrick Palmer

University of British Columbia (UBC)

Vancouver, BC, Canada

A 3GHz Switching DC-DC ConverterUsing Clock-Tree Charge-Recycling

in 90nm CMOS with Integrated Output Filter

2

Motivation

• Power-limited CPU performance

– Trend: > 4 CPU cores on one chip

• Solution?

– Dynamic Voltage and Frequency Scaling (DVFS)

- Each core scaled differently based on load

– Need multiple supply voltages on-chip

2VfCP

3

Motivation

• How to supply multiple voltages?

Our approach …– Global voltage distribution (high Vdd)– Local voltage regulation (on-chip, low Vdd)

Support for … – Coarse-grain voltage islands (e.g., CPU cores)– Fine-grain voltage islands (e.g., ALU, FPU, …)

On-chip “local” voltage regulation

4

Problem Definition

• On-chip “local” voltage regulation

• Constraints– On-chip components, “standard” CMOS– Scaled down voltage buck converters

• Shrink L, C to fit on-chip

– Efficiency trade-off• Local regulator consumes power• Local regulator saves power by DVFS

consumption < savings

5

Summary Results

• On-chip DC-DC buck (step-down) converter– Standard 90nm CMOS– 1V input, 0.5~0.7V output, 100mA– Up to 158% effective efficiency

• Over 100% !!!???– By recycling charge thrown away in clock tree

• High-speed operation– 3GHz CPU clock 3GHz buck converter

• Monolithic L and C (converter area 0.27mm2)– Unique ZVS delay circuit improves efficiency

6

Switch Mode Power Supply

• CMOS inverter as power switches in buck converter

C R

Vgate VoutVinv

Vdd

S

D

IL

LL

R

VoutVinv

DS

-+Vin C

Vgate

IL

7

Clock and SMPS Merging

• CPU clock: 3GHz clock and large Cclk

• SMPS: large Mp, Mn drive chain

8

Clock and SMPS Merging

• Combine the driver circuits

Vclk

Cclk

CLK in

Mp

Mn

VoutLf

Cf Rload

CLK in

9

Key Contribution: CHARGE RECYCLING

• Benefits– Shared driver chain

– Cclk added to SMPS

• Note: NMOS drains Cclk, wastes charge!

• Delaying NMOS ZVS recycles clock charge!

Vclk

Cclk

CLK in

VoutLf

Cf Rload

10

ZVS Detailed Operation

• ZVS delay circuit – Delay only rising edge of Vn

– Implemented inside the clock chain

Mp

Mn

GND

Vdd

Vn

Vp

VoutVclkLf

Cclk Cf Rload

11

ZVS Detailed Operation (Mode 1)

• Mode 1 (0 < t < DTsw)

– Mp is ON

– Current builds up in the inductor

– Cclk charges up

Mp

Mn

GND

Vdd

Vn

Vp

VoutVclkLf

Cclk Cf Rload

D = Duty cycle

Tsw = Switching period

12

ZVS Detailed Operation (Mode 2)

• Mode 2 (DTsw < t < DTsw+Tzvs)– Both power transistors are OFF

– Inductor current discharges Cclk

– Cclk charge is recycled to output load

Mp

Mn

GND

Vdd

Vn

Vp

VoutVclkLf

Cclk Cf Rload

D = Duty cycle

Tsw = Period

Tzvs = ZVS delay

13

ZVS Detailed Operation (Mode 3)

• Mode 3 (DTsw+Tzvs < t < Tsw)

– Mn turns ON when Vclk 0

• ZVS for Mn

– Inductor current decreases linearly

Mp

Mn

GND

Vdd

Vn

Vp

VoutVclkLf

Cclk Cf Rload

D = Duty cycle

Tsw = Period

Tzvs = ZVS delay

14

Detailed Operation

• ZVS delay circuit for Mn

– Delay rising edge of Vn

Mp

Mn

GND

Vdd

Vm

Vn

Vp

Vclk

M3

M4

M1

M2

ZVS Delay Circuit

12

3

4

Vout

RloadCclk

Lf

Cf

15

Detailed Operation

• Adaptive ZVS delay circuit for Mn

– Falling edges of Vp and Vn are synchronized

Mp

Mn

GND

Vdd

Vm

Vn

Vp

Vclk

M3

M4

M1

M2

ZVS Delay Circuit

12

2

Vout

RloadCclk

Lf

Cf

16

Implementation

• Chip 1mm2, converter 0.27mm2

17

Implementation

• Charge recycling of the clock tree capacitor

Reference clock circuit

Circuit 2, Pin2

Combined SMPS

+ clock circuit

Circuit 1, Pin1, Pout1

Rload

Cclk

CLK in

VoutLf

CfCclk

CLK in Vclk

18

Power Conversion Efficiency

• Pout1 = output power (delivered to load)• Pin1 – Pin2 = incremental power to operate SMPS only

Pin1 = power of combined SMPS + clock circuit

Pin2 = power of reference clock circuit

10021

1

inin

outeffective PP

P

1001

1 in

outraw P

PEfficiency (raw)

Efficiency (effective)

19

Comparative Results

This Work [JSSC05] [ISSCC06]

Type Buck 4-Phase Buck 2-Phase Buck

Technology 90nm CMOS 90nm CMOS0.18µm SiGe RF BiCMOS

Switching freq, Fsw (MHz) 3000 233 45

Input voltage, Vin (V) 1.0 1.2 to 1.4 2.8

Output voltage, Vout (V) 0.5 to 0.7 0.9 to 1.1 1.5 to 2

Output ripple (%-pp) < 5 % (Vout=0.7V)

Output current, Iout (mA) 40 to 100 300 to 400 200

Effective efficiency eff (%)

158 % (Vout=0.7V)

98 % (Vout=0.6V)

80 % (Vout=0.5V)84 % 65 %

Filter inductor, Lf (nH) 0.32 6.8 (per phase) 11 (per phase)

Filter capacitor, Cf (pF) 350 2500 6000

Off/on chip Lf, Cf On-chip Off-chip L On-chip

Converter area (mm2) 0.27 0.14 (excl. L & C) 27

20

Contributions

• Key concepts– High switching frequency saves area– Combined drivers saves area and switching loss

– Recycled charge converter load discharges Cclk

– Unique ZVS delay circuit lower power loss

• Limitations– Regulation needs variable duty cycle clock

• May introduce additional clock jitter• Mostly suitable for edge-triggered blocks

(no latches)

21

References

[JSSC05] P. Hazucha, G. Schrom, H. Jaehong, B. A. Bloechel, P. Hack, G. E. Dermer, S. Narendra, D. Gardner, T. Karnik, V. De, and S. Borkar, “A 233MHz 80%-87% Efficient Four-Phase DC-DC Converter Utilizing Air-Core Inductors on Package,” IEEE J. Solid-State Circuits, vol. 40, pp. 838-845, Apr., 2005.

[ISSCC06] S. Abedinpour, B. Bakkaloglu, and S. Kiaei, “A Multi-Stage Interleaved Synchronous Buck Converter with Integrated Output Filter in a 0.18µm SiGe Process,” ISSCC Dig. Tech. Papers, pp. 356-357, Feb., 2006.