47
Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu Lee, Hojun Lim Department of Materials Science and Engineering Ohio State University B. L. Adams, PI, Colin Landon, Josh Kacher Department of Mechanical Engineering Brigham Young University

Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Embed Size (px)

Citation preview

Page 1: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Meso-Scale Simulation and Measurementof Dislocation/Grain Boundary Interactions

AFOSR Grant Number: FA9550-05-0068, 0088

Robert H. Wagoner, PI, Myoung-Gyu Lee, Hojun Lim

Department of Materials Science and Engineering

Ohio State University

B. L. Adams, PI, Colin Landon, Josh Kacher

Department of Mechanical Engineering

Brigham Young University

Page 2: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

(Lee, Wagoner, OSU)

Fundamental Role of Grain Boundaries: Meso-scale Simulation and Measurement

Tensile Specimen

Grain Orientations

Single crystal properties

Two-scale Simulation

Grain ScaleGrain Scale

Dislocation ScaleDislocation Scale

Predictions

(Lee, Wagoner, OSU) Verification

(Lee, Wagoner, OSU) (Homer, Adams, BYU)

Slip Activity

Stress

Choice of Materials

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8

0.2

% Y

ield

Str

ess

(MP

a)

d-0.5 (um-0.5)

Minimum Alloy Steel

Stainless Steel 439

Fe-Si 3%

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30

En

g.S

tre

ss (

MP

a)

Eng.Strain (%)

Fe-Si 3%

Stainless Steel 439

Minimum Alloy Steel

Stress/strain, Hall-Petch relations(Lim, Wagoner, OSU)

Page 3: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Fundamental Role of Grain Boundaries: Meso-scale Simulation and Measurement

3-D Curvature Recovery viaOblique Double Sectioning (ODS)

Opacity Limitations on Curvature Recovery

Verification of ODS RecoveryTrue (Left), Recovered (Right)

Verification of Experimental Resolution

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Experimental Data

.5/dx

ij ij 12ijkk eilk jk,l

e

x1

x2

x3

),(ˆ n

gc

gb

ga

3

23

2

23

1

23

3

31

2

31

1

31

3

32

2

32

1

32

dx

gd

dx

gd

dx

gddx

gd

dx

gd

dx

gddx

gd

dx

gd

dx

gd

3-D only

j

iij dx

d

(Adams, Homer, Lemmon, and Landon, BYU)

Page 4: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Summary of Results as of AFOSR Review, Nov. 3, 2006

Page 5: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Simulation

Page 6: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

6

Procedure

Two-Scale ModelTwo-Scale ModelInput (OIM)Input (OIM)

Tensile Specimen

Grain Orientations

Slip Activity

Lattice Curvature

BYU AFOSR FA9550-05-1-0088

PredictionsPredictions

Single-Crystal Properties

OSU AFOSR FA9550-05-0068

• Superdislocations at the center of elements• Generalized pileup configuration

Grain ScaleGrain Scale

Dislocation ScaleDislocation Scale

Page 7: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

7

Numerical Tests of Simulation Procedure

1-D Pileup

0

1

2

3

4

5

0 5 10 15 20 25 30

Analytical Solution [10]

200 nm (every 5th point)

10,000 nm

2,000 nm

Dis

loca

tion D

ensi

ty (10

9 cm

-2)

Distance from Pileup (microns)

Element Size

2-D Pileup

• CPU: < 2min. (2.8 GHz PC) • Mesh independent• Reproduce analytical solutions• Numerically stable

Dislocation pileup with Superdislocation concept

Page 8: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

8

Constitutive Equations: SCCE-T

Slip activities(Asaro & Needleman, 1985)

Hardening of slip systems(Peirce et al., 1982)

sign

1

0

m

g

β

αβα γhg

1.

4.11

sym

hh

SCCE-T: Single Crystal Constitutive Equations - Texture

• Arbitrary parameters: ≥ 6 (m, hii, hij, h1, h2

, h3

Page 9: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

9

Constitutive Equations: SCCE-D

sign

1

0

m

g

0

94.047.00

H

)(

1

1

b

k

kbb

n

a

Slip activities(Asaro & Needleman, 1985)

Hardening of slip systems

SCCE-D: Single Crystal Constitutive Equations - Dislocation

• Arbitrary parameters: 4 (m, 0, ka, kb

Page 10: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

10

SCCE-D: Orowan hardening modelForest dislocation

Active (moving) dislocation

Slip plane

l

)()(

l

bg )(

)(

1

l

Effective forest dislocation density

)()()()()( ξncos H

Orowan model [ E. Orowan, 1948]

n()

Page 11: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

11

Results: Constitutive Equations

0

30

60

90

120

150

0 0.05 0.1 0.15 0.2 0.25Strain

SCCE-D Predicted

SCCE-TPredicted

Stre

ss (

MP

a)

[001]

SCCE-T: Texture-based Const. Eq.Measured Fe Single Crystal (Keh, 1964)

SCCE-D: Dislocation-based Const. Eq. Fit Curves

[-123]

Iron (BCC) Copper (FCC)

SCCE-T vs. SCCE-D SCCE-T vs. SCCE-D

0

30

60

90

120

150

0 0.02 0.04 0.06 0.08 0.1S

tres

s (M

Pa)

Strain

[001]

SCCE-D Predicted

SCCE-TPredicted

Fit CurvesSCCE-D: Dislocation-based

Const. Eq.

SCCE-T: Texture-based Const. Eq.Measured Cu Single Crystal [18]

[-123]

Page 12: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Measurement

Page 13: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

13

Characterization of complete curvature tensor

κ - 6 of 9 lattice curvatures

1 of 2 boundary inclination parameters,

Full orientation characterization, g

ˆ n ()

3-D Curvature(Under Development)

2-D Curvature(Currently Available)

gc

gb

Lattice Curvature

ga

3

23

2

23

1

23

3

31

2

31

1

31

3

32

2

32

1

32

dx

gd

dx

gd

dx

gddx

gd

dx

gd

dx

gddx

gd

dx

gd

dx

gd

3-D only

j

iij dx

d

ga

gbgc

x1

x2

x3

x1

x2

x3

)(ˆ n

),(ˆ n

κ - All 9 lattice curvatures

Full boundary inclination description,

Full orientation characterization, g

),(ˆ n

Page 14: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

14

Experimental resolution limits for lattice curvature

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Experimental Data

.5/dx

ij ij 12ijkk eilk jk,l

e

Exp. data

.5/dx

Page 15: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

15

Oblique Double-Sectioning

• Oblique Double-Sectioning– Combination of serial

sectioning and stereology

– 2 parallel section-cuts for direct measurement of grain boundary character

Page 16: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

16

Registry and interpolation

• Alignment of layers– Reference marks

– Grains

– Triple-Junction Distribution

• Interpolation of boundaries to obtain GBCD– Meshing Algorithm

Page 17: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

17

Application: Fe-3%Si Multi-crystal

Input (OIM)Input (OIM)

Verification Verification Lattice Curvatures

0

0.02

Fe-3%Si Tensile SpecimenFe-3%Si Tensile Specimen

Simulated (CPU=7h) Measured

(rad/m)

(BYU)

Page 18: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Results since AFOSR Review, Nov. 3, 2006

Page 19: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Simulations

Page 20: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

20

Parametric Tests: Bi-crystal

B A

• Simple bi-crystal structure• Iron single crystal properties • Dislocation=mobile + immobile• Only mobile density can be piled up

near the grain boundary• Apply grain boundary strength

A B

45o320

340

360

380

400

420

0 2 4 6 8 10

En

g.S

tres

s (M

Pa)

Mat. + Mech. (Infinite )

Mech.

Strain (%)

Mat.+Mech. (*=5y

)

total = app+defect

Fsuper= total · (b x )

Force on Superdislocation

where

Obstacle force Fobs= = nY·A

Slip transmission Fsuper ≥ Fobs

Slip

tran

smissio

n

Page 21: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

21

Parametric Tests: Dislocation DensityD

islo

ca

tio

n d

en

sit

y (

1/m

m2)

= 1% = 5%= 10%

Von Mises Stress at 10% strain

(121)[111] (211)[111] 1]11)[10(1

Dislocation density on various slip systems

Total dislocation density at different strain levels

Page 22: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

22

Parametric Tests: Size dependence

398

400

402

404

406

408

410

0 200 400 600 800 1000

Hall-Petch Slopes

Str

ess

at

10

% s

tra

in (

MP

a)

d-0.5(m-0.5)

1 um10 um100 um

Stress at infinite grain boundary strength

= 1.5 GPa398

400

402

404

406

408

410

10-5 0.0001 0.001 0.01 0.1 1 10 100 1000

Stress at 10% strain (MPa) vs. grain size (mm)

Str

ess

at

10

% s

trai

n(M

Pa)

Grain size d (mm)

Stress at infinite grain boundary strength

= 1.5 GPa

Stress vs. grain size (d) Stress vs. grain size-1/2 (d-1/2)

• Constant grain boundary strength: 5*300 MPa• Different grain sizes with same grain configuration

*=5y=1,500 MPa *=5y=1,500 MPa

Page 23: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

23

Parametric Tests

Crystal orientation

(grain boundary = 45°)

CrystalOrientation

Simulation Method

Mech. Mech.+Mat.Infinite τ*

Mech.+Mat. Finite τ*

0° 377.92 409.76 403.33

15° 377.58 410.14 404.40

30° 378.82 413.77 408.12

45° 379.62 415.91 409.90

Δσ 2.04 6.15 5.57

Grain boundary orientation

(crystal = 45°)

Grain boundaryorientation

Simulation Method

Mech. Mech.+Mat.Infinite τ*

Mech.+Mat. Finite τ*

0° 380.23 408.63 399.69

15° 380.01 414.42 406.80

30° 379.20 414.47 407.25

45° 379.62 415.91 409.90

Δσ 1.03 7.28 10.21

Eng.Stress at 10% strain (MPa)

Page 24: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Experiments

Page 25: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

25

• Measuring shifts to 1/20 of a pixel increase resolution of rotation by at least a factor of ten

• The correlation based method is also sensitive to lattice strains

Cross Correlation Technique: Promising New Method

Ref: Angus Wilkinson (Oxford University)

Page 26: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

26

Cross Correlation Technique

• Reference Image• Comparison image at

adjacent scan point

A region in the reference image is placed over the comparison image and progressively shifted. The correlation intensity is recorded and forms the correlation image.

Page 27: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

27

Cross Correlation Technique: Correlation image

The peak intensity in the correlation image shows the x and y shift of the image to the pixel level. The center of the image correlates to a zero shift.

Shifts can be measured to 1/20 of a pixel using a surface fitting scheme and the intensities.

x

y

Page 28: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

28

Cross Correlation Technique: Algorithm

• This results in a system of 2 independent equations for each region of interest with 8 unknowns

31132

321

1

321

3

123

2

132

3

3

1

131 r qrq

x

urr

x

ur

x

ur

x

urr

x

u

x

urr

32232

322

1

321

3

223

1

231

3

3

2

232 qrqr

x

ur

x

urr

x

ur

x

urr

x

u

x

urr

Page 29: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

29

• Using the deformation gradient tensor you can find the strain and rotation gradients

i

j

j

iij x

u

x

u

2

1

i

j

j

iij x

u

x

u

2

1

Cross Correlation Technique: Algorithm

Page 30: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

30

• After analyzing a line scan any component of the strain or rotation gradient tensors can be displayed

Components of Rotation

Point Number

Rot

atio

n (R

ad)

100 105 110 115 120

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

w12

w23w31

Cross Correlation Technique: Line scan

Page 31: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

31

• An area scan can be analyzed to show the variation of any component of the strain or rotation tensor.

11

1 1.5 2 2.5 3 3.5 41

1.5

2

2.5

3

3.5

4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

x 10-4

The x and y axis indicate the position in the scan (This example was a 4 point x 4 point grid)

Strain in the 1 1 direction

Cross Correlation Technique: Area Scan

Page 32: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Plans: 2007 (or 2008?)

Page 33: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

33

2007 Plans

• Incorporate slip transmission criteria, determine physical * (many more specimens)

• Ratio () between mobile/immobile dislocation density

f (dislocation density), current model: constant

• Improving cross section technique

Page 34: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

34

2007 work : New material-Minimum Alloy Steel

C 0.001 Cr 0.014

Mn 0.13 Mo 0.003

P 0.006 Sn 0.002

S 0.005 Al 0.038

Si 0.004 Ti 0.001

Cu 0.023 N 0.003

Ni 0.007 Nb 0.001

K11

Measured Lattice CurvatureInitial Grain Orientations

Composition

1) High Hall-Petch Slopes2) Good Ductility / Hardening3) Grain Size4) Good OIM imaging/polishing

Desirable Material CharacteristicsDesirable Material Characteristics

Choice: Minimum Alloy SteelChoice: Minimum Alloy Steel

0

100

200

300

400

500

0 1 2 3 4 5 6 7 8

0.2

% Y

ield

Str

ess

(MP

a)

d-0.5 (um-0.5)

Minimum Alloy Steel

Stainless Steel 439

Fe-Si 3%

Stress- Strain Curves Hall-Petch Slopes

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30

En

g.S

tre

ss (

MP

a)

Eng.Strain (%)

Fe-Si 3%

Stainless Steel 439

Minimum Alloy Steel

Grain size attained (OSU) : 80m ~ 1500m

Page 35: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

35

2007 work: New specimen/OIM

Total dislocation density(simulated)

*Grain Boundary at 5°

Page 36: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Plans: 2008~2011

Page 37: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

37

2008-2011 Plans

• Recover elastic strain gradient by cross correlation (+ adaptive OIM)

• Develop high resolution OIM technique, couple with new adaptive OIM

• Parallel mesh refinement at grain boundaries and triple junctions

(FEA, OIM)

• Parallelize Mech.+Mat. Simulation (Suitable for many grains)

• Grain boundary transmission criteria and Hall-Petch slopes for wide range of grain sizes

*=f (slip transmission), current model: *=constant.

• Compare H-P slope: simulation, measurement (Use range of real grain size)

• Extend to HCP materials

Page 38: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

38

2007 work : Grain boundary transmission

Curvature plot with infinite GB Exp. curvature

Obstacle strength with slip transmissivity*)1( NN CRSSobstacle

Page 39: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

39

2007~ work : Adaptive or Other Mesh refinement (FEA, OIM)

10m 5m 1m 1.4m

Page 40: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

Extra Slides

Page 41: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

41

Results: Constitutive Equations

TCCE DCCE

Cu

[-112] 59 (177) 10 (30)

[-123] 64 (410) 6 (46)

Fe

[011] 5 (12) 3 (7)

[-348] 8 (35) 2 (3)

Average 34 (159) 5 (22)

Units: MPa (%)

Standard DeviationStandard Deviation (Average % errors) (Average % errors)

Page 42: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

42

Results: Constitutive Equations

Iron (BCC)Copper (FCC)

Uni-axial Compression of PolycrystalsUni-axial Compression of Polycrystals

Page 43: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

43

• The shift in the EBSD pattern q at a region of interest (ROI) centered at point x with crystallographic direction r is related to the displacement gradient tensor a

rrQQq ˆ)ˆ(

3

2

1

3

3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

ˆ

r

r

r

x

u

x

u

x

ux

u

x

u

x

ux

u

x

u

x

u

raQ

High Resolution Strain and Rotation Measurement

If the region of interest were centered here then r would be a unit vector in the (-1,1,-3) direction

Page 44: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

44

Summary I: single Xl constitutive equations

• Novel two-scale simulation model based on Finite Element Method was developed

• Superdislocation concept is well validated with analytical pileup solution

• SCCE-D (4 parameters) fits real single Xl (no gb effects)

• SCCE-T (≥6 parameters) does not match single Xl (gb effects)

• Stress-strain response and texture evolution are similar with different single Xl models

Page 45: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

45

Summary II: Parametric tests• Flow stress

– Mech. Simul. < Mech+Mat. Simul. w/ finite boundary strength < Mech.+Mat. Simul. w/ infinite boundary strength

• High dislocation density is observed near the grain boundary at low strain level

• High dislocation density increases crystal hardness

• Dislocation density of grain interior becomes higher as the deformation proceeds due to the high slip activity

• Hall-Petch relation is observed with two-scale simulation model with finite grain boundary strength

• Bi-crystal analysis showed that grain boundary orientation is more sensitive to the dislocation pileup than crystal orientation

Page 46: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

46

• Preliminary result with reasonable distribution:

• Meso model is CPU efficient (7hr/10 grains)

mrad/0.017~κvs0.013~κ maxmeasured

maxpredicted

Summary III: Verification

Page 47: Meso-Scale Simulation and Measurement of Dislocation/Grain Boundary Interactions AFOSR Grant Number: FA9550-05-0068, 0088 Robert H. Wagoner, PI, Myoung-Gyu

47

• Measuring shifts to 1/20 of a pixel increase resolution of rotation by at least a factor of ten

• The correlation based method is also sensitive to lattice strains

Summary VI: High Resolution Strain Measurement