10
HEAT EXCHANGER DESIGN CALCULATION SHELL SIDE DATA 4000 205 264 Inlet Pressure, Ps (psig) = 180 0.002 5 PHYSICAL PROPERTIES OF SHELL SIDE FLUID INLET MEAN OUTLET 205 234.5 264 0.58 0.595 0.61 0.072 0.07 0.068 41.2 40.6 40 Viscosity (cp) 0.284 0.2605 0.237 TUBE SIDE DATA 590 620 250 65 0.005 5 PHYSICAL PROPERTIES OF TUBE SIDE FLUID INLET MEAN OUTLET 620 435 250 0.76 0.6615 0.563 0.045 0.055 0.065 42 46.3 50.6 Viscosity (cp) 0.4 1.3 2.2 CALCULATIONS Mass Flowrate, ms (lb/hr) = Inlet Temperature, T1 ( o F) = Outlet Temperature, T2 ( o F) = Fouling Allowance, fs (hrft 2o F/Btu) = Allowable Pressure Drop, dPs (psi) = Temperature ( o F) Sp. Heat (Btu/lb o F k (Btuft/hrft 2o F) Density (lb/ft 3 ) Mass Flowrate, mt (lb/hr) = Inlet Temperature, t1 ( o F) = Outlet Temperature, t2 ( o F) = Inlet Pressure, Pt (psig) = Fouling Allowance, ft (hrft 2o F/Btu) = Allowable Pressure Drop, dPt (psi) = Temperature ( o F) Sp. Heat (Btu/lb o F k (Btuft/hrft 2o F) Density (lb/ft 3 )

Method of Heat Exchanger Sizing (Kern Method)

Embed Size (px)

DESCRIPTION

Excel sheet to size heat exchanger by Kern Method.

Citation preview

Page 1: Method of Heat Exchanger Sizing (Kern Method)

HEAT EXCHANGER DESIGN CALCULATION

SHELL SIDE DATA

4000

205

264Inlet Pressure, Ps (psig) = 180

0.002

5

PHYSICAL PROPERTIES OF SHELL SIDE FLUIDINLET MEAN OUTLET

205 234.5 264

0.58 0.595 0.61

0.072 0.07 0.068

41.2 40.6 40Viscosity (cp) 0.284 0.2605 0.237

TUBE SIDE DATA

590

620

250

65

0.005

5

PHYSICAL PROPERTIES OF TUBE SIDE FLUIDINLET MEAN OUTLET

620 435 250

0.76 0.6615 0.563

0.045 0.055 0.065

42 46.3 50.6Viscosity (cp) 0.4 1.3 2.2

CALCULATIONS

Mass Flowrate, ms (lb/hr) =

Inlet Temperature, T1 (oF) =

Outlet Temperature, T2 (oF) =

Fouling Allowance, fs (hrft2oF/Btu) =

Allowable Pressure Drop, dPs (psi) =

Temperature (oF)

Sp. Heat (Btu/lboF)

k (Btuft/hrft2oF)

Density (lb/ft3)

Mass Flowrate, mt (lb/hr) =

Inlet Temperature, t1 (oF) =

Outlet Temperature, t2 (oF) =

Inlet Pressure, Pt (psig) =

Fouling Allowance, ft (hrft2oF/Btu) =

Allowable Pressure Drop, dPt (psi) =

Temperature (oF)

Sp. Heat (Btu/lboF)

k (Btuft/hrft2oF)

Density (lb/ft3)

Page 2: Method of Heat Exchanger Sizing (Kern Method)

HEAT DUTY

140420

144405.4

LMTD

150.3673 0.736501

R = 6.27118644 S = 0.142169

0.7365 From Fig. 12.19

110.7455

ESTIMATE LAYOUT

Material use for Shell = Carbon SteelMaterial use for Tubes = Carbon Steel

Tube Outer Diameter (in) = 0.75 Shell pass = 1Tube Length (ft) = 8 Tube pass = 2Pitch (in) = 1

Tube Inner Diameter (in) = 0.5837 From Table 12.3

ESTIMATE OVERALL HEAT TRANSFER COEFFICIENT

6.78

NUMBER OF TUBES

187.0135

1.570795

Number of Tubes = 119.0566= 119

Number of Tubes per pass = 59

0.001858

0.109638

QS (Btu/hr) =

Qt (Btu/hr) =

LMTD (oF) =

FT =

Corrected LMTD (oF) =

Uo (Btu/hrft2oF) =

Ao (ft2) =

Area of One tube (ft2) =

Tube cross-section area (ft2) =

So, Area per pass (ft2) =

Page 3: Method of Heat Exchanger Sizing (Kern Method)

0.00354

Tube Side Velocity (ft/s) = 0.032286

BUNDLE & SHELL DIAMETER

0.156 2.291 From Table 12.4

Bundle Diameter (in) = 13.58975

Bundle-Shell Clearence (in) = 2 From Fig. 12.10

Shell Diameter (in) = 12

TUBE SIDE HEAT TRANSFER COEFFICIENT

Reynolds Number = 83.20359Prandtl Number = 37.8378

Length Diameter Ratio = 164.468

0.07 From Fig. 12.23

Nusselt Number = 19.31771

21.84288

BAFFLE SPACING & SHELL SIDE VELOCITY

Baffle Spacing (in) = 2.8

0.058333

0.027367

Shell Side Velocity (ft/s) = 0.469153

SHELL SIDE HEAT TRANSFER COEFFICIENT

Equivalent Diameter (in) = 0.945621

Reynolds Number = 8571.481Prandtl Number = 5.358485

Volumetric Flowrate (ft3/s) =

K1 = n1 =

Jh Factor =

hi (Btu/hrft2oF) =

As (ft2) =

Volumetric Flowrate (ft3/s) =

Page 4: Method of Heat Exchanger Sizing (Kern Method)

0.015 From Fig.12.29

198.7437

CALCULATED OVERALL HEAT TRANSFER COEFFICIENT

30 From Table 2-3Ken Arnold Vol:2

13.78507

TUBESIDE PRESSURE DROP

Pt =

L (m) = 2.439024 jf = 0.095di (m) = 0.01483 Np = 2

741.263v (m/s)= 0.009843

Pt = 9.15667798 Pa0.00132843 psi

SHELL SIDE PRESSURE DROP

Ps =

L (m) = 2.439024 jf = 0.05

0.071138 Ds (in) = 0.304878

650.006 de (in) = 0.024025v (m/s)= 0.143035

Ps = 1157.19465 Pa0.16788316 psi

Jh Factor =

hs (Btu/hrft2oF) =

kw (Btu/hrftoF) =

Uo (Btu/hrft2oF) =

Np x (8 x jf x (L/di) + 2.5)(ρ x v2/2)

ρ (Kg/m3) =

8 x jf x (Ds/de) x (L/lB) x (ρ x v2/2)

lB (m) =

ρ (Kg/m3) =

Page 5: Method of Heat Exchanger Sizing (Kern Method)

INPUT BOXES

Page 6: Method of Heat Exchanger Sizing (Kern Method)
Page 7: Method of Heat Exchanger Sizing (Kern Method)

HEAT EXCHANGER DESIGN CALCULATION

SHELL SIDE DATA

4000

205

264Inlet Pressure, Ps (psig) = 180

0.002

5

PHYSICAL PROPERTIES OF SHELL SIDE FLUIDINLET MEAN OUTLET

205 234.5 264

0.58 0.595 0.61

0.072 0.07 0.068

41.2 40.6 40Viscosity (cp) 0.284 0.2605 0.237

TUBE SIDE DATA

590

620

250

65

0.005

5

PHYSICAL PROPERTIES OF TUBE SIDE FLUIDINLET MEAN OUTLET

620 435 250

0.76 0.6615 0.563

0.045 0.055 0.065

42 46.3 50.6Viscosity (cp) 0.4 1.3 2.2

CALCULATIONS

HEAT DUTY

140420

Mass Flowrate, ms (lb/hr) =

Inlet Temperature, T1 (oF) =

Outlet Temperature, T2 (oF) =

Fouling Allowance, fs (hrft2oF/Btu) =

Allowable Pressure Drop, dPs (psi) =

Temperature (oF)

Sp. Heat (Btu/lboF)

k (Btuft/hrft2oF)

Density (lb/ft3)

Mass Flowrate, mt (lb/hr) =

Inlet Temperature, t1 (oF) =

Outlet Temperature, t2 (oF) =

Inlet Pressure, Pt (psig) =

Fouling Allowance, ft (hrft2oF/Btu) =

Allowable Pressure Drop, dPt (psi) =

Temperature (oF)

Sp. Heat (Btu/lboF)

k (Btuft/hrft2oF)

Density (lb/ft3)

QS (Btu/hr) =

Page 8: Method of Heat Exchanger Sizing (Kern Method)

144405.4

LMTD

150.3673

R = 6.271186 S = 0.142169

0.7365 From Fig. 12.19

169

ESTIMATE LAYOUT

Material use for Shell = Carbon SteelMaterial use for Tubes = Carbon Steel

Tube Outer Diameter (in) = 0.75 Shell pass = 1Tube Length (ft) = 8 Tube pass = 2Pitch (in) = 1

Tube Inner Diameter (in) = 0.5837 From Table 12.3

ESTIMATE OVERALL HEAT TRANSFER COEFFICIENT

6.78

NUMBER OF TUBES

122.5498

1.570795

Number of Tubes = 78.01769= 78

Number of Tubes per pass = 39

0.001858

0.072472

0.00354

Tube Side Velocity (ft/s) = 0.048842

BUNDLE & SHELL DIAMETER

Qt (Btu/hr) =

LMTD (oF) =

FT =

Corrected LMTD (oF) =

Uo (Btu/hrft2oF) =

Ao (ft2) =

Area of One tube (ft2) =

Tube cross-section area (ft2) =

So, Area per pass (ft2) =

Volumetric Flowrate (ft3/s) =

Page 9: Method of Heat Exchanger Sizing (Kern Method)

0.156 2.291 From Table 12.4

Bundle Diameter (in) = 11.30151

Bundle-Shell Clearence (in) = 2 From Fig. 12.10

Shell Diameter (in) = 12

TUBE SIDE HEAT TRANSFER COEFFICIENT

Reynolds Number = 125.8721Prandtl Number = 37.8378

Length Diameter Ratio = 164.468

0.07 From Fig. 12.23

Nusselt Number = 29.22423

33.04436

BAFFLE SPACING & SHELL SIDE VELOCITY

Baffle Spacing (in) = 2.8

0.058333

0.027367

Shell Side Velocity (ft/s) = 0.469153

SHELL SIDE HEAT TRANSFER COEFFICIENT

Equivalent Diameter (in) = 0.945621

Reynolds Number = 8571.481Prandtl Number = 5.358485

0.015 From Fig.12.29

198.7437

CALCULATED OVERALL HEAT TRANSFER COEFFICIENT

30 From Table 2-3Ken Arnold Vol:2

K1 = n1 =

Jh Factor =

hi (Btu/hrft2oF) =

As (ft2) =

Volumetric Flowrate (ft3/s) =

Jh Factor =

hs (Btu/hrft2oF) =

kw (Btu/hrftoF) =

Page 10: Method of Heat Exchanger Sizing (Kern Method)

19.01084

TUBESIDE PRESSURE DROP

Pt =

L (m) = 2.439024 jf = 0.095di (m) = 0.01483 Np = 2

741.263v (m/s)= 0.014891

Pt = 20.95621 Pa0.00304 psi

SHELL SIDE PRESSURE DROP

Ps =

L (m) = 2.439024 jf = 0.05

0.071138 Ds (in) = 0.304878

650.006 de (in) = 0.024025v (m/s)= 0.143035

Ps = 1157.195 Pa0.167883 psi

Uo (Btu/hrft2oF) =

Np x (8 x jf x (L/di) + 2.5)(ρ x v2/2)

ρ (Kg/m3) =

8 x jf x (Ds/de) x (L/lB) x (ρ x v2/2)

lB (m) =

ρ (Kg/m3) =