134
METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven D. Goodwin, Barbara I. Schultz, David L. Parkhurst, Nancy S. Simon, Edward Callender U.S. GEOLOGICAL SURVEY Open-File Report 84-074 Reston, Virginia 1984

METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE

SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY,

AND DATA FOR 1978-1980

by Steven D. Goodwin, Barbara I. Schultz, David L. Parkhurst, Nancy S. Simon, Edward Callender

U.S. GEOLOGICAL SURVEY

Open-File Report 84-074

Reston, Virginia

1984

Page 2: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

UNITED STATES DEPARTMENT OF THE INTERIOR

William P. Clark, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

Chief Hydrologist U.S. Geological Survey 432 National Center Reston, Virginia 22092

Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch Box 25425, Federal Center Denver, Colorado 80225 (Telephone: (303) 234-5888)

Page 3: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

CONTENTS

Page

Abstract 1

Station locations 2

Methods of analysis 6Field sampling techniques 6Chemical analyses 10

Electrode methods

Sulfide specific ion electrode

Dissolved constituents 17Alkalinity -. 17

Single acid addition 17Automated titration 20

Ammonium - 21Sulfate 22

Phosphorus 23Carbon 26Iron and manganese 26

Atomic absorption spectrophotometry method ~ 26FerroZine method 27

Major cations 27Chloride 27Silica 28Ion chromatography 28

Sediment properties 29Porosity 29Weight loss on ignition 30

Solid constituents 30Phosphorus 30Total Nitrogen 32Carbon 32

References 32

Appendix I - Aids for using the data 36

Appendix II 38Data Tables 39

Page 4: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

ILLUSTRATIONS

Page

Figure 1. Map showing station locations in the tidal

Figure 2. Map showing station locations in the transitionzone of the Potomac River 4

Figure 3. Map showing station locations in the lower estuaryof the Potomac River 5

Figure 4. Graph showing concentration of carbon in sequentialaliquots of two solutions 9

TABLES

Table 1. Cruise dates and codes 2

Table 2. Concentrations of alkalinity (meq/L), ammonium (mmol/L), and silica (ymol/L) from three successive 7-ml fractions, Core JQA 11

Table 3. Methods of analysis for determined species 12

Table 4. Empirical activity coefficients (Y f u+) f°ralkalinity determination 19

ii

Page 5: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

CONVERSION TABLE: METRIC TO INCH-POUND

Multiply SI units

nanometer (nm) micrometer (ym) millimeter (mm) centimeter (cm) meter (m) kilometer (km)

microliter (yL) milliliter (mL) liter (L) liter (L)

milligram (mg) gram (g)

degree Celsius ( C)

bv.

Length

3.937 X 10~8 3.937 X 10~5 3.937 X 10-2 0.3937 3.281 0.6214

Volume

3.382 X 10-5 3.382 X 10-2

33.82 0.2642

Mass

3.527 X 10""!? 3.527 X 10~2

Temperature

F = 9/5 °C + 32

To obtain inch-pound units

inch (in) inch (in) inch (in) inch (in) foot (ft) mile (mi)

ounce, fluid (oz) ounce, fluid (oz) ounce, fluid (oz) gallon (gal)

ounce, avoirdupois (oz) ounce, avoirdupois (oz)

degree Fahrenheit ( F)

OTHER ABBREVIATIONS

meq/L milliequivalent per litermmol/L millimole per literymol/L micromole per liternmol/L nanomole per litermV millivolt

iii

Page 6: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY,

AND DATA FOR 1978-1980

By

Steven D. Goodwin, Barbara I. Schultz, David L. Parkhurst, Nancy S. Simon, Edward Callender

ABSTRACT

The chemical composition of bottom sediments and their associated pore waters from the tidal Potomac River and Estuary was studied from May 1978 through June 1980. Pore waters were routinely analyzed for pH, Eh, alkalinity, and concentrations of sulfide, sulfate, phosphate, carbon, ammonium, silica, iron, manganese, chloride, sodium, potassium, calcium, and magnesium. Porosity, weight loss on ignition, and carbon, nitrogen, and phosphorus contents were determined for the solid sediments. The range of salinity and chemical compo­ sition encountered in the estuary frequently necessitated modifications of standard methods of analysis. Therefore, the methods used, their modifications, and their limitations are presented in some detail. The appendix lists the data obtained during six sampling periods.

INTRODUCTION

From June 1977 to September 1982, the U.S. Geological Survey conducted a study of the tidal Potomac River and Estuary. One part of that study was an investigation of the chemical composition of the bottom sediments and their associated pore waters. The investigation examined both spatial and seasonal variation over a three-year period. The data from this investigation are presented in the Appendix. The body of this report presents the methods which were used to obtain the data. Although many of the methods are standard and commonly employed, they are presented here in some detail for two reasons. The first is that the wide range of salinities encountered in the estuary ne­ cessitated many modifications of the methods. It is hoped that presentation of these modifications will be useful to others undertaking sediment chemistry studies in estuaries. The second reason for the detailed presentation is that even standard methods have limitations and can present problems when applied to as heterogeneous an environment as estuarine sediment. It is important that these limitations and problems be clearly stated for those who will use and interpret these data.

Page 7: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Station Locations

The locations of all stations are presented in figures 1-3. Cores are designated by both the site from which they were taken and the cruise during which that station was occupied. The first letter of the site designation, V or J, indicates the ship from which the core was taken, either the R/V Venus or the R/V Judith Ann, respectively. At the end of August 1978, three stations were sampled which were labelled HI, H2, and H3. The H represents an associated investigator, Douglas E. Hammond, although the R/V Venus was the ship from which the sampling was done. The cruises are represented by two numerals for the year of the cruise, followed by two numerals for the month of the cruise (e.g., 7809 represents a cruise in September 1978). The cruise dates are as listed in table 1.

During September 1978, two to four cores were taken at each station, as indicated by the letters A, B, C, and D after the station number. A central buoy was placed and cores were retrieved on a crossing pattern, each core being approximately 150 m from the central buoy. In addition to providing information on seasonal changes that occurred between May and September, this procedure allowed us to determine the spatial variability at the sites.

Table 1.- Cruise dates and codes

Sampling Dates Code Stations Sampled Ship Used

May

Aug.

Sept

10

29

. 5

- May

- Aug

30

.

- Sept.

, 1978

31,

22

1978

, 1978

7805

7808

7809

VI

HI

through

through

V28

H3

V3A-C, V6A-D, V14A-D,

R/V

R/V

R/V

Venus

Venus

Venus

Mar. 20 - Mar. 22, 1979 7903

July 31 - Aug. 5, 1979 7908

Oct. 31 - Nov. 7, 1979 7910

June 10 - June 19, 1980 8006

V16A-D, V20A-D, V26A-D, V28A-B

V3B,D, V14B,D, V26B,D

V3,V14, V16, V26, V28, VSM, VPI, VBB, VPT,VPC VQ

JQA, JQB, JPT, J16, JPC, JQC

J-IHA, J-IHC, JBELA JBELC, JMPA, JMPB

R/V Venus

R/V Venus

R/V Judith Ann

R/V Judith Ann

Page 8: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

77°15'

WASHINGTON, D.C.

VIRGINIA

7809-V28B «^oAAimo/t A^pwBlue Plains Sewage Treatment Plant7809-V28A ¥*s:i?S0

W& Woodrow ^Wilson Bridge

mm

EXPLANATION

7805-V28 - Sampling station7908^26 %®Mount Vemon J&

MARYLAND

10 KILOMETERS

Figure 1.- Station locations in the tidal Potomac River.

Page 9: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7715' 77°

EXPLANATION

7805-V20- Sampling station

VIRGINIA

Quantico

ii 7805-V19 Ii f juJouglas R

I 7805-V181

7809-V14A7809-V14B7809-V14C7809-V14D7903-V147903-V14D

3

1 3 5

5 1

1

10 KILOMETERS

10 MILES

Figure 2.- Station locations in the transition zone of the Potomac River.

Page 10: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Figure 3.- Station locations in the lower estuary of the Potomac River.

Page 11: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Acknowledgements

A great many people made our sampling and analysis program possible. The authors owe a particular debt of gratitude to Richard Younger, captain of the R/V Venus. His ingenuity, his ability to make or repair almost any­ thing we needed, and his unfailing cheerfulness were invaluable to the suc­ cess of our sampling work. We also thank Joseph Dealteris, captain of the R/V Judith Ann. Owen P. Bricker, George Burr, Robert Conkwright, Robert Cuthbertson, Jeffrey Halka, Kathryn Kuivila, James Mackin, Darlene Wells O'Connell, Elizabeth J. Phillips, Thomas Treese, and Joan C. Woodward all provided valuable shipboard assistance. Darlene W. O'Connell also assisted in setting up and running the titrimetric sulfate analysis and Joan C. Woodward tested the methods and analyzed samples for chloride, dissolved reactive phosphate, and silica. Leslie F. Ruppert helped with the pore-water alkalinity and dissolved reactive phosphate analyses, Mary Jo Baedecker with the dissolved carbon, and Leslie Adams with dissolved and solid carbon ana­ lyses. Margaret M. Kennedy assisted with the dissolved ammonia and the solid nitrogen analyses and Joseph C. Chemerys provided the major cation data. Paul P. Hearn provided the Potomac River sediment X-ray fluorescence phosphorus data used for recovery comparisons in the solid phosphorus ana­ lysis. Linda Estel Powers helped prepare the sediments for solid analyses and assisted in the transportation of samples from ship to laboratory, a vital link in the process. Patricia C. Butler capably provided the necessary office support for this effort and Ana M. MacKay assisted in preparation of the manuscript. And, finally, the review comments of Dana D. Harmon, Stephen E. Ragone, and David J. Shultz were greatly appreciated.

METHODS OF ANALYSIS

Field Sampling Techniques

The cores examined in this study were taken either with a ship-operated Benthos 1 gravity coring device, Model 2171, or manually by divers using self- contained underwater breathing apparatus (SCUBA). In both cases, cellulose acetate butyrate core liners with a 6.7-cm inner diameter were used. A ship-operated corer made it possible to work safely in waters of the upper part of the tidal Potomac River which are directly affected by the sewage treatment plants. The disadvantages of the ship-board corer were that it was not possible to know the angle of penetration and that the corer had to be dropped into the sediment with some force, thus disturbing the surface of the sediment. Divers could insure vertical penetration and less disturbance of

1 The mention of brand names is for identification purposes onlyand does not constitute endorsement by the U. S. Geological Survey.

Page 12: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

the sediment. Manual retrieval of cores by divers was hampered by poor visibility and highly compacted sediments at some locations. Sandy sediments and sediments containing or overlain by oyster shells or large quantities of undecomposed detrital material, such as leaves and sticks, precluded manual and mechanical sampling or extrusion of the cores and therefore were not sampled.

Once on board, the cores were capped and stored upright in a box supplied with a continuous flow of river water to maintain the ambient water temperature. The entire sampling operation required 5 hours. No core was stored for longer than 5 hours before being processed.

Cores were processed in two anaerobic glove boxes that were connected with a flexible rubber sleeve. Prior to extruding the core, both boxes were purged with nitrogen gas for a minimum of one-half hour then maintained with a constant positive pressure of nitrogen gas during processing. The core was inserted into one glove box through a port in the bottom. A piston, made either of rubber or plexiglass with rubber o-rings, was placed into the bottom of the core liner. Water overlying the sediment was removed with a peristaltic pump and chilled for later analysis. Hydraulic pressure against the piston allowed the core to be extruded directly into nylon squeezers (Reeburgh, 1967) which were kept refrigerated until the time of use. The usual sampling intervals were 0-2, 2-4, 4-6, 6-8, 8-10, 15-17.5, 25-27.5, 35-37.5, 45-47.5 and 65-67.5 cm. The increase from 2-cm to 2.5-cm intervals at 15 cm and beyond was necessitated by the reduced porosity of the core with depth and consequent difficulty in expressing a sufficient volume of pore water.

Electrode measurements were made by direct insertion of the electrodes into the sediment before the water was extracted. A second set of electrode measurements, made on expressed pore water, is discussed below. The four electrodes (pH glass, platinum, silver/silver sulfide, and double junction reference) were secured in a plastic holder and inserted into the sediment. Specifics of the electrode measurements are described in the analytical methods section.

The three-piece nylon squeezers, modelled after Reeburgh's design (1967), were fitted with o-ring seals. Pore water was expressed by the pressure of nitrogen gas against a sheet of dental dam rubber which covered the sediment.

During May 1978, September 1978, and March 1979, the pore water was passed through an 82-mm diameter, 0.1- ym pore-size Millipore membrane filter. From August 1979 until the end of the study, 0.22- ym poresize Millipore membrane filters were used. The membrane filter was placed over a Schleicher and Schuell No. 589 Black Ribbon paper filter. The water was expressed through a Swagelok fitting directly into a 30-mL plastic syringe. Most sediment intervals provided from 20 to 30 mL of water and 15 minutes to 1 hour were required to complete the squeezing. The first 1 to 2 ml of water were not collected in the syringe because of possible contamination as discussed below.

Page 13: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Approximately 3.5 mL of the expressed pore water were injected into a plexiglass cell which contained a second set of the same four electrodes that were used for the insertion into the sediment. The electrodes were flushed by repeatedly injecting and withdrawing the pore water. The water was dis­ carded and the cell was rinsed with distilled water and wiped dry after each sample was completed. The discarded water was sometimes used for sulfate measurements.

Samples to be analyzed for alkalinity, phosphate, chloride, ammonium, sulfate, organic carbon, inorganic carbon, sulfide, and the major cations,K , Na , Ca , and Mg were stored in borosilicate glass vials with Poly- Seal caps. The samples for silica, iron, and manganese were stored in linear polyethylene vials with Poly-Seal caps. The samples for iron and manganese were acidified to a pH of less than 2 with J. T. Baker Ultrex concentrated hydrochloric acid. The 2- to 8-mL samples required from 0.05 to 0.150 mL of acid to achieve the proper pH and to remove the yellow color indicative of iron oxyhydroxides. Acidification was especially important in the tidal river where iron levels were highest. A second 1 mL iron sample was placed in a borosilicate-glass snap-cap vial for analysis by the Hach Company FerroZine method. Fifty uL of the reducing agent hydroxylamine hydrochloride was added to this sample on shipboard. Brinkmann Eppendorf pipettes were used for all sample transfers and reagent additions.

The sediment remaining in the squeezer after expressing the pore water was placed in plastic Whirl-Pak bags and frozen for shipment back to the lab­ oratory. The pore-water samples were chilled with a commercially available reusable ice substitute. The pore-water samples were not allowed to freeze. The total time required for coring, sample processing, and transport back to the laboratory was 12 to 16 hours.

The membrane filters were investigated for background contamination. The 0.22- urn pore-size Millipore filters gave blanks of 60 nmol Cl~, and 6 nmol SO, ̂ ~ when 100 mL of distilled water was passed through them. These values are both several orders of magnitude below the levels of these constituents in the pore waters. Other investigators have determined background levels for Millipore membrane filters for total organic carbon, nitrate, chemicaloxygen demand (Hwang and others, 1979), and Ca , Mg , Na , Si02, total dissolved phosphorus, and total dissolved nitrogen (Wageman and Graham, 1974). The results were not included here, however, because the Millipore filters tested were different in both pore size and diameter from those used in this study.

The changes in the pore-water carbon concentration during squeezing were investigated by Sheila Boulay (written communication, August 9, 1978). The most significant source of contamination was found to be the Millipore membrane filter. The paper filter was found to be a less important source of contamina­ tion. The results, which are presented in figure 4, indicate that the contam­ ination is most severe for the first five 1-mL aliquots. Additional testing (fig. 4) suggested that the first milliliter expressed from the sediment can have concentrations five times as high as the sample taken as a whole. For this reason, the first 1 to 3 mL were discarded before attaching the syringes for sample collection.

Page 14: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

60

50

40

fe 30ccLU 03

20

10

I 1 I I

40-Milligrams per liter carbon standard

o Distilled carbon dioxide-free water

o

I T I T4 5 6 7 8 9 10 11 12

CONCENTRATION OF CARBON, IN MILLIGRAMS PER LfTER

13 14 15 16

Figure 4.- Concentration of carbon in sequential aliquots of two solutions passed through 0.22 ym poresize Millipore membrane filters.

Page 15: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Experiments were performed during October 1979 to determine if there were any changes in the concentrations of NH^ , alkalinity, or SiC^ during squeezing. Three cores were taken from site JQ downstream from Quantico. The pore water from two of the cores, JQA and JQC, was partitioned into three consecutive fractions (A, B, and C) of 7 ml each. The results are presented in table 2. The sediment intervals were placed into the squeezer in such a way that the uppermost portion of any interval was at the bottom of the squeezer. For both silica and alkalinity, the increase with each successive aliquot parallels the increase down the core. This suggests that the pore water is being forced out of the interval with very little mixing, and that the water nearest the bottom of the squeezer (which is the top of the interval) is expressed first. Ammonium does not show the same pattern. Although ammonium concentrations increase with depth, concentrations in successive fractions from the same interval tend to decrease.

Chemical Analyses

The following sections describe the analytical methods used in this study. In some cases, more than one technique was used, and in others, the literature method was modified. The reasons for these changes are discussed. Table 3 lists the methods of analysis for determined species.

ELECTRODE METHODS

The pH of sediment pore waters was measured two ways: (1) by insertion of electrodes into the sediment after extrusion but before squeezing, called the sediment pH, and (2) on expressed pore water that was transferred to the plexiglass electrode cell, called the cell pH.

The following pH meters were used during the indicated sampling times: Orion 701 pH meter (cruises 7805 and 7809), Chemtrix 60A (7903), and Corning 125 (7908 and after). All pH measurements were made using Orion pH electrodes (model 91-01-00) with Ag/AgCl internal references and Orion double junction reference electrodes (model 90-02-00). The inner filling solution (Orion 90-00-02) and outer filling solution (Orion 90-00-03, 10% KN03) of the reference electrode were changed daily. In locations with significant concentrations of H2S, the outer filling solution was changed after each core (10 samples) in an attempt to avoid the formation of highly insoluble Ag2S in the porous junction between the inner and outer filling solution or on the silver wire which is in contact with the inner solution,

Electrode pairs were calibrated with standard buffers of pH 7.00 (± 0.02 at 25°C) and pH 4.00 (± 0.02 at 25°C) before and after a set of core samples was measured. Fresh buffers were used for each core.

10

Page 16: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Table 2.-Concentrations of alkalinity (meq/L), ammonium (mmol/L), and silica (jjmol/L) from three sucessive 7-ml aliquots from from 7910-JQA

Depth, in cm

Alkalinity 0-2

2-4

4-6

6-8

8-10

Ammonium 0-2

2-4

4-6

6-8

8-10

Silica 0-2

2-4

4-6

6-8

8-10

First

1.78

2.36

2.99

3.95

3.66

0.24

0.33

0.40

0.56

0.55

267.5

490.0

562.5

617.5

532.5

Squeezer aliquotsSecond

1.93

2.70

3.33

4.34

4.15

0.17

0.28

0.38

0.51

0.55

287.5

537.5

592.0

580.0

575.0

Third

2.07

2.80

3.04

4.05

4.24

0.17

0.27

0.39

0.53

0.50

11

Page 17: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Table 3.-Methods of analysis for determined species

Species Method Reference Dates used

Dissolved:

Alkalinity

Ammonium

Sulfate

Sulfide

Phosphate

Carbon

single point titration

automated titration

phenol-

hypochlorite

electrode

ion exchange

Almgreen and Fonselius (1976)

Radiometer

Solorzano (1969)

HNU Systems Inc. (1978)

Dollman (1968)

ion chromatography Dionex (1978)

spectrophotometric analysis

iodometric titration

AgS electrode

molybdenum blue

Cline (1969)

Skougstad and others (1979)

Murphy and Riley (1962)

ion chromatography Dionex (1978)

Beckman Carbon Analyzer

Beckman Instruments Inc. (1968)

May 1978

July-Aug. 1979 Oct.-Nov. 1979 June 1980

May 1978 Sept. 1978 July-Aug. 1979 Oct.-Nov. 1979

June 1980

May 1978 Sept. 1978 March 1979

July-Aug. 1979 Oct.-Nov. 1979 June 1980

May 1978

All except May 1978

All

May 1978 Sept. 1978 March 1979 July-Aug. 1979 Oct.-Nov. 1979

June 1980

May 1978 Sept. 1978 March 1979 July-Aug. 1979 Oct.-Nov. 1979

12

Page 18: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Table 3.- Methods of analysis for determined species (continued)

Species Method Reference Dates used

Iron

Manganese

Oceanography International system

atomic absorption spectrophotometry

Ferrozine

atomic absorption spectrophotometry

Major cations atomic absorption (K+ , Na+ , spectrophotometry Mg2+, Ca2+)

Chloride

Silica

pH

Eh

Solids:

Phosphorus

Nitrogen

Carbon

Mohr titration

molybdate blue

glass electrode

platinum electrode

acid extraction

Kjeldahl digestion and ammonia electrode

Leco Carbon Determinator

Oceanography International manuals

Perkin-Elmer Corporation (1976)

Stookey (1970)

Perkin-Elmer Corporation (1976)

Skougstad and others (1979)

Skougstad and others (1979)

Skougstad and others (1979)

Aspila and others (1976)

Bremner (1965) Bremner and Tabatabai (1972)

June 1980

All

May 1978 March 1979

All

All

All

All

All

All

All

All

Leco Corporation (1978) All

1 All for which data are listed.

13

Page 19: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

All measurements were made to the nearest millivolt and converted to pH units. The length of time allowed for each measurement varied from 1 to 10 minutes depending on the length of time necessary to reach a stable reading. Because of time limitations, a drift of <1 mV/minute was considered a stable reading.

The precision of the method, assuming temperature was relatively constant, was estimated by comparing the calibrations at the end of a set of measurements with those made at the beginning of the set. The precision was ± 0.05 pH units. The accuracy in terms of well-defined (buffered) solutions was estimated to be ± 0.1 pH units.

The sediment pH was measured in a relatively intact volume of sediment (60-80 cc) before squeezing. Consequently, there was less opportunity for pH errors due to sample temperature changes, oxidation, or degassing. On the other hand, the contact between the electrodes and the pore water was not uniform, there may have been sediment electrical effects, the glass membrane of the pH electrode is easily scratched, and there was usually a temperature difference between the calibration buffers and the sediment.

The cell pH measurement assured a uniform interface between electrodes and solution and close agreement between the temperature of the buffers and the temperature of the pore water. Unfortunately, the similarity in temperatures was the result of a change in pore-water temperature from in situ to shipboard temperature. In addition to temperature changes, oxidation of reduced species and degassing of dissolved species could have altered the pH of the solution.

In general, the pH was higher in the cell measurements than in the sediment measurements by 0.1 to 0.2 pH units. This pH change is at­ tributed to degassing of C02 and H2S according to the following equations:

H + HC03 * H20 + C02 (g ) (1)

H+ + HS~ > HS (2)

Because the partial pressures of these gases in the glove box were practically zero, this degassing would, after a period of time, essentially deplete the pore waters of bicarbonate and bisulfide if they were left in contact with the glove box atmosphere. In some instances, the pH of the cell measurements was lower than that of the sediment. There are several possible explanations for these results: (1) incomplete electrode solution equilibration, (2) oxidation of ferrous iron and precipitation of ferric hydroxide,

12H20 + 4Fe2+ -» 4Fe(OH) 3 + 12H+ (3)

or (3) temperature variation between electrodes and samples or between calibration solutions and samples.

14

Page 20: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Eh

The redox potential, Eh, was measured in the same two ways as the pH: (1) in the sediment and (2) in a plexiglass cell. Eh was measured in mil­ livolts using a platinum electrode (Beckman number 39271) and the same double junction reference electrode used for the pH measurement. Time limitations required that readings be taken after a maximum of 10 minutes even though the drift, at times, was greater than 5 mV/minute. Occasionally, it seemed that several measurements were required for the electrode to equilibrate with the reduced environment of the sediments, with sediment Eh decreasing over the first few samples for each core regardless of the order in which the samples were measured. Because of the drift and slowness of equili­ bration, the precision is estimated to be only ± 50 mV.

Like pH, Eh is subject to continuous change from the time of coring. Any oxygen in the glove box atmosphere or trapped within the filter will contribute to the oxidation of the reduced species, resulting in the ob­ served increase in Eh from the sediment measurements to the cell measure­ ments. The sediment appears to provide a redox buffering capacity which is absent in the pore water alone, as indicated by the following observa­ tions. In the lower estuary, where there was significant sulfide production in the sediments, the sediment Eh was approximately -200 mV. The cell Eh was generally about -150 mV if there was measurable sulfide in the extracted water. In the tidal river, where there are high concentrations of iron in the pore water, the sediment and cell measurements range from 0 to 100 mV. In the transition zone, the sediment Eh values are about -200 mV, but the pore-water Eh values are between 0 and 100 mV. It appears that as long as the pore water is in contact with the sediments there are small but sufficient concentrations of sulfide or an organic redox couple to produce a low Eh. After filtration, the pore water is no longer in contact with the solids and has virtually no redox buffering. Thus, the Eh rises until it reaches an equilibrium value of the iron system. The squeezing and filtering process can make as much as a 300 mV difference in the measured Eh. For these reasons, the sediment measurements are considered to be the more representative of the in situ redox potentials.

Sulfide Specific Ion Electrode

r\

The activity of the sulfide (S ) ion was measured with the Orion sulfide electrode (model 94-16A) and the Orion double junction reference electrode (model 90-02-00). Use of a double junction rather than a single junction electrode minimized the problem of precipitation of Ag2S within the junction. In addition, the filling solutions were changed frequently, as discussed in the pH section.

The electrode was calibrated in solutions saturated with hydrogen sulfide gas at one atmosphere partial pressure and at varying pH values (Berner, 1963). The sulfide electrode, the reference electrode, and a glass pH electrode were

15

Page 21: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

enclosed in a chamber containing distilled water and an overlying head space of hydrogen sulfide gas. The chamber was vented to the atmosphere and gas slowly bubbled through the solution. Na£S and NaOH were used to vary the pH of the solution. The glass electrode had previously been calibrated in the same chamber at the same temperature. After the system reached equilibrium, the activity of sulfide (at 25 ) could be computed from the expression:

(as2-) / p = 10"21 ' 9 . (4)

To ensure equilibrium, periods of up to 1/2 hour were required for each point on the calibration curve.

Because the electrode is also responsive to silver ions, solutions of AgNOo were used to check the electrode calibration. The assumption was made that Ag is in equilibrium with Ag2S at the electrode surface. Using solutions of silver in the linear response range of the electrode, the activity of sulfide was determined from the expression:

as2- =

10-49.7

(aAg+)

_AQ 7

where the k of Ag9 S was taken as 10 (Sillen and Kartell, 1964). Thes p £* slopes determined by the silver ion method were within 15 percent of theslopes determined from calibration with hydrogen sulfide gas in spite of the need to extrapolate over many orders of magnitude to the levels of sulfide found in anoxic estuarine sediments. The sulfide electrode was usually calibrated by the hydrogen sulfide gas method at the beginning and completion of a cruise. The silver calibration provided a convenient check on the electrode calibration during shipboard operation.

To facilitate comparison with the iodometric method, discussed in a later section, the pS2~ values determined by the sulfide electrode were used to estimate the total concentration of S2~, HS~, and H S. The dis­ tribution of the sulfide species was determined from the pH and pS by the following equations:

(ag2-) ( aH+ )aHS- = (6)

K2

(aHS-) (aH+) « (7)

16

Page 22: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

as2~ *H2 s Tsulf ide

YS2- YH2S

where:

YH2S = 1

= io"7 ' 19

The ionic strength of the pore water from localities with measureable con­ centrations of sulfide ranged from 0.20 to 0.35. The range of activity coefficients was 0.66 to 0.71 for YHS~ and 0.25 to 0.30 for YS2~. Because of the uncertainties in the activity coefficients, the pH, and the dissociation constants, the total sulfide values reported from the electrode measurements should be understood to provide only a qualitative comparison with the iodometric titrations.

DISSOLVED CONSTITUENTS

Alkalinity

Two methods were used to determine the alkalinity of the pore waters during the course of this study. The first method consisted of a single addition of acid, followed by a correction to account for the excess acid added (Almgreen and Fonselius, 1976). The second method was an automated titration of unacidified sample to the bicarbonate endpoint. The first method was used on all cruises from May 1978 to March 1979. The second method was used on all subsequent cruises because of its ease of measurement and improved accuracy.

Single acid addition

This method involved the addition of a known quantity of 0.01N HC1 to reduce the pH of the sample to approximately 3.5. The pH of the sample was measured and the excess acid remaining in solution was calculated. The difference between the acid added and the excess remaining in solution was a measure of the alkalinity.

* * (Va)(Na>+ + 3. Si r>HAlk - Ea- H^ = - 10 P (9)

Vs + Va

17

Page 23: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

where :

+ Ha = concentration of hydrogen ion added to solution

+ Hr = concentration of hydrogen ion remaining in solution

Va = volume of acid added

Vs = volume of sample

Na = normality of the acid

pH = pH of sample after adding acid

The pH is strictly the -log a +; the activity of H ions therefore was corrected to the concentration of H . This was done by determining an empirical activity coefficient for a range of pH values beyond the second equivalence point of carbonic acid. Such a calibration was carried out by titrating past the end point and recording excess acid added and pH for several additions.

V 10"pH

(H ) (va2 ) (Na)/(vs + va)

where:

Y'+ = empirical activity coefficient for hydrogen ions H

Va2 = volume of acid added beyond the second equivalence point of the carbonic acid system

aR+ = activity of hydrogen ion

(H J = concentration of hydrogen ions

The Y + for each pH was determined according to equation 10. Almgreen and Fonselius (1976) point out that a table of coefficients should be deter­ mined with the same electrode couple that will be used to measure the samples because liquid junction potentials vary significantly between electrode couples. Because the activity coefficient is a function of ionic strength, several sets of coefficients had to be determined to include the range of ionic strengths of the samples. Table 4 presents two abbreviated sets of coefficients determined with the same electrode couple but for samples of greatly differing ionic strengths. Equation 9 was corrected by dividing by the activity coefficient.

18

Page 24: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Table 4.-Empirical activity coefficients ( for alkalinity determination

Sample site

V6

V26

PH

4.30

4.24

4.19

4.13

3.59

3.32

4.32

4.26

4.19

4.15

3.59

3.34

YV

0.80

0.73

0.68

0.67

0.60

0.60

0.89

0.82

0.74

0.71

0.65

0.64

V6 salinity was 16 ppt June 1978

V26 salinity was 0.23 ppt June 1978

19

Page 25: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

(Va) (Na) 10-PR Alk= - (11)

V + V Y' + s a H

Both the precision and the accuracy of the method improved the closer the final pH was to the endpoint. The results of five replicates of a stand­ ard, which contained 16.4 meq/L of alkalinity, gave a mean of 16.0 meq/L and a standard deviation of 0.79. Five replicates of a 1.64 meq/L standard produced a mean of 1.92 meq/L and a standard deviation of 0.02. The standard deviation of the 16.4 meq/L standard was large because the final pH values for those analyses were close to 3.0. This large separation from the true equivalence point can be expected to produce a large standard deviation. The need to maintain final pH values above 3.3 must be stressed.

The alkalinity values obtained in May and September of 1978 were deter­ mined without making the activity correction. The maximum error was 1 meq/L when the final pH was greater than 3.3 and less than the carbonate endpoint. The error resulting from not correcting for activity was as large as 3 meq/L when the final pH was below 3.3. The true alkalinity is always lower than the reported alkalinity if the activity correction is not made. The use of this method, although it has the advantage of allowing a large number of samples to be completed in a short period of time, should be discouraged due to its inherent inaccuracy.

Automated titration

Throughout the second half of this study, alkalinity was determined with a Radiometer (RTS822) automated titration recording system, following the procedures given in the manual (Radiometer). The system allowed for the automatic addition of acid and precise measurement of pH. The equiv­ alence point was determined from the maximum change in pH per unit of acid titrant addition. The rate of titration could be varied over a wide range to improve precision. For this study, the rate selected allowed each titration to be completed in less than five minutes. A 1-mL sample was diluted to 5 mL with distilled water in order to completely submerge the calomel reference electrode (Radiometer E4040) and the glass electrode (Radiometer G2040B).

Five replicates of each of the Na9 COo standards gave the following £ J

means (X) and standard deviations (s. d.): 16.4 meq/L standard^ X = 16.5, s. d. = 0.008; 8.20 meq/L, X__= 8.1, s. d. - 0.005; 1.64 meq/L, X = 1.64, s. d. = 0.006; 0.164 meq/L, X = 0.166, s. d. = 0.003. The standards used were representative of the range of alkalinities found in the tidal Potomac River and Estuary. The precision of the titrations was limited by the precision of the Eppendorf pipettes used to measure the sample.

20

Page 26: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

The end point determined from titration curves ranged from pH 4.5 to 4.3. Carbonate alkalinity can be represented as:

Garb alk= HCO~ + 2CO^~ + OH" - H+ . (12)

Other species which may contribute to the alkalinity include S2-, HS~, NH~, and the anions of some organic acids, e.g., acetate and formate.Several samples from V26 and V6 were acidified to the carbonate endpoint and then degassed with nitrogen to remove all carbonate species as C02 gas. The samples were then back titrated with NaOH to a pH of 7.5 to determine the contribution of non-carbonate species to measured alka­ linity. The contributions ranged between 0.3 and 1.9 meq/1. This is most likely an underestimate of the contribution because the sulfide species may have been lost during degassing.

Ammonium

Analyses for ammonium-ion concentrations were done two ways. The phenol- hypochlorite colorimetric method based on the Berthelot reaction as described by Solorzano (1969) was used for pore-water analyses during 1978 and 1979. An ammonia electrode was used for subsequent analyses.

The reaction of ammonia, hypochlorite, and phenol is described in Bolleter and others (1961), Helder and DeVries (1979), and Patton and Crouch (1977). The chromophore, indophenol, is produced by the reaction of monochloroamine with phenol in an alkaline solution.

The colorimetric reaction is affected by variation in pH and salinity, the presence of sulfide and ferrous iron, and light (Bolleter and others, 1961; Gravitz and Gleye, 1975; Helder and De Vries, 1979; Ngo and others, 1982; Koroleff, 1976; Patton and Crouch, 1977; and Solorzano, 1969).

Standards were prepared in dilutions of artificial seawater (as given by Lyman and Fleming in Horne, 1969) in the salinity ranges of the samples being analyzed. Sulfide can be removed by acidifying the sample to pH 3 and bubbling an inert gas (^) through the sample. A less rigorous, but often adequate, method is to shake the capped sample vial, then remove the cap and allow exposure to air so that H2S can outgas. This shaking and exposure to air sequence was repeated several times over a period of twenty to thirty minutes before an aliquot was removed for analysis. Samples which had con­ centrations of iron which would have interfered with the colorimetric analysis also had concentrations of ammonia which required dilution of the samples before analysis, thereby minimizing the interference by the iron. Because light catalyzes the reaction, the samples were stored in the dark from the time of reagent addition until absorbances were determined spectro- photometrically.

21

Page 27: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Because volatile amines, which may be found in sewage effluent, are the only direct interference with the ammonia electrode, (HNU Systems Inc., 1978; Gilbert and Clay, 1973), the electrode was used for interstitial water analyses after 1979. An HNU Ammonia Electrode with replaceable caps and Corning model 130 pH meter (0.1 mV resolution) were used for all ammonium analyses by electrode following the procedure described in the HNU manual (HNU Systems Inc., 1978).

Sulfate

Sulfate concentrations in the pore water were determined by the ion exchange-titrimetric method of Dollman (1968). The anions of the sample were converted to their acid forms by passage through an ion-exchange column. Volatile acids were removed during two selective evaporations and the remaining sulfuric acid was titrated with sodium hydroxide.

The exchange resin (Bio-Rad AG50W-X8 100-200 mesh) was used in the hydro­ gen form. A column with an 8-mm diameter and packed 80 mm deep had approxi­ mately 30 meq of exchange capacity. The column was not allowed to go to dryness and could be used for three samples before being regenerated with 25 mL of IN HC1 and 25 mL of distilled water. The sample volume was kept close to 5 mL, depending upon availability.

After being placed on the column, the sample was eluted with four 5-mL rinses of distilled water. The eluent was evaporated to 3 mL under an infrared lamp, but was not allowed to boil. This required 1-1/2 hours. The sample was then taken to dryness in a 75° oven, which required 2 to 2-1/2 hours.

The sample was transferred to the titration vessel with three distilled water washes of 3 mL each. A solution of 0.1N NaOH was then used to titrate the sample to an endpoint of pH 7. Bromothymol blue or a microelectrode system was used to indicate the endpoint. A 2-mL Gilmont microburette was used for the titration. Interference from atmospheric C02 was prevented by bubbling nitrogen gas through the sample during the titration.

The sample was not allowed to go to dryness under the infrared lamps and the temperature of the oven never exceeded 80°C, because in either case sulfuric acid would have been lost. Phosphoric acid is less volatile than sulfuric acid and will interfere with the determination. The data in the appendix of this report have not been corrected for phosphate interference because the phosphate was only a small percentage of the sulfate present. Non-volatile acidic anions such as arsenate, chromate, molybdate, and borate will also interfere. None of these were believed to be present in appreciable quantities in the reported samples.

The samples required 5 to 6 hours to analyze. Two blanks were carried through with each set of samples. Overall, the method was found to be time consuming and sulfate is presently being measured by ion exchange chroma- tography, as discussed in a later section.

22

Page 28: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Sulfide

2 Concentrations of dissolved sulfide species (tUS, HS , S ) were measured

using three methods. A specific ion electrode was used to measure S (as de­ tailed in the electrode section), and a spectrophotometric method and an iodo- metric titration were used to determine the total of all three dissolved sulfide species.

Samples collected in May 1978 were analyzed for dissolved sulfide by the spectrophotometric determination presented by Cline (1969). Because of the wide range of sulfide concentrations encountered in the Potomac River Estuary, standards were prepared in four concentration ranges resulting in four calibra­ tion curves. The preparation of accurate dissolved sulfide standards from Na? S*9H?0 was difficult due to the hygroscopic nature and the fairly rapid oxidation of the reagent.

In September of 1978, and for all subsequent cruises, samples were analyzed iodometrically. Iodine was added in excess to the sample and reduced by the dis­ solved sulfide present. Thiosulfate was used to titrate the iodine which had not been reduced. The procedure followed was that given in Skougstad and others (1979).

To analyze for dissolved sulfide in the small volume of pore water available, the amounts of reagents added were reduced. The 1-mL samples were preserved at the time of collection with 1 mL of IN Zn(C2HoC>2)2 solution. The sample was acidified at the time of analysis with 1 mL of concentrated HCl. The iodine solution was added to the sample, 1 mL at a time, until the iodine color persisted (generally within 1 to 2 mL). A Gilmont microburette was used to titrate the sample with thiosulfate to the starch endpoint. This procedure determined the sum of2_ the three dissolved sulfide species common in natural waters (t^S, HS , S ).

Phosphorus

Soluble reactive phosphorus concentrations in pore-water samples of the Potomac River sediments were measured colorimetrically for samples collected through November of 1979 and by ion chromatographic techniques for samples collected after that time. Soluble reactive phosphorus concentrations in core-top waters were determined colorimetrically for all samples due to the lower limit of detection provided by this method.

The colorimetric method of Murphy and Riley (1962) was used. Orthophos- phate is converted to phosphomolybdate by an acidified ammonium molybdate solution and is reduced by ascorbic acid in the presence of antimony, producing a blue complex which has a maximum absorbance at 882 nm on a spectrophotometer (Skougstad and others, 1979).

23

Page 29: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Pore-water samples collected during the August 1978 cruise were tested for the loss of phosphate to their containers. The differences between the phosphate concentrations of aliquots of samples stored in glass versus those in plastic containers ranged from 0 to 14 percent for samples collected from a fresh-water location (with relatively low phosphate levels) and from 0 to 2 percent for samples from a saline site (with relatively high phosphate levels). (It should be noted here that the designation of sample sets by the salinity or freshness of their location is not meant to imply that the salinity or lack thereof is responsible for any differences observed. The effect of salinity on the analysis is discussed below.) Generally, aliquots stored in plastic containers had lower phosphate concentrations.

The time of sample storage was tested for its effect on the analysis of phosphorus. Aliquots of samples from a saline location, in both glass and plastic containers, showed lower concentrations of phosphate when analyzed one day following collection as compared to aliquots analyzed the night of collection. However, a similar experiment run on samples from a fresh water site yielded varying results. Samples from both saline and fresh water sites (stations V6 and V22, respectively) were analyzed the night of collection and again approximately two months later. The concentration of phosphate in all samples decreased by 9 to 58 percent in two months. Pore-water samples from stations V22, V23, and V24 were analyzed the night of collection and again the following day. Changes in phosphate concentrations ranged in this instance from 5 to 13 percent. Although the results of these experiments were often inconsistent within a single set of samples, in general it was concluded that the samples should by stored in glass vials with Poly-Seal caps and should be analyzed the night of collection.

The pore waters often developed a yellowish color when the glass vials containing samples were exposed to sunlight. This occurred primarily at the fresh-water stations where the concentration of iron in the pore water was high. Because the products of photo-oxidation could react with and tie up available phosphate (e. g. iron phosphates), the samples were kept as dark as possible between the time of collection and analysis.

Samples were also tested for interferences from arsenic, sulfide, and salinity. Several samples were collected to be analyzed by atomic absorption spectrophotometry for their arsenic concentration. No arsenic was detected at the part per billion level. Because H2S was present in many of the pore- water samples from the sediments in the lower portion of the estuary, the effect of sulfide on the phosphate analysis was examined. Sulfide, as Na2S, does not interfere in concentrations up to 1.0 mg/L (American Public Health Association and others, 1975). Distilled water and artificial seawater standards were prepared to contain 264 ymol/L sulfide and were analyzed with the normal procedure. The differences in phosphate concentration between the samples with sulfide and those without were within the analytical error. Any differences between sulfide-containing samples made up in distilled water and those in seawater also fell within the normal analytical error. However, when samples from September 1978 (stations V3 and V6) were analyzed, there may have been some interference from sulfide, as the absorbances obtained tended to drift more for these samples than for those from other locations.

24

Page 30: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

(The drift was usually downward.) When the vials were shaken and left uncapped for up to one hour before analysis, the drift was decreased or eliminated. Concentrations of sulfide determined with the sulfide electrode and adjusted for dilution of the sample during the phosphate analysis were commonly in excess of the 264 ymol/L concentraion used in testing for sulfide inter­ ference. The downward drift of the absorbances was also noted in samples whose sulfide concentrations fell slightly below 264 ymol/L, indicating that the sulfide concentrations may be higher than actually measured (if sulfide is the sole interference), or, that the problem is a combination of several factors.

The possibility of interference due to the salinity of the pore waters was checked by comparing a series of standards made up in artificial fresh water with a series made up in 50 percent artificial sea water (Home, 1969). The differences observed were within the normal analytical error. In addi­ tion, samples from the more saline portions of the estuary were also those with higher concentrations of phosphate and required dilution (usually at least by five) before analysis. This dilution reduced the possibility of inter­ ference due to the salinity of the sample. Murphy and Riley (1962) also found that the salt error using their method was less than 1 percent for the analysis of ocean water.

Samples were checked for the length of time required for color develop­ ment. Murphy and Riley (1962) found the minimum time required for color development to be 10 minutes and that the color was then stable for at least 24 hours. In analyzing pore waters from Potomac River sediments, however, it appeared that color development proceeded at different rates for different samples and that, after the peak absorbance was reached, the absorbance then commonly decreased. Samples from cores taken in September 1978 were analyzed for phosphate and the absorbances read on the spectrophotometer after 20 minutes, then again after all samples had been read the first time. This was repeated up to approximately one hour after addition of the mixed reagent in order to determine the peak absorbances. The peak absorbance of each sample was then used to calculate the phosphate concentrations. Although this procedure was carried out for all September 1978 samples, and for later samples analyzed colorimetrically, there is some question as to whether procedural consistency should be in the determination of maximum absorbance for each sample or in reading the absorbances of all samples following the same amount of elapsed time from addition of the mixed reagent.

Data from a number of investigators indicate that the molybdenum blue method measures compounds of phosphate other than orthophosphate (Rigler, 1968; Strickland and Parsons, 1968; Dick and Tabatabai, 1977; Chamberlain and Shapiro, 1973; Edwards and others, 1965). This may be the reason for the observation that not all samples reached maximum color development at the same time. Because the water sample is in contact with the acidic mixed reagent for a minimum of 20 minutes, it is possible that some of the more easily hydrolyzed condensed phosphates and organic phosphorus compounds may be contributing to the apparent orthophosphate concentration. Analysis of several solutions containing known concentrations of Na2?207 (sodium pyro- phosphate), (NaP03)6 (sodium metaphosphate), and ATP, but not KH2P04,

25

Page 31: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

indicated the apparent presence of orthophosphate. If no hydrolysis of these compounds were occurring, the orthophosphate concentrations should have been zero. The absorbances of these solutions increased slowly with time, as the phosphorus compounds continued to be in contact with the mixed reagent. There­ fore, in using this colorimetric analysis for natural water samples, what is being measured is not, in all likelihood, just orthophosphate, but also other phosphorus compounds, and should be referred to as soluble reactive phosphorus, as suggested by Strickland and Parsons (1968).

Carbon

Dissolved carbon was measured on a Beckman Model 915 Carbon Analyzer, following the method given in the instruction manual (Beckman Instruments, Inc., 1968). Total dissolved carbon was determined by oxidizing the sample at 950° C and measuring evolved C02 by infrared spectroscopy. Dissolved inorganic carbon was determined at 250° C and dissolved organic carbon was calculated by difference. High-salinity samples poison the catalyst of the total carbon system. Because the carbon levels were high enough to require up to tenfold dilutions of the samples, poisoning was not a particular problem.

Analyses were not accepted until replicates agreed to within 2 percent. Replicates of a single dilution were usually well within this limit. The replication between different dilutions of the same sample was poorer than between replicates of a single dilution. Dilution of the sample appears to be the limit to the precision of the analysis. Samples with high dissolved iron concentrations tended to form a yellowish precipitate and exhibited a reduced precision.

During June 1980, water samples were analyzed for total dissolved carbon and dissolved inorganic carbon on an Oceanography International 0524B Total Carbon System and the QIC 0524B-HR Direct Injection Module following the procedures given in the instruction manuals (Oceanography International Corporation, a, b). The direct injection module was used to determine total dissolved carbon. All of the combustion occurred in a stream of purified oxygen and the C02 produced was carried to an infrared detector after having been stripped of water vapor. Dissolved inorganic carbon was determined on the ampule analyzing unit. A sample of 0.3 mL was injected into an ampule containing 2 mL of 10-percent phosphoric acid. A stream of nitrogen gas carried the evolved C02 to the infrared detector.

Iron and Manganese

Atomic absorption spectrophotometry method

26

Page 32: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Concentrations of dissolved iron and manganese were determined by standard flame atomic absorption spectrophotometric techniques (Perkin-Elmer Corporation, 1976). The spectrophotometer used was a Perkin-Elmer Model 603. The salinity of the standards was matched to that of the samples to within 5 parts per thousand and the standards were also made up in 0.1N HC1.

Pore-water samples collected for the determination of their iron and man­ ganese concentrations were stored in linear-polyethylene bottles. The sample size ranged from 2 to 8 mL, depending on the availability of pore water. Each sample was acidified to pH 2 or lower with 0.05 to 0.15 mL of concentrated HC1. The amount of acid added was dependent upon both the volume of the sample and the concentration of iron expected for the sample. At stations V26 and V28, the concentrations of iron present in the pore waters were high enough to cause the almost immediate precipitation of iron oxides upon the extraction of the water from the sediment (in spite of the nitrogen atmosphere present in the glove box). Therefore, acid was added to these samples in small increments until the yellow color disappeared. The final volume of acid added to these samples was generally 0.15 mL.

FerroZine method

During May 1978 and March 1979, iron was also measured using the FerroZine spectrophotometric method (Stookey, 1970). At the time of sampling, 50 yL of hydroxylamine-hydrochloride was added to a 1-mL sample as a reducing agent. In the laboratory, 200 uL of FerroZine reagent and 100 uL of acetate buffer were added to the sample. Color was allowed to develop for 15 minutes and then measured at 562 nm on a spectrophotometer. If the sample required dilu­ tion, an additional 50 uL of hydroxylamine-hydrochloride was added to the sample before the reagents were added.

O i iConcentrations of the four major cations in the pore waters, Mg^ , K ,

Na , and Ca , were measured by flame atomic absorption spectrophotometry, using an Instrumentation Laboratory Model 351 spectrophotometer. Standard Geological Survey methods were employed (Skougstad and others, 1979).

Chloride

Chloride concentrations were determined by a Mohr titration with (Skougstad and others, 1979). During the cruises of 1978, fluorescein was used as the indicator of excess Ag , while on subsequent cruises, K^C^Oy was used as the indicator. Iodide and bromide are also titrated as chloride, and the chloride data include these two anions. Estimates of the precision of the method are given in Skougstad and others (1979).

27

Page 33: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Silica

The molybdate blue method (Armstrong, 1951; Strickland and Parsons, 1968), using SnCl2 as the reducing agent, was used to determine the levels of dissolved reactive silica. At the values of pH encountered in the tidal Potomac River and Estuary, the predominant forms of silica are silicic acid (H4Si04) and polymers of silicic acid. Larger polymers appear to be unreactive toward molybdate and are not measured by the methods described (Strickland and Parsons, 1968).

The silica is complexed with molybdate at a pH of less than 2.5 (Strickland 1952) to favor the development of beta silicomolybdate. After 10 minutes, tartaric acid is added to decompose unwanted phosphorus and ammonium complexes. The addition of SnClo causes the remaining silico­ molybdate complex to be reduced to molybdate blue which can be measured at a wavelength of 810 nm on a spectrophotometer after 1 hour of color development. Absorbance values were found to slowly decrease after 1 hour.

Standards were made from a stock solution of sodium silicofluoride (Na2SiF^). Comparisons made between standards made from comparable amounts of Na2SiF6 and Na2Si03 suggest that 80 times more silica goes into solution from the former than the latter. Increasing levels of salinity depressed the absorbance values. Therefore, standards were prepared in dilutions of artificial seawater (Home, 1969) to match the salinities of the samples.

Samples were stored in linear polyethylene vials with Poly-Seal caps to ensure minimal evaporative losses. Avoiding the use of glass eliminated a source of silica contamination. Sulfide will interfere with the method and was removed by repeatedly shaking and exposing the samples to the atmosphere before analysis.

Ion Chromatography

In suppressed ion chromatography (1C), dissolved charged species with differing affinities for a low capacity resin are separated and move through a second resin bed which replaces the counter-ion to give an eluent with low conductivity while converting the separated sample ions to highly conducting forms for detection by a conductivity meter.

Starting in August 1979, pore-water samples were analyzed using a Dionex Model 14 Ion Chromatograph. Using the anion system, chloride, phosphate, and sulfate concentrations were determined. Samples diluted with 1C eluent were used for chloride and sulfate analysis. Cation resin (Dowex 50W 8X) saturated with AgNO-j was added to samples to remove high chloride concentra­ tions and provide better resolution for the determination of phosphate.

28

Page 34: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Silver from the resin exchanges with Na in the sample solution. Chloride is removed by precipitation as AgCl. The concentration of dissolved iron in interstitial water samples from the tidal Potomac River ranges from 0.02 to 0.93 mmol/L. These samples will precipitate iron oxyhydroxides in the alkaline anion eluent. To analyze these samples by 1C, cyanide should be added to the samples at the time of collection (Nancy Simon, written commun­ ication, August, 1979). To prepare the cyanide-treated aliquot, 1.0 mL of interstitial water was added to a vial containing 3.0 mL of concentrated eluent and 1.0 mL of 25 mmol/L NaCN. The concentration of NaHCO^ and ^2^3in the diluted sample was the same as the eluent in the chromatographic system. The ferro- or ferricyanide complex requires six cyanide ions per ferrous or ferric ion, and the ratio of cyanide to iron in all the samples was more than 12 to 1.

During 1979, samples were analyzed using a 500-mm anion separator column and a 1.2 mmol/L NaHC03/1.8 mmol/L Na2C03 eluent. In 1980, a 250-mm anion separator column and a 4.5 mmol/L NaHC03/3.0 mmol/L Na2C03 eluent were used. The shorter column and stronger eluent reduced analysis time from 30 to 20 minutes per sample. The use of double-deionized water (15 megohm resistivity) improved the baseline of the conductivity cell and extended the life of the columns.

SEDIMENT PROPERTIES

Porosity

Sediment samples were placed in 125-mL widemouth polypropylene jars with screw caps and frozen immediately. Each sample and jar pair was then weighed and the sample freeze-dried. After drying was complete, the sample and jar pair was reweighed. The sediment was removed from the jar, the jar was cleaned, and a weight was obtained for the jar. The porosity of the sediments was calculated using the following relationships:

VHO

VH 0 + Vsed 2

(13)

Wt (Jar + HO + sed) - Wt (Jar + sed)

________________________________________________ (14)Wt- Wf Wt Wt

(Jar + H20 + sed) - (Jar + sed) + (Jar + sed) - (Jar)

Dsed

29

Page 35: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

where:

<J> = porosity of sediment

V = volume

Wt = weight

D = density; DH Q = 1 and Dged = 2.5 2

The value of Dsed is taken from average clay mineral densities.

Weight Loss on Ignition

Sediment weight loss on ignition was determined as part of the analysis for total phosphorus. An accurately weighed aliquot of freeze- dried, ground sediment was placed in a preweighed Coors porcelain crucible. The samples were heated in a muffle furnace for 90 minutes at 550°C, cooled to room temperature in a desiccator and reweighed. The difference between the initial weight of the aliquot of sediment and the weight after heating is the weight loss on ignition.

SOLID CONSTITUENTS

Phosphorus

The procedure for phosphorus analysis of sediments followed that recommended by Aspila and others (1976). Inorganic phosphorus concen­ trations were determined by a l.ON HC1 extraction of the sediments, preceded by ashing of the sample when total phosphorus was desired, and subsequent analysis of the extract for phosphate by the method of Murphy and Riley (1962).

For the determination of solid phosphorus, an accurately weighed aliquot (about 0.5 g) of freeze-dried, ground sediment was placed in a pre-weighed Coors porcelain crucible. The sample was ignited in a muffle furnace at 550°C for 90 minutes, cooled to room temperature in a desiccator, and reweighed to determine weight loss. The sediment was transferred quantitatively to a 50-mL Pyrex Erlenmeyer flask and 25 mL of 1.0 N HC1 were added. The flask was covered with Parafilm and stirred on a gyratory shaker at room temperature for 16 to 18 hours. The contents of the flask were then filtered through a Millipore 0.45 ym poresize membrane filter- The filtrate was transferred quantitatively to a 50-mL volumetric flask and diluted to volume with distilled water. The procedure for inorganic phosphorus was the same as above, except the ignition step was omitted.

30

Page 36: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

The weighed sample was placed directly into the Erlenmeyer flask and extracted.

Analysis of the extract followed the procedure of Murphy and Riley (1962) but required dilution of the extract such that the concentration of HC1 was less than 0.15N.

Organic phosphorus was calculated by difference between the total and the inorganic phosphorus values.

The sediment analyzed was that from which the pore water had been expressed. Calculations showed that the phosphorus in the pore water that remained with the sediments after the squeezing process was negligible.

The recovery of phosphorus from a marine mud from the Gulf of Maine (USGS standard rock, MAG-1) was 78.9 percent of the phosphorus detected by X-ray fluorescence (Fabbi, 1976). The recovery of phosphorus from a sample of Potomac River sediment was 88.2 percent of the phosphorus detected by X-ray fluorescence. The variation between duplicate samples was generally less than 2.5 percent of the mean.

Total Nitrogen

Total nitrogen refers, in this report, to the sum of organic nitrogen plus dissolved and adsorbed ammonium ion. Total nitrogen was extracted by Kjeldahl digests prepared according to the procedure of Bremner (1965). The extracted ammonium ion was measured using an ammonia electrode (Bremner and Tabatabai, 1972; HNU Systems Inc., 1978; Powers and others, 1981). An HNU Ammonia Electrode with replaceable caps and Corning model 130 pH meter (0.1 mV resolution) were used. The analytical procedure is the method of addition as described in the HNU manual (HNU Systems Inc., 1978) modified by the use of Na2EDTA (Nancy Simon and Margaret Kennedy,written communication, March 1978). Disodiumethylenediaminetetracetic acid, Na£EDTA, which is effective in alkaline solutions as a complexer of metals, was added to the Kjeldahl extracts in the amount of 1 mg/L before the addition of the sodium hydroxide solution. Na2EDTA prevents the formation of hydroxides of copper, which is part of the Kjeldahl catalyst, and iron, which is found in the sediment. It also prevents the formation of carbonates of calcium and magnesium. A dilute HC1 solution may be used to remove deposits on the electrode membrane. However, if Na£EDTA is added to the analyte solution, the exposure of the electrode to any solution other than samples and standards is avoided. The single modification of adding Na2EDTA to the sample solutions at the time of analysis results in a rapid, sensitive method which is free of interferences.

31

Page 37: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Carbon

Total and organic carbon were analyzed using a Model DC-12 Leco Carbon Determinator, following the methods given in the instruction manual (Leco Corporation, 1978). The sample was combusted with oxygen at 800°C and the carbon produced was trapped on a molecular sieve at room temperature. The sieve was heated to 320 C to release the carbon dioxide which was then measured by thermal conductivity.

Overestimation of the organic carbon content may occur due to the potential combustion of carbonates. Therefore, if the sediments contain large amounts of carbonate, they must be acidified to release the carbonate from the sample prior to analysis for organic carbon. Preliminary experi­ mentation with acidification of the organic carbon samples in this study found that the inorganic carbonate fraction was within the analytical error of the instrument. Therefore, organic carbon analyses excluded acid treat­ ment.

REFERENCES

Almgreen T., and Fonselius, S. H., 1976, Determination of alkalinity and total carbonate, jln Grasshoff, K., ed., Methods of Seawater Analysis: New York, Verlag Chemie, p. 97-115.

American Public Health Association, American Water Works Association, WaterPollution Control Federation, 1975, Standard methods for the examination of water and wastewater (14th ed.): Washington, D. C., 1193 p.

Armstrong, F. A. J., 1951, The determination of silicate in sea water:Journal of the Marine Biological Association U. K., v. 30, p. 149-160.

Aspila K. I., Agemian, H., and Chau, A. S. Y., 1976, A semi-automated method for the determination of inorganic, organic, and total phosphorus in sediments: Analyst, v. 101, p. 187-197.

Beckman Instruments, Inc., 1968, Beckman instructions: Model 915 total organic carbon analyzer and 191860 air purification unit: Fullerton, CA., 34 p.

Berner, R. A., 1963, Electrode studies of hydrogen sulfide in marine sediments: Geochimica et Cosmochimica Acta, v. 27, p. 563-575.

Bolleter, W. T., Bushman, C. J., and Tidwell, P. W., 1961, Spectrophotometric determination of ammonia as indophenol: Analytical Chemistry, v. 33, p. 592-594.

Bremner, J. M., 1965, Methods of soil analysis. Part 2: American Society of Agronomy, Inc., p. 1149-1176.

32

Page 38: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Bremner, J. M. and Tabatabai, M. A., 1972, Use of ammonia electrode for deter­ mination of ammonium in Kjeldahl analysis of soils: Communications in Soil Science and Plant Analysis, v. 3, p. 159-165.

Chamberlain, W., and Shapiro, J., 1973, Phosphate measurements in naturalwaters- a critique, iri Griffith, E. J. and others, eds., Environmental Phosphorus Handbook: New York, John Wiley and Sons, p. 355-366.

Cline, J. D., 1969, Spectrophotometric determination of hydrogen sulfide in natural waters: Limnology and Oceanography, v. 14, p. 454-458.

Dick, W. A., and Tabatabai, M. A., 1977, Determination of orthophosphate in aqueous solutions containing labile organic and inorganic phosphorus compounds: Journal of Environmental Quality, v. 6, p. 82-85.

Dionex Corporation: Ion Chromatography Systems, 1978, Ion chromatography training course [manual]: Sunnyvale, CA., 141 p.

Dollman, G. W., 1968, Determination of sulfate and phosphate in water by ion exchange titrimetric method: Environmental Science and Technology, v. 2, p. 1027-1029.

Edwards, G. P., Molof, A. A., and Scheeman R. W., 1965, Determination of ortho- phosphate in fresh and saline waters: Journal of American Water Works Association, v. 57, p. 917-925.

Fabbi, B. P. and Espos, L. F., 1976, X-ray fluorescence analysis of 21 selected major, minor, and trace elements in eight new USGS standard rocks, in Flanagan, F. J., ed., Descriptions and analyses of eight new USGS rock standards: Geological Survey Professional Paper 840, Washington, U. S. Government Printing Office, p. 89-93.

Gilbert, T. R. and Clay, A. M., 1973, Determination of ammonia in aquaria and in sea water using the ammonia electrode: Analytical Chemistry, v. 45, p. 1757-1759.

Gravitz, N. and Gleye, L., 1975, A photochemical side reaction that interfereswith the phenol-hypochlorite assay for ammonia: Limnology and Oceanography, v. 20, p. 1015-1017.

Helder, W. and De Vries, R. T. P., 1979, An automated phenol-hypochlorite method for the determination of ammonia in sea and brackish waters: Netherlands Journal of Sea Research, v. 13, p. 154-160.

HNU Systems Inc., 1978, Ion selective electrodes: Newton, MA., 10 p.

Home, R. A., 1969, Marine Chemistry: New York, Wiley-Interscience, 140 p.

Hwang, C. P., Lackie, T. H., and Munch, R. R., 1979, Correction for totalorganic carbon, nitrate, and chemical oxygen demand when using the MF- Millipore filter: Environmental Science and Technology, v. 13, p. 871-872.

33

Page 39: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Koroleff, F., 1976, Determination of ammonia, jln Grasshoff, K., ed.,Methods of Seawater Analysis: New York, Verlag Chemie, p. 126-137.

Leco Corporation, 1978, Instruction manual: DC-12 Duo-Garb System 737-700, 761-000 Determinator, 763-900 Furnace: St. Joseph, MI., 29 p.

Murphy, J., and Riley, J. P., 1962, A modified single solution method for the determination of phosphate in natural waters: Analytica Chimica Acta, v. 27, p. 31-36.

Ngo, T. T., Phan, A.P.H., Yam, C. F., and Lenhoff, H. M., 1982, Interference in determination of ammonia with hypochlorite-alkaline phenol method of Berthelot: Analytical Chemistry, v. 54, p. 46-49.

Oceanography International Corporation, a, Operating procedures manual for 0524B Total Carbon System: College Station, Texas.

____b, Preliminary operating procedures manual for the Direct Injection Module, QIC Model 0524B-HR: College Station, Texas.

Patton, C. J., and Crouch, S. R., 1977, Spectrophotometric and kineticsinvestigation of the Berthelot reaction for the determination of ammonia: Analytical Chemistry, v.49, p. 464-469.

Perkin-Elmer Corporation, 1976, Analytical methods for atomic absorption spectrophotometry: Norwalk, CT.

Powers, R. F., Van Gent, D. L., and Townsend, R. F., 1981, Ammonia electrode analysis of nitrogen in microkjeldahl digests of forest vegetation: Communications in Soil Science and Plant Analysis, v. 12, p. 19-30.

Radiometer, Autotitration: Users' Handbook: Copenhagen, Denmark, 97 p.

Reeburgh, W. S., 1967, An improved interstitial water sampler: Limnology and Oceanography, v. 12, p.163-165.

Rigler, F. H., 1968, Further observations inconsistent with the hypothesis that molybdenum blue measures orthophosphate in lake water: Limnology and Oceanography, v. 13, p. 7-13.

Sillen, L. G., and Martell, A. E., 1964, Stability constants of metal ion complexes: Special Publication no. 17, The Chemical Society of London, 745 p.

Skougstad M. W., and others, 1979, Methods for determination of inorganicsubstances in water and fluvial sediments: Techniques of Water-Resources Investigations of the United States Geological Survey, Book 5, Chapter Al, Washington, U. S. Government Printing Office, 626 p.

Solorzano, L., 1969, Determination of ammonia in natural waters by phenol- hypochlorite method: Limnology and Oceanography, v. 14, p. 799-801.

34

Page 40: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

Stookey, L. L., 1970, FerroZine- a new spectrophotometric reagent for iron: Analytical Chemistry, v. 42, p. 779-781.

Strickland, J. D. H., 1952, The preparation and properties of silicomolybdic acid; I. the properties of alpha silicomolybdic acid: American Chemical Society Journal, v. 74, p. 862.

Strickland, J. D. H., and Parsons, T. R., 1968, A practical handbook of seawater analysis: Fisheries Research Board of Canada, Bulletin 167, 311 p.

Wageman, R., and Graham, B., 1974, Membrane and glass fiber filter contamination in chemical analysis of fresh water: Water Research, v. 8, p. 407-412.

35

Page 41: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

APPENDIX I

Aids For Using the Data

Sampling location, date, and depth,- The heading of each data page consists of the cruise code (as explained in the text); the location, as designated by the nearest easily-identifiable named location on shore (see figs. 1-3); the date of collection of the sample, given as month day year; the water depth, in meters, at the sampling site; and, where applicable, the distance, in meters, and direction from a centrally located buoy at the given sampling site* Water depth was determined by the boat's fathometer.

Depth, cm.- The depth, in centimeters, of the sampling intervals from each core is the average, to the nearest whole centimeter, of the depth sampled. For example, depth cm 16 represents the sampling interval 15-17.5 cm.

Missing data.- Missing data will appear as dashed lines.

Interstitial Water Data

pH.- The hydrogen-ion concentration of the expressed pore water.

pH sed»- The hydrogen-ion concentration of the interstitial water which is still in contact with the sediment, prior to the squeezing process.

Eh, mV.- The redox potential, in millivolts, of the expressed pore water.

Eh sed, mV.- The redox potential, in millivolts, of the interstitial water which is still in contact with the sediment, prior to the squeezing process,

Alk, meq/L.- Alkalinity, in milliequivalents per liter.

NH i , mmol/L.- Dissolved ammonium ion, in millimoles per liter.

P04, ymol/L.- Dissolved reactive phosphate, in micromoles per liter.

Silica, ymol/L.- Dissolved reactive silica, in micromoles per liter.

Tot C, mg/L.- Total dissolved carbon, in milligrams per liter.

Org C, mg/L.- Dissolved organic carbon, in milligrams per liter.

Inorg C, mg/L.- Dissolved inorganic carbon, in milligrams per liter.

Cl, mmol/L.- Dissolved chloride, in millimoles per liter.

36

Page 42: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

SO&, mmol/L.- Dissolved sulfate in millimoles per liter.

Na, mmol/L.- Dissolved sodium, in millimoles per liter.

K, mmol/L.- Dissolved potassium, in millimoles per liter.

Ca, mmol/L.- Dissolved calcium, in millimoles per liter.

Mg, mmol/L.- Dissolved magnesium, in millimoles per liter.

Mn, umol/L.- Dissolved manganese, in micromoles per liter.

Fe AA, umol/L.- Dissolved iron, in micromoles per liter, as determined by flame atomic absorption spectrophotometry.

Fe Ferro, umol/L.- Dissolved iron, in micromoles per liter, as determined by the FerroZine spectrophotometric method.

S"2 , umol/L.- The sum of dissolved sulfide species (H2S, HS~, S2~), in micromoles per liter, as determined by spectrophotometric method (Cline, 1969) or an iodometric titration. See table 3 for dates each method was used.-2 - 2-

S Elect, umol/L.- The sum of dissolved sulfide species (IL^S, HS , S ),in microraoles per liter, as calculated from the activity of the sulfide ion (S ) determined by a sulfide electrode.

Sediment Data

Tot C, umol/g.- Total carbon, in micromoles per gram of dry sediment.

Org C, umol/g.- Organic carbon, in micromoles per gram of dry sediment.

Tot N, umol/g.- The sum of organic nitrogen plus dissolved and adsorbed ammonium ion, in micromoles per gram of dry sediment.

Tot P, umol/g.- Total phosphorus, in micromoles per gram of dry sediment.

Inorg P, umol/g.- Inorganic phosphorus, in micromoles per gram of dry sediment.

Wt loss, %.- Sediment weight loss on ignition, in percent.

Porosity.- Porosity is defined as the ratio of the volume of pore space to the total bulk volume of the sediment interval. It is assumed in the calculations used to obtain these data that the volume of water in the sample is equal to the volume of the pore space. The possibility that gas pockets may occupy some of the pore spaces is not included. Multiply the given data by 100 to obtain percent.

37

Page 43: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

APPENDIX II

Data Tables

The data tables are arranged according to station location, beginning with station VI in the lower Potomac Estuary and proceeding upstream. See Figures 1, 2, and 3 in the main body of the report.

38

Page 44: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7fl

05

-Vl

PT

. LO

OK

OU

T 5

-10

-78

1

8.3

M

ET

ER

S

- -

- INTERSTITIAL WATER DATA -

- -

LO

V

O

DFPTH

CM 1 3 5 7 9

16

26 36 46

66

DEPTH

CM 1 3 5 7 916

26 36 46

66

DEPTH

CM

PH

7.30

7.37

7.62

7,59

7.60

7.59

7.44

7.45

7.42

7.43

CL

MMOL/L

285.0

232.0

204.0

248.0

245,0

276.0

?64.0

275.0

271.0

275.0

TOT

CUMOL/G

PH SED

- - - - - -

- - -

S04

MMOL/L

10.0

6.5

^.0

4.0

2.5

0.5

0.5

0.5

0.5

0,5

ORG C

UMOL/G

EH

MV

310

-86

-150

-160

-170

-170

-160

-150

-140

-120

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

EH SED

MV - - - - - -' - - - K

MMOL/L

- - - - - - - - -

...

TOT P

UMOL/G

ALK

MEQ/L

5.9

8.2

14.9

17.9

19.7

25.4

28.2

29.1

32.3

34.3

CA

MMOL/L

- - - - -» - - - -

SEDIMENT

INORG P

UMOL/G

NH4

MMOL/L

0.32

0.55

0.99

1.22

1*48

1.92

2.64

2.88

3.14

3.52

MGMMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X

P04

UMOL/L

8115

202

228

249

307

356

400

402

431 MN

UMOL/L

364 49

113 3 3 1 7 1 1

-

SILICA

UMOL/L

413

637

617

867

915

878

778

737

858

831

' FE AA

UMCL/L

113 33 4 0 0 0 3 1 0 0

>

TOT C

MG/L 70

150

160

240

230

290

. 313

340

350

400

FE FERRO

UMOL/L

145

42 833 2 1 1

-3 1

ORG C

MG/L 41 82

44

81 41 79 31 21 55

38

S-2

UMOL/L

- - - - - - - - -

INORG C

MG/L 29 65

120

160

190

210

280

320

290

360

S-2 ELECT

UMOL/L

075

200 45

.610

550

580

230

260 86

POROSITY

DEPTH

CM 1 3 5 7 916

26

36

46

66

TOT C

UMOL/G

- - - - - - - - - -

ORG C

UMOL/G

- - -',

- - - - - .

- -

TOT N

UMOL/G

- - - - - - - - -

TOT

PUMOL/G

- - - - - - - - -

0.90

0.89

0.8A

0.87

0.88

0.85

0.84

0.84

0*84

0.81

Page 45: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7806-V

KV

30

FIL

E)

PT

. LO

OK

OU

T

6-1

-78

19

.2

ME

TE

RS

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

- -

-

DEPTH

CM1 3 5 7 9

16 26 364666

DEPTH

CM1 3 5 7 9

16 26 36

4666

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

7.02

7.45

7.57

7.69

7.75

7.54

7.47

7.50

7.56

7.39

CL

MMOL/L

- - - - - - -

-

TOT C

UMOL/G

- - * - - - - - -

PH SED

- - - - - - - - - '

S04

MMOL/L

8*0

4.5

3.0

1.5

0.5

3.0

0.5

0.5

0.5

0.5

ORG C

UMOL/G

- - - -

- - - - - -

EH MV

150

-120

-160

-170

-180

-170

-160

-160

-150

-120

NAMMOL/L

- - - - - - - -

TOT N

UMOL/G

- - . - - - - - - -

EH SED

MV - - - - - - - - - KMMOL/L

- - - - - - - - -

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

- - - - - - - - -

CA

MMOL/L

- -.

- - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - <- -.

- -

NH4

MMOL/L

0.49

1.24

1.53 -

2.31

. - - -

3.86

MG

MMOL/L

- - - - - - - - - *

DATA -

-

UT LOSS

X - - - -'

- - - - -

P04

UMOL/L

3819

1240

268

310

351

359

376

387

399 MN

UMOL/L

29 226 5 6 6 2 3 1 5

-

SILICA

UMOL/L

709

1240

1320

1350

1400

1400

1490

1390

1390

1420

FE AA

UMOL/L

75 8 4 5 8 7 7 8 413

TOT C

MG/L - - - - - - - - -

FE FERRO

UMOL/L

78 8 6 6 6 6 5 5 311

ORG C

INORG

MG/L

MG/L

-- - - - -

.

- . -

C

S-2

S-2 ELECT

UMOL/L

UMOL/L

-37

037

0260

140

110 70 41 14

POROSITY

0.88

0.89

0.89

0.88

0.87

0.82

0.84

0.84

0*83

0.84

Page 46: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V2 PT

. LOOKOUT 5-10-78

12.2 METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 9

16 26 36

46

66

DEPTH

CM 1 3 5 7 9

16 263646

66

PH

6.87

7.16

7.39

7.37

7.41

7.62

7.65

7.58

7,56

7.63

CL

MMOL/L

2CO.O

186.0

195.0

210.0

216.0

235.0 -

236.0

225.0

256.0

TOT C

UMOL/G

- - - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

9.0

9.0

fl.5

9.5

9.5

8.0

6.5

7.0

3.0

3.0

ORG C

UMOL/G

- - -',

- - - - -

- -

EH MV

290

160

190

120

110

120

120 86

91150

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - «

EH SEO

ALK

MV - - - - - - - - - K

MMOL/L

- - - - - - - - -

...

TOT P

UMOL/G

- - - - - - - - .

MEO/L

3.4

3.9

4.7

5.7

6.4

8.1

9.0

11.5

12.0

13.4

CA

MMOL/L

- - - - - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - .

NH4

MMOL/L

0.13

0.17

0.20

0.28

0.34

0.44

0.54

C.55

0.56

0.55

MG

MMOL/L

- - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - ..

P04

S ;IL

ICJ

UMOL/L UMOL/I

840 73

85 73 92

75

64 56

43 MN

UMOL/L

45 4742

29 2725

16 7 7

14

-

POROSITY

0.90

0.87

0.85

0.84

0.34

0.83

0.83

0.80

0.76 .

335

408

450

614

621

721

710

691

648

660

FE

A/UMOL.

43

92 3 012 31 22 1 1

11

TOT C

MG/L 49

53

61 74 79

97

. 180

140

150

140

ORG

< MG/L

36

32

25

27

25

28

65

40

47

34

INORG

MG/L 14 21 36 47

54

68

110

100

100

100

FE FERRO

S-2

S-2 ELECT

UMOL/L

UHOL/L

UMOL/L

86

107 a 2

22 67 24 3 4

15

Page 47: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78C5-V3 PT

. LOOKOUT 5-11-78

9.8 METERS

- -

- INTERSTITIAL WATER DATA - -

-

DEPTH

CM 1 3 5 7 916 32 39 49 61

DEPTH

CM 1 3 5 7 916 32 39 49 61

DEPTH

CM 1 3 5 7 916 32 39

49

61

PH

7.30

7.51

7.42

7.51

7.69

7.46

7.60

7.49

7.40

7.59

CL

MMOL/L

159,0

171.0

190.0

189.0

210.0

200.0

221.0

216.0

218.0

235.0

TOT C

UMOL/G

2960

2880

2370

2160

2020

1800

1460

1470

1510

1430

PH SED

- - - - - - - - -

S04

MMOL/L

6.0

5.5

5.0

5.0

8.0

4.0

5.5

5.5

6.5

6.5

ORC,

C

UMOL/G

2940

2670

2340,

2130

1990

1770

1440

1460

1490

1420

EH MV

ISO

-96

-2*50

-200

-170

-160

-150

-160

-150

-140

NAMMOL/L

130.0

150.0

165.0

176.0

171.0

172.0

189.0

188.0

194.0

195.0

TOT N

UMOL/6

320

280

230

200

170

150

100

110

140

160

EH SED

MV - . - - - - - - - K

MMOL/L

3.3

3.5

3.9

4.2

4.0

4.1

5.9

4.4

6.0

4.7

...

TOT P

UMOL/G

19

17 15 13 12

11 11 11 11 11

ALK

MEQ/L

5.8

9.0

12.9

13.7

13.8

13.7

13.8

13.4

12.4

11.8

CA

HMOL/L

3.1

3.5

3.9

4.1

4.2

4.0

4.1

4.1

4.1

4.2

SEDIMENT

INORG P

UMOL/G

8 7 7 6 6 6 7 7 7 7

NH4

MMOL/L

0.28

0.64

0.81

0.80

0.90

0.89

0.90

0.72

0.66

0.57

MG

MMOL/L

14.6

17.0

18.7

20.0

20.0

20.4

21.2

21.3

22.0

22.5

DATA -

-

UT LOSS

%12.4

12.0

11.1

10.4

9.9

9.5

8.2

7.9

8.0

7*9

P04

UMOL/L

38155

185

167

158

125

90 82 73

58

MN

UMOL/L

51 13 7 8

10 11 8 7 7 7

-

SILICA

UMOL/L

438

606

650

670

660

549

633

600

552

600

FE AA

UMOL/L

301 0 0 7 2 0 1 1 0

TOT C

MG/L

130

170

190

200

220

240

.210

230

250

230

FE FERRO

UMOL/L

48 3 3 4 4 514 4 4 2

ORG C

MS/L 85 79 99

92 110

130

100

120

150

140

S-2

UHOL/L

- - -

- - - -

INORG C

MG/L 43

93 95

110

120

110

110

110

100 95

S-2 ELECT

UMOL/L

23900

130

120 83

130 91

110

170 40

POROSITY

0.93

0.90

0.87

0.86

0.86

0.84

0.83

0.81

0.81

0.76

Page 48: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V3A PT,LOOKOUT 9/21/78

9.4 METERS DEPTH

IflO METERS EAST

- -

- INTERSTITIAL UATER DATA -

- -

DEPTH

CM 1 3 5 7 916 26 36 4666

DEPTH

CM 1 3 0 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 916 2636 46

66

PH

7.29

7.50

7.57

7.47

7.49

7.49

7.68

7.80

7.56

7.62

CL

MMOL/L

211.0

202.0

194.0

196.0

191.0

196*0

208.0

222.0

219.0

239.0

TOT C

UMOL/G

- - - - -

- - - -

PH SED

7.36

7.36

7,35

7.35

7.33

7.42

7.40

7.43

7*45

7,38

S04

MMOL/L

6.5

2.0

1.5

2.0

3.5

3.5

5.0

5.5

6.5

6.5

ORG C

UMOL/G

- - - - -

- - - - -

TH

MV

-110

-140

-150

-150

-160

-140

-140

-120

-130

-110

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV-230

-240

-230

-230

-210

-220

-220

-210

-220

-220 K

MMOL/L

- - - - - .

- - . -

...

TOT P

UMOL/G

- - - - - - -

ALK

MEQ/L

9.7

17.8

18.5

16.8

14.7

13.1

12.7

11.7

11.2

10.5

CA

MMOL/L

- - - - - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - '

- -

NH4

MMOL/L

0.69

1.16

1.42

1.13

0.95

0.91

0.80

0.71

0.65

0.62

MGMMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

x - - - - - - * - -

P04

SILICA

UMOL/L UMOL/L

97

205

363

175

142

112

91148 68 55 MN

UMOL/L

13 17 44

20 141614 35

109

-

POROSITY

0.91

0.89

0.87

0.84

0.83

0.85

0.81

0.82

0.80

0*78

534

867

1010

904

858

831

758

851

808

904

FE AA

UMOL/L

4 514 1 1 0 1 6 2 7

TOT C

MG/L

190

210

230

230

240

210

290

240

230

230

FE FERRO

UMOL/L

- - - - - - - - -

ORG C

MG/L 93 56 59 76

110 92

180

120

120

130

S-2

UMOL/L

1000

3200

3000

3200

2700

2000

1400

370

780

530

INORG C

MG/L 95

160

170

150

130

120

110

110

110 98

S-2 ELECT

UMOL/L

2300

5300

4100

4300

2800

2500

1400

260

710

420

Page 49: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78r9

-V3B

P

T.L

OO

KO

UT

9

/21

/78

9.4

M

ET

ER

S

DE

PT

H

100

ME

TE

RS

S

OU

TH

- -

- IN

TE

RS

TIT

IAL

WA

TER

D

AT

A -

- -

DEPTH

CM 1 3 5 7 916 26 36 46

66

DEPTH

CM 1 3 5 7 916

26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36

46 66

PH

7.50

7.45

7.50

7,50

7.56

7.61

7.68

7.66

7«71

7.76

CL

MMOL/L

213,0

204.0

207.0

198.0

200.0

211.0

216.0

217.0

225.0

225,0

TOT C

UMOL/G

2890

2800

2570

2200

2060

1780

1630

1470

1280

1340

PH SED

7*32

7,28

7.30

7.28

7.28

7.34

7.43

7.46

7.43

7.36

S04

MMOL/L

8.5

3*0

1.0

2.0

3.0

10.0

4.5

4.5

5.5

16.0

ORG C

UMOL/G

2870

- -2160 - -

1610

- -1330

EH

MV

-3

-140

-160

-160

-160

-150

-140

-140

-130

-73

NA

MMOL/L

182.0

174,0

163.0

166.0

167.0

176,0

180.0

186.0

190.0

194*0

TOT N

UMOL/G

-350

380

490

150

200

190

170

100

120

EH SED

MV-160

-200

-200

-200

-200

-190

-200

-190

-180

-180 K

MMOL/L

4.9

4.3

4.3

4.6

4.6

4.9

5.1

5.2

5.3

5.7

...

TOT P

UMOL/G

18

18 15

13 12 11 11 11 11 10

ALK

MEQ/L

7.4

16.2

19.3

17.6

15.9

14.3

14.4

13.5

12.6

11.3

CA

MMOL/L

4.0

3.8

3.7

3.8

3.8

4.1

4.3

4.5

4.6

4.8

SEDIMENT

INORG P

UMOL/G

7 8 7 7 6 6 6 6 7 7

NH4

MMOL/L

0.41

1.06

1.35

1.18

1.09

1.00

0.93

0.84

0.75

0.73

MG

MMOL/L

20.6

19«1

17.7

18.3

18.3

19.3

19.8

20.6

20.9

21.4

DATA -

-

UT LOSS

X12.7

12.3

11*8

10.8

10.5

10.3

9.4

8.7

7.9

8.0

P04

UMOL/L

55

202

227

126

141

120

129

119

106

106 MN

UMOL/L

31 20 22 910 12 11 11 16

33

-

SILICA

UMOL/L

381

867

879

924

899

860

879

810

828

867

FE AA

UMOL/L

14 14 17 0 2 1 1 1 4

15

TOT

CMG/L

140

210

260

240

260

230

230

210

210

210

FE FERRO

UMOL/L

- - - - - - - -

ORG C

MG/L 65

45 76 81

110 93

92 89

93

110

S-2

UMOL/L

-32

004000

4000

3400

2400

1700

1200

810

250

INORG C

MG/L 74

160

180

160

150

130

130

120

120

100

S-2 ELECT

UMOL/L

444300

3700

3700

2300

1900

1300

960

500 43

POROSITY

0.91

0.88

0.86

0.85

0.84

0*83

0.83

0.82

0.76

0.77

Page 50: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V3C

PT,. LOOKOUT 9/22/78

9.8 METERS DEPTH

100 METERS NW

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM1 3 fi 7 9 16 26 36 46 66

DEPTH

CM1 3 5 7 9

16

26 36 46

66

PH

7.34

7.46

7.44

7.46

7.48

7.48

7.55

7.50

7,50

7,51 CL

MMOL/L

223.0

203.0

201.0

194.0

196,0

205.0

213.0

216.0

217.0

223.0

TOT C

UMOL/G

- - - - - - - - - -

PH S?D

7.31

7.45

7.31

7,31

7.31

7.35

7.38

7,37

7.31

7*28

S04

MMOL/L

3.5

4.5

- 2.5

1.5

2.5

3.5

2.5

2.5

3.0

ORG C

UMOL/G

- - - - .

- '

- - - - -

EHMV

-110

-130

-140

-140

-140

-120

-120

-130

-120

-94

NAMMOL/L

- - - - - - - - -

TOT

NUMOL/G

- - - - - - - - -

EH SED

MV-260

-220

-200

-210

-210

-210

-240

-220

-220

-200 K

HMOL/L

- - - - - - - - -

- -

-

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

9.4

15.0

16.8

14.9

13.6

11.7

11.9

11.5

10.9

10.6

CAMMOL/L

- -.

- - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - -.

- -

NH4

MMOL/L

0.69

1.10

1.15

1.00

0.88

0.78

0.77

0.69

0.64

0.60

MGMMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SILICA

UMOL/L UMOL/L

6814

1149

125

129

97

80 69 61 51 MNUMOL/L

147

11 12 12 14 12 11 11 10

-

POROSITY

0.91

0.88

0.86

0.84

0.83

0.64

o.ao

0.82

0.80

0*80

555

847

904

868

867

847

847

847

828

828

FE AA

UMOL/L

1 1 1 1 1 1 1 1 1 5

TOT C

NG/L

220

270

260

250

240

230

220

230

220

230

FE FERRO

UMOL/L

- - - - - - - - -

ORG

CMG/L

120

120

110

110

100

110

110

110

110

120

S-2

UMOL/L

950

3200

3800

3300

2700

1700

1200

990

790

360

INORG C

MG/L 98 150

150

140

140

120

120

120

110

100

S-2 ELECT

UMOL/L

3500

7400

7800

6000

3700

2900

1800

1300

970

400

Page 51: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7903-V3B

2.8 KM

FROM HULL CREEK

9.8

METERS

3/20/79

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916

26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

6.79

7.27

7.07

7.14

7.09

7.23

7.29

7,10

7.12

6.99

CLMMOL/L

175.0

199.0

214.0

209-0

217.0

214.0

214.0

219.0

226*0

222.0

TOT C

UMOL/G

- - - -'

- - - - - -

PH SED

- - - - - - - - -

' S0

4MMOL/L

8.20

8,10

6.70

S.70

5.10

4,30

4.80

6.00

7.10

7.00

ORG C

UMOL/G

- - - - - '

- - - - -

EH MV 18

-140

-140

-150

-140

-160

-150

-140

-120

-95

NAMMOL/L

143.0

166.0

174.0

179.0

180.0

178.0

180.0

184.0

194.0

200.0

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV 150 15

-90

-120

-140

-170

-170

-170

-160

-160 K

MMOL/L

3.7

4.0

4.2

4*2

4.1

4.1

4.2

4.3

4.5

4.6

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

5*9

8.5

9.8

12.1

12.4

14.6

14.0

12.4

9.5

1.2

CA

MMOL/L

3.9

4.2

4.4

4.5

4.6

4.4

4.4

4.6

4.6

4.7

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.40

0.54

0.70

0.84

0.96

1.00

0.79

0.70

0.64

0.62

MGMMOL/L

18.0

20.6

21.6

22.2

22.2

21.5

21.5

21.6

22.2

23.0

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

UMOL/L

59101

103

119

124

124

114 91 65 44 MN

UMOL/L

96 118 9 10 13 13 13 12

-

SILICA

UMOL/L

427

516

555

602

627

641

662

651

623

651

FE AA

UMOL/I

169 1 1 1 1 4

-0 1

POROSITY

- - - - - - - - - -

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

148 2

170

180

200

260

250

310

250

210

110

190

430

620

610

710

490

350

200 67

Page 52: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

79Q3-V3D 2.8 KM FROM HULL CREEK

9.8 METERS

3/20/79

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM1 3 5 7 9

16 26 36 4666

DEPTH

CM1 3 5 7 9

16 26 36

46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

6.44

7.14

7.18

7.20

7.23

7.23

7.12

7.09

7.01

6*88

CLMMOL/L

1£5.0

195.0

212.

0215.0

211.0

214.0

217.0

226.0

229.0

238.0

TOT C

UMOL/6

- - - - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

8.40

a. 20

6.80

5«90

5.10

5.30

7.40

7.70

8-30

9.10

ORG C

UMOL/G

- - - -, - - - - -

EH MV11

0-88

-130

-130

-140

-140

-130

-120

-110

-77

NAMMOL/L

134.

0156.0

164.0

168.0

167.0

164.0

172.0

177.0

187.0

185.0

TOT

NUMOL/G

- - - - - - - - - -

EH SED

MV- - - - - - - - - K

MMOL/L

3.4

3.8

3.8

3.8

3.7

3.8

3.8

4.2

4.1

4.3

- .

-

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

2.8

2.0

11.2

11.1

12.2

13.5

11.4

10.9

9.1

8*3

CAMMOL/L

3.4

4.0

4.2

4.3

4.4

4.4

4*4

4*6

4.8

4.9

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.26

0*47

0*70

0*82

0*88

0.80

0.68

0*58

0.58

0.56

KGMMOL/L

16*0

19.0

20.4

20*2

20. 2

20.2

21.0

21.7

22*6

22*8

DATA -

-

UT LOSS

% - - - - - - > - - -

P04

SUMOL/L U

40 73 9311

4 99 94 72 58 50 40 MNUMOL/L

32 11 16 19 18 16 13 12 119

-

POROSITY

- - - - - - - - - -

ILIC

.MOL/I

363

520

634

612

598.

609

641

952

623

651

FE

AJUMOL 692 3 1 1 1 0 1 1 1

TOT C

MG/L

ORG C

MG/L

INORG C

MG/L

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

066

643 4 3 3 2 2 2 2 I

100

140

180

220

130 52 36 34

140

320

380

390

500

220

190

130-

55

Page 53: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

79

Q8

-V3

P

LOO

KO

UT

7

/31

/79

9

.8

ME

TE

RS

- - -

INT

ER

ST

ITIA

L

WA

TE

R

DA

TA

- - -

oo

DEPTH

CM 1 3 5 7 916 26 36

46

66

DEPTH

CM 1 3 5 7 916 26 3ft

46 66

DEPTH

CM 1 3 5 7 916 26 36 46

66

PH

6.63

6. PI

7.05

7.07

7.24

' 7.10

7.08

7.19

7.24

7.17

CL

MMOL/L

209.0

223.0

207. 0

197.0

188.0

186.0

212.0

214.0

223.0

231.0

TOT C

UMOL/G

3023

2800

2720

2600

2620

1880

1553

1470

1390

1220

PH SED

- - - - - - - - -

S04

MMOL/L

1*00

l.OC

0.83

0.75

0.67

0.58

0*56

0*58

0*64

0.75

ORG C

UMOL/G

-2570 - -

.- - -

1320 - -

FH

MV

150

-62

-140

-160

-180

-160

-160

-160

-170

-150

NA

MMOL/L

179.0

174.0

172.0

160.0

157.0

158.0

173.0

185.0

190.0

194.0

TOT N

UMOL/G

390

400

300

350

300

240

210

160

180

140

EH SED

MV8

-65

-120

-160

-180

-170

-190

-170

-170

-160 K

MMOL/L

5.0

4.4

4.4

4.2

4.2

4.5

4.7

5.0

5.2

5.3

....

TOT P

UMOL/G

20 18 17 17 1713 11 12 11 11

ALK

MEQ/L

3.8

4.7

4.8

6.7

8.4

8.5

11.1

11.1

10.5

8.9

CA

MMOL/L

3.4

3.4

3.4

3.3

3.1

2.9

3.1

3.3

3.4

3.4

SEDIMENT

INORG P

UMOL/G

9 9 7 8 7 7 6 7 7 8

NH4

HMOL/L

0.85

0.65

0.60

0.61

0.92

1.05

1.02

0.94

0.74

0.68

MG

MMOL/L

17.5

15.1

14.6

14.2

13*9

13. «

14.7

15.2

15.4

15.7

DATA -

-

UT LOSS

X12.8

12.3

12.3

11.9

12.0

10.2

9.3

9.2

8.4

7.6

P04

UMOL/L

14 19 16 14 23 26

30 - - MN

UMOL/L

40 38 12 11 13 13 14

13 119

-

SILICA

UMOL/L

300

467

483

533

617

767

767

783

733

750

FE AA

UMOL/L

21 12 8 2 0 0 0 1 0 1

TOT C

MG/L

- - - - - - - ' -

' . "

FE FERRO

UMOL/L

- - - - - - - - - *

ORG C

MG/L

- - - - - . - - . ~

S-2

UMOL/L

329

60150

220

100 7876 49

27

INORG C

MG/L

- - - - - - * - - «

S-2 ELECT

UMOL/L

- 14

460

780

1000

500

750

620

490

310

POROSITY

0.93

0.91

0.90

0.89

0.88

0.84

0.84

0.82

0.81

0.78

Page 54: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V4 WYNNE 5-11-78

1C.4 METERS

- -

- INTERSTITIAL WATER DATA -

- -

VO

DEPTH

CM 1 3 5 7 916 2636 46 66

DEPTH

CM 1 3 5 7 916 2636

46 66

DEPTH

CM 1 3 5 7 9

16

.26 36 46 66

PH

6,74

7.10

7.37

7.46

7.24

7.50

7.55

7.29

7.31

7.37

CL

MMOL/L

153.0

159.0

180.0

190.0

192*0

150.0

187.0

235.0

239.0

149*0

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - *

-

S04

MMOL/L

7.5

7.5

. 7.5

7.5

7.5

6.5

7.0

6.5

8.0

8.5

ORG C

UMOL/G

- - - - t

-' - - - - .

FH

MV

190

-25

-88

-130

-140

-160

-170

-170

-170

-170

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -FH

MV

190

-25

-88

-130

-140

-160

-170

-170

-170

-170

EH SED

MV - - - - - - - - - -

ALK

MEQ/L

4.8

4.3

5.0

6.9

7.7

9.3

9.3

9.1

9.0

8.0

NH4

MMOL/L

0.10

0.23

0-29

0.36

0.41

0.57

0*51

0.47

0.44

0.42

P04

UHOL/L

10 50 81 9194 84

68 62 54 43

SILICA

UMOL/L

174

529

593

667

646

734

765

781

758

704

TOT C

M6/L

110

130

160

160

130

180

180

170

. 180

200

ORB C

HG/L86 89

110

110 65

10097 86

100

130

, INORG C

N6/L 20 38 45 51 62 78 85

83

80 72

K CA

MG

MMOL/L

MMOL/L

MMOL/L

MN

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

UMOL/L

UMOL/L

34

' 89

100

17

7 10

-

12

3 4

- 35

10

4 6

349

0 7

- 97

10

0 2

100

8 3

2 -

83

7 3

7-210

6 0

1-170

6 3

3 -

94

- -

- SEDIMENT DATA -

- -

TOT P

INORG P

WT LOSS

UMOL/G

UMOL/G

. X

POROSITY

0*89

0.88

0.88

0.87

0.85

0.83

0.78

0.79

0.77

0.70

Page 55: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7ftQ

5-V

5

WY

NN

E

5-1

2-7

8

19

.5

ME

TE

RS

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

DEPTH

CM 1 3 5 7 916 26 36 46

66

DEPTH

CM 1 3 b 7 916

2636 46 66

OLPTH

CM 1 3 5 7 916

26 36

4666

PH

6.97

7.03

7.24

7.27

7.38

7.43

7.53

7.44

7.43

7.41

CL

MMOL/L

239.0

230.0

217.0

229.0

233.0

255.0

?59.0 -

262.0

283.0

TOT C

UMOL/G

- - - - - - - \

- - -

PH SEO

- - - - - - - - - S04

MMOL/L

11.0

10.0

9.5

9.5

9,5

8.0

6*5

6.0

3.5

5.0

ORG C

UMOL/G

- - - i - - - -

EHMV

2^0

310 70

170

110

-68

-71

-72

-72

-72

NAMMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SEO

MV - - - - - * - - - K

HMOL/L

- - - - - - -

...

TOT P

UMOL/G

- - - - - - - - -

ALK

MEQ/L

4.7

4.6

5.0

5.8

6.8

10.3

14.1

23.1

24.5

17.7

CA

MMOL/L

- - -

- - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - -

NH4

MMOL/L

0.15

0.16

0.23

0.26

0.43

0.66

0.80

0.79

0.91

0.92

MG

MMOL/L

- - - - - - - - - **

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

UMOL/L

24 41 65 75

104

118

114

101

103

81 MN

UMOL/L

9868 32

217 3 0 1 3 4

-

SILICA

UMOL/L

454

486

559

653

683

845

807

779

793

730

FE AA

UHOL/L

322

104 5 0 0 0 0 0 0 0

TOT C

MG/L

120 76

150

130

140

150

230

, 230

200

230

FE FERRO

UMOL/L

310

122 629 2 1 a 4

11 11

ORG C

MG/L 96 45

100 76

82

6498

110

110

UO

S-2

UMOL/L

- - - -

- - - "*

INORG C

MG/L 19 31 42 52 62 87

130

120 93

120

S-2

ELECT

UMOL/L

0 0 060

130

270

370

330

400

390

POROSITY

0.93

0.90

0.89

0.88

0.86

0.86 v

0.86

0.84

0.79

0.73

Page 56: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

79C8-V SM

ST.

MARY'S RIVER

7/30/79

7.5 METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916

26 36

46 66

DEPTH

CM 1 3 5 7 916 2636

46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

6,83

7.17

7.26

7.21

7.24

7.23

7.28

7.26

7.26

7.24

CL

MMOL/L

202.0

189.0

196.0

185.0

188.0

204.0

220.0

228*0

229.0

238.0

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - -

S04

MMOL/L

- - -'

- - - - -

ORG C

UMOL/G

- - - - -

- - - - -

EHMV

-ion

-140

-140

-160

-150

-160

-170

-180

-180

-180

NAMMOL/L

159.0

151.0

146.0

141.0

150.0

164.0

171.0

177.0

178.0

184.0

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV

-110

-130

-170

-180

-180

-190

-180

-190

-200

-200 K

MMOL/L

4.3

3.9

4.5

3.7

4.0

4.2

4.5

4.7

4.8

4.9

- -

-

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

4.9

10.1

11«7

11,7

12.3

13.0

16.9

17.7

19.0

20.7

CA

MMOL/L

3.8

2.6

2.6

2.6

2.6

2.8

3.2

3.5

3.8

3.8

SEDIMENT

INORG P

UMOL/G

- - - - - - - - -

NH4

MMOL/L

0.70

0.70

0.90

1.00

1.00

1.10

1.20

1.10

1.70

1.60

MG

HMOL/L

14.7

15.8

15.5

15.0

15.6

16.8

17.9

18.5

19.1

19.5

DATA -

-

UT LOSS

X - - - - - - - - -

P04

UMOL/L

- - - - - - - - MN

UMOL/L

7 7 1 0 0 0 1 0 0 0

-

SILICA

UMOL/L

450

800

750

817

833

917

883

883

850

917

FE AA

/ UMOL/L

112 1 1 1 0 1 1 1 0

TOT

C OR

G C

MG/L

MG/L

- - - - . - - _ .

-

FE FERRO

S-2

UMOL/L

UMOL/L

150

390

470

430

480

390

490

520

510

520

INORG C

MG/L - - - - - - - - -

S-2

ELECT

UMOL/L

2000

3100

2700

4500

3200

3600

3300

3500

3200

3800

POROSITY

0.95

0.91

0.90

0.90

0.90

0.87

0.86

0.85

0.84

0.84

Page 57: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78Q5-V6 PINEY PT«

5-12-78

23.6 METERS

- -

- INTERSTITIAL WATER DATA -

- -

Ui

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 916 263646 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

7.25

7.63

7.62

7.59

7.61

7.60

7.57

7.50

7.43

7.34

CL

MMOL/L

227.0

217.0

235.0 -

248.0

252.0

258.0

260.0

266,0

263.0

TOT C

UHOL/G

3000 - .

2680 - -

2200 - -

1950

PH SED

- - - - - ,

- - - -

S04

MMOL/L

9.5

4.5

1.0

1.5

0.5

0.5

0.5

0.5

0.5

1.0

ORG C

UMCL/G

?870

2590

2570

2540.

2280'

2120

2060

1860

1710

1800

EH

MV

120

-100

-110

-110

-100

-63 24 60 60 58

NA

MMOL/L

184.0

1R5.0

205.0

202.0

210.0

205.0

215.0

214.0

217.0

226.0

TOT N

UMOL/G

370

280

310

280

210

210

240

210

180

190

EH SEO

MV - - - - - - - - - K

MMOL/L

4.8

4.7

5.1

4.9

5.2

4.9

6.7

5.5

6.8

5.9

...

TOT P

UMOL/G

21 18 191716

14 14 14 15

15

ALK

MEQ/L

3.8

15.2

23.3

26.2

27.8

31.1

33.8

34.9

36.1

36.9

CA

MMOL/L

4.3

4.1

4.4

4.5

4.8

4.7

1.7

5.2

1.3

4.9

SEDIMENT

INORG P

UMOL/G

9 9109 8 8 8 9

10 10

NH4

MMOL/L

0.23

1.05

1.25

2.28

2.75

3.36

3.33

3.39

3.68

3.91

MGMMOL/L

20.9

19.8

23.0

22*3

23.7

23.7

25.4

26.2

26.3

27.1

DATA -

-

MT LOSS

X13.9

13.8

13.7

13.2

11.9

11.7

11.7

10.7

11.2

11.6

P04

UMOL/L

29

263

401

455

504

503

486

497

423

527 MN

UMOL/L

75 40 30 23 IB 105

20 40 55

-

SILICA

UMOL/L

493

691

786

798

.814

803

786

768

727

681

FE AA

UMOL/L

79 0 0 0 0 o

5 6

23 50

TOT C

MG/L

140

220

260

310

520

370

370

440

430

410

FE FERRO

UMOL/L

67 3 2 3 3 5 6 513 24

ORG C

MG/L

11095 82

100

240 79

76 85 99

99

S-2

UMOL/L

- . - -.

- - - - - "

INORG C

HG/L 34

130

180

200

280

290

290

350

330

320

S-2 ELECT

UMOL/L

0 0540

470

330 53 1 0 0 0

POROSITY

0.93

0.92

0.92 -

0.90

0.88

0.88

0.81

0.88

0.86

.

Page 58: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7<

<0

6-V

6<

V2

9

FIL

E)

PIN

EY

P

T.

6-1

-78

2

3.2

M

ET

ER

S2

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

- -

-

DEPTH

CM 1 3 5 7 916 26 36 46 £6

DF.P

THCM

iui

LO

3 5 7 916 26 36 4666

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

7.20

7.43

7.36

7.23

7.21

7.02

7.09

7.18

6.98

7.12

CL

MMOL/L

. - - - - - - - -

TOT C

UMOL/G

3110

3140

3250

3280

3780 - - -

2560

2600

PH SEO

- - - - - - - - - « S04

MMOL/L

8.0

1.5

1.0

0.5

0.5

0.5

0.5

0.5

0.5

1.0

ORG C

UHOL/G

3050

3070

3200

3?40

3730

2970

2790

2850

2510

2570

EHMV

240

-74

-80

-34 48 9

36 17

21

51

NA

MMOL/L

135,0

169.0

188.0

191.0

193.0

205.0 -

216.0 -

216.0

TOT N

UMOL/G

- - . » - - - - - -

EH SED

MV - - - - - - - - - KMMOL/L

3.2

4.3

4.7

4.8

4.9

5.1 -

5.7

-5.9

...

TOT P

UMOL/G

27

20 21 21 22 1925

22 20 17

ALK

MEQ/L

- . . - - - - - -

CA

MMOL/L

3.0

4.0

4.3

4.3

4.5

4.7

-5.3 -

5.8

SEDIMENT

INORG P

UMOL/G

15 9

10 10 11 10 16 13 13 10

NH4

MHOL/L

0.74

2.70

4.20 -

6.08

- - -9.68 "

MG

MMOL/L

14.8

21.3

23.0

24.4

24.4

26.3

-28.3 -

29.6

DATA -

-

UT LOSS

X13.9

14.6

15.1

15.1

14.6

14.3

14.1

14.3

13.3

12.7

P04

UMOL/L

53

599

669

686

713

641

543

706

845

699 MN

UMOL/L

43

102

113

162

182

273

291

364

419

328

-

SILICA

UMOL/L

534

952

926

968

993

977

984

1030

1070

1020

FE AA

UMOL/L

68

20 12 285

174

394

287

215

155

TOT C

ORG C

INORG C

MG/L

MG/L

MG/L

- ...

. .

...

...

...

...

...

' -

-

f

FE FERRO

S-2

S-2

ELECT

UMOL/L

UMOL/L

UMOL/L

69 21

- 37

14

- 11

295

125

-241

101

121 72

POROSITY

- - - - - - - - - -

Page 59: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

08

-H3

A

T V

6

8/3

1/7

8

22

.6

HE

TE

RS

D

EP

TH

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

- -

-

DEPTH

CM 1 3 5 7 916 26364666

DEPTH

. CM 1 3 5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 916 26

36 4666

PH

7.18

7.30

7.15

7.05

7.05

7.01

7.06

6.99

7.05

7.25

CL

MMOL/L

- - - - - -

*

- -

TOT C

UMOL/G

- - - - - - - - - -

PH SED

7.16

7.01

6.96

6.93

6.99

6.89

6.86

6.88

6.89

7*08

S04

MMOL/L

- -.

' - - - - - - *

ORG C

UMOL/G

- - - - -

- - - - -

EHMV

-1?0

-41 15 16 17

20 132217

27

NAMMOL/L

- - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SEO

MV-180

-130

-100

-120

-130

-120

-170

-190

-140

-98

KMMOL/L

- - - - -, - - - -

...

TOT P

UMOL/G

- - - - - - - - -

ALK

MEQ/L

13.4

33.5

39.2

41.9

43.6

48.9

52.3

57.0

58.9

59.1

CA

MMOL/L

- - - - - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.64

4.65

5.40

6.32

7.11

8.58

9*89

9.50

10*10

9.92

MG

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

' X - - - - - - - - - -

P04

UMOL/L

218

660

729

777

774

621

405

698

802

552 MN

UMOL/L

53160

255

291

309

309

291

346

400

309

-

SILICA

UMOL/L

830

1200

1210

1170

1130

1130

1080

1170

1140

1070

FE AA

'UMOL/L

910 38 43 57

251

287

215

154 98

TOT C

MG/L

250

500

610

640

610

670

750

800

780

780

FE FERRO

UMOL/L

- - - - - -

_- -

ORG C

MG/L

140

130

210

210

180

190

290

210

180

190

S-2

UMOL/L

- - - - - - - - -

INORG C

MG/L

110

360

390

430

430

480

460

600

600

590

S-2 ELECT

UMOL/L

540 1« - - - - - -

POROSITY

0.92

0.91

0*91

0.91

0.90

0.91

0.88

0.89

0.88

0.88

Page 60: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V

6A

P

INE

Y

PT

. 9/1

9/7

8

20

.4

ME

TE

RS

D

EP

TH

1

20

M

ETE

RS

N

OR

TH

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

Ui

DEPTH

CM1 3 5 7 9

16 26 36 46 6f>

DEPTH

CM 1 3 5 7 916 ?6 36 46 66

DEPTH

CM 1 3 5 7 9

16 26 36 46 66

PH

7.25

7.30

7.10

7.06

7.01

7.01

7.01

7.01

7.01

7.12

CLMMOL/L

250.0

234,0

227.0

223.0

226.0

232.0

23P.O

243.0

246.0

255.0

TOT C

UMOL/G

- - - -

'

- - - -

PH SFD

7.20

7.15

7*01

6.94

6.91

6.91

6.86

7.03

6.91

6.94

S04

HMOL/L

9.0

1.0

1.0

0.5

0*5

0.5

-0.5

0.5

^

ORG C

UMOL/G

- - - - _

-

- - - - -

EH MV

-89

-110 60

140 82 76 61 59 57 59

NAMMOL/L

- - - - - - - - -

TOT

NUHOL/G

- - - - - - - - - -

EH SED

MV-230

-200

-150

-100

-80

-180

-200

-160

-170

-130 K

MMOL/L

- - - - - '

- - - -

...

TOT

PUHOL/G

- - - - - - - - - -

ALK

MFQ/L

9.0

25.4

36.3

40.9

42.3

46.3

52.1

55.4

58.0

58.9

CAMMOL/L

- ..

- - - - - - - -

SEDIMENT

INORG P

UMOL/G

- -

- . - - - .

- - -

NH4

MMOL/L

0.65

3.10

5.66

6.74

7.05

8.48

9.70

9.86

9.97

10.00

MGMMOL/L

- - « - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SILICA

UMOL/L UMOL/L

94545

641

705

745

795

787

773

762

629 MN

UMOL/L

35 76 62

109

158

218

237

237

200

200

-

POROSITY

0.93

0.92

0*91 -

0.92

0.90

0.90

0.90

0.87

0.86

680

1080

1100

1170

1160

1100

1120

1120

1130

1050

FE AA

UMOL/L

14 219

21 27

133

161

161

172

158

TOT

CMG/L

230

410

500

720

720

620

680

710

710

720

FE FERRO

UMOL/L

- - - - - - - - -

ORG

C INORG C

HG/L

170

110

140 - - 150

150

140

120

S-2

S-UMOL/L

380

1200

130

170 86

370

340

140

140

400

HG/L 54

300

360

410

430

470

530

570

590

590

2 ELECT

UHOL/L

1200

1800 242 4 1 0 0 o. 0

Page 61: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

09

-V6

B

PIN

EY

P

T.

9/1

9/7

8

18

.6

ME

TE

RS

D

EP

TH

215

ME

TE

RS

E

AS

T

-

- -

INT

ER

ST

ITIA

L

UA

TE

R

DA

TA

-

- -

Ui

DEPTH

CM1 3 5 7 9

16 2636 46

66

DEPTH

CM1 3 5 7 9 16 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

7.23

7,44

7.45

7.49

7.47

7.34

7.23

7.27

7.22

7.27

CLMMOL/L

257.0

235.0

223.0

219.0

220.0

225.0

232.0

238.0

242.0

246.0

TOT C

UMOL/G

2730

2690

2580

2640

2920

2270

2200

2350

2400

2080

PH SED

7.30

7.60

7.2R

7.37

7.30

7.28

7.10

7.05

7.16

7.20 S04

MMOL/L

10.0 1.0

0.5

0.5

1.5

- 0.5

0.5

0.5

0.5

ORG C

UMOL/G

2690 - -

2590 -

'-

2190 - -

2040

EHMV

-R2

-140

-150

-150

-130

-82 3258 9

NAMMOL/L

216.0

196.0

190.0

187.0

190.0

195.0

201.0

207.0

210.0

217.0

TOT N

UMOL/G

380

240

170

270

340

300

270

330

260

260

EH SEO

MV-170

-200

-230

-210

-190

-170

-110

-120

-190

-210 K

MMOL/L

5.9

5.2

5.3

5.3

5.5

5.6

6.0

6.2

6.1

6.3

- -

-

TOT

PUMOL/G

17 15 15 16 16 14 14 18 15 30

ALK

MEO/L

6.4

19.9

24.0

26.6

28.2

32.5

37.7

39.7

43.0

48.6

CAMMOL/L

4.7

4.4

4.4

4.5

4.5

4.7

4.9

5.1

5.3

5.6

SEDIMENT

INORG P

UMOL/G

6 7 7 7 7 7 8139

27

NH4

MMOL/L

0.35

1.56

2.27

2.70

3.07

4.12

5.30

6.10

6.74

7.38

MGMMOL/L

25.3

22.2

22.2

21.3

22.0

23.1

24.3

25.1

26.1

28.6

DATA -

-

UT LOSS

X13.2

13.5

12.5

12.5

13.6

11.6

11.4

12.2

12.4

11.4

P04

UHOL/L

57281

331

428

437

543

594

542

549

413 MN

UMOL/L

14 35 22 22 16 10 27 69

102 87

-

SILICA

UMOL/L

556

1040

1120

1140

1200

1120

1120

1110

1090

1090

FE AA

UMOL/L

9135 8 6

134

30104

145

TOT

CMG/L

170

300

360

360

430

470

530

560

580

650

FE FERRO

UMOL/L

- - - - - - - - -

ORG C

MG/L

120

110

130

100

150

140

160

160

150

160

S-2

UMOL/L

1000

3800

3400

2200

1400

230 18 36 32

130

INORG C

MG/L 49

190

230

260

270

330

370

400

430

480

S-2 ELECT

UMOL/L

2400

5500

4300

1700

1300

290 3 1 1 0

POROSITY

0.91

0.92

0.91

0.90

0.90

0.87

0.87

0.87

0.85

0.84

Page 62: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

09

-U6

C

PT

NE

Y

PT

. 9/2

0/7

8

24

.1

ME

TE

RS

D

EP

TH

170

ME

TE

RS

U

ES

T

- -

- IN

TE

RS

TIT

IAL

U

AT

ER

D

AT

A - - -

DEPTH

CM1 3 5 7 9

16 26 36

46 66

DEPTH

CM \

-J

3 5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

7.05

7.25

7.22

7.15

7.12

7.05

7.05

7.12

7.20

7.17

Cl_

MMOL/L

264.0

239*0

226.0

232.0

230.0

239.0

240.0

244.0

249.0

250.0

TOT C

UMOL/G

- - - - - » - - -

PH SED

7.24

7..19

7.10

7.09

7.03

6.98

7. CO

7.00

7.03

7.02

S04

MMOL/L

9.5

2.0

1.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

ORG

CUMOL/G

- - - - .

- '

- - - - -

EH MV

-130

-150

-95 18 85 94 61 63 68 66

NAMMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV-240

-230

-190

-160

-150

-170

-200

-170

-160

-160 K

MMOL/L

- - - - - - - -

...

TOT

PUMOL/G

- - - - - - - -

ALK

MEQ/L

8.8

27.0

34.9

36.2

37.6

41.1

46.3

49.6

51.0

51.9

CAMMOL/L

- -_

- - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - -'

-

NH4

MMOL/L

0.58

2.70

4.58

5.23

5.70

7.20

7.65

8.01

7.86

7.85

MGMMOL/L

- - - - - - - - - ~

DATA -

-

UT LOSS

X - - - -

- - - - -

P04

SILICA

UMOL/L UMOL/L

99566

753

788

790

732

717

732

668

594 MN

UMOL/L

25 95

118

167

200

218

218

237

200

200

-

POROSITY

0.91

0.92

0.91

0.91

0.90

0.91

0.91

0.8R

0.88

0.86

561

1030

1150

1100

1070

1070

1080

1090

1070

999

FE AA

UMOL/L

212 2 329 91

170

115 95

88

TOT

CMG/L

180

370

470

460

490

560

.610

610

690

660

FE FERRO

UMOL/L

- - - - - - - - -

ORG C

MG/L

120 84

120

110

120

140

140

110

170

140

S-2

UMOL/L

1800

3100

580 -

170

120

13099

140 72

INORG C

MG/L 67

280

340

350

370

420

470

500

520

530

S-2 ELECT

UMOL/L

3300

5600

880 734 1 0 0 0 1

Page 63: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

09

-V6

0

PIN

EY

P

T.

9/2

0/7

8

23

.5

ME

TE

RS

D

EP

TH

6

0

ME

TE

RS

S

OU

TH

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

- -

-

DEPTH

CM 1 3 5 7 916

26 36

46 66

DEPTH

' CM

Ui

100

3 5 7 916

2636

46 66

DEPTH

CH 1 3 5 7 916

26

3646

66

PH

7.16

7.26

7.16

7*05

7.09

7.02

7.12

7.02

7.03

7.10

CL

MMOL/L

260.0

243.0

234.0

234.0

232.0

239.0

241.0

246.0

250.0

254.0

TOT C

UMOL/G

- - - - - - - - - -

PH SFD

7.19

7,10

7.07

6,95

6.96

7.03

f.91

.6,91

6.96

6.91

S04

MMOL/L

9.0

2.0

1.0

0.5

0.5

0.5

0.5

0.5

C.5

0.5

ORG C

UMOL/G

- - - - - - -

EH

MV

-90

-110 6

100

1105558

705645

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV

-170

-160

-150

-150

-160

-180

-170

-170

-160

-160

KMMOL/L

- - - - - - - - -

- -

-

TOT P

UMOL/6

- - - - - - « - -

ALK

MEQ/L

10.6

28.5

37.0

40*0

42.3

47.1

52.4

55.4

59.3

58.2

CA

MMOL/L

- - - - - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.87

3.48

5.26

6.40

7.10

8.24

9.30

9.68

9.74

9.64

MG

MMOL/L

- - - - - - - -

DATA -

-

UT LOSS

X - - - - - « - - -

P04

SILICA

UMOL/L UMOL/L

129

577

625

642

644

586

738

804

764

555 MN

UMOL/L

33

89

116

167

182

237

291

328

328

328

-

POROSITY

0.92

0*91

0.92

0*91

0.91

0*90

0.90

0*89

0*88

0*86

696

1150

1110

1140

1150

1080

1120

1120

1020

1100

FE AA

UMOL/L

216 632

52

233

176

116

150

159

TOT C

MG/L

210

400

470

480

510

610

690

690

690

700

FE FERRO

UMOL/L

- - - - - -

- -

ORG C

MG/L

120

100 93

9985

120

160

120

100

110

S-2

UHOL/L

680

500

110 87 92 45 52 58 43 16

INORG C

MG/L 94

300

370

380

430

490

530

570

590

580

S-2 ELECT

UMOL/L

2400

1500 943 1 0 0 0 0- 0

Page 64: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

79

fifl

-V

PI

PIN

EY

P

OIN

T

8/5

/79

11.0

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA -

- -

Ui vo

DEPTH

CM 1 3 5 7 9 IS

26

36

46 66

DEPTH

CM 1 3 5 7 916 26 36 46

66

DiPTH

CM 1 3 5 7 916

26 36 4666

PH

6.90

7.23

7.37

7.40

7.51

7.49

7.52

7.52

7.54

7.68

CL

MMOL/L

229.0

214.0

201.0

192.0

189.0

199.0

212.0

205.

0224.0

235.0

TOT C

UMOL/G

3900

3020

2600

2310

2120

1730

1460

1440

1540

1550

PH SED

~

S04

MMOL/L

4.80

5.20

4.20

3.80

4.20

6.20

6.20

5.90

5,90

5.80

ORG C

UMOL/6

- - . - - '

- - - - -

EH

MV

-77

-110

-120

-110

-79

-58

-35

-25

-52

-100

NA

MMOL/L

190.0

181.0

170.0

167.0

162.0

173.0

185.0

191.0

190.0

205.0

TOT N

UMOL/G

510

370

300

240

210

410

160

150

180

170

EH SED

MV

-110

-160

-150

-140

-130

-94

-7

-35

-100

-130 K

MMOL/L

5.0

4.9

4.7

4.6

4.6

4.9

5.3

5.5

5.5

5.9

...

TOT P

UMOL/6

24 22 19 18 15 13 13 13 1212

ALK

MEQ/L

6.5

9.5

10.8

10.8

8.6

7.6

8.4

8.9

10.0

10.3

CA

MMOL/L

4.5

4.2

3.9

3.9

3*9

4.0

4.3

4.4

4.4

4.6

SEDIMENT

INORG P

UMOL/G

8 9 9 9 7 7 8 8 7 7

NH4

MHOL/L

0.82

0.77

0.78

0.77

0.73

0.65

0.60

0.69

0.71

0.76

MGMMOL/L

21.3

19.3

17.8

17.5

16.7

17.9

18.5

19.8

20.2

21*7

DATA -

-

UT LOSS

X16.7

13.7

12.8

12.4

11.4

10.5

9.8

9.8

9.9

9.6

P04

SILICA

TOT C

UMOL/L UMOL/L

MG/L

1640

1990

1820

1740

1640

1500

1500

1640

1530

MNUMOL/L

11 17 16 20 31 32 30 24 179

-

POROSITY

0.96

0.92

0.89

0.86

0.85

0.85

0.83

0.83

0.84

0.80

1820

FE AA

FE FERRO

UMOL/L

UMOL/L

3 2 4 4 4 0 0 1 0 6

OR6 C

HG/L

S-2

UMOL/L

150

170

13073 33 19 16 16 20 38

INORG C

MG/L

S-2 ELECT

UMOL/L

- - - - - . - - -

Page 65: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

05

-V7

W

HIT

E

PT

. B

EA

CH

5-1

5-7

8

9*1

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

DEPTH

CM 1 3 5 7 9 16 26 36 46 66

DEPTH

CM 1

0".

3 0

° 5 7 916 26

36

46 66

DEPTH

CH 1 3 5 7 9

16

2636 46

66

PH

7.26

7.70

7*73

7.78

7.88

7.78

7.94

7.95

7,82

7.74

CL

MMOL/L

157.0

157.0

180.0

205.0

205.0

215.0

198-0

170.0

224.0

232.0

TOT C

UMOL/G

- - - - - - - - -

PH SED

- - - - - - - - - S04

HMOL/L

6.4

6.7

6.1

fl.3

7.4

6.4

5.3

1,2

1.0

0.8

ORG C

UMOL/G

- - - - - - - - - -

EH

MV

160 97 38

-14

-91

-97

-73 17 34 56

NAHMOL/L

- - - - - - -

TOT N

UMOL/G

- - - - - - - - - - .

EH SED

MV- - - - - - - K

MMOL/L

- - - - ,

- - -

- -

-

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

3.1

6.6

11.5

14.5

15.6

19.2

21.8

23*1

24.0

25.6

CA

MHOL/L

- - - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0*21

0.36

0.74

0.90

1.05

1.33

1.42

1.50

1.55

.1.62

MGMMOL/L

- - - - - - - -

DATA -

-

WT LOSS

'% - - - - - - - - - -

P04

UMOL/L

17

88

158

238

241

282

319

294

272

269 MN

UHOL/L

54 25 13 12

12 16

22

29 31 30

-

SILICA

UMOL/L

392

560

749

763

800

802

727

666

661

683

FE AA

UMOL/L

82 1 0 1 0 0 0 4 918

TOT C

MG/L

130

160

270

210

260

330

343

380

400

390

FE FERRO

UMOL/L

74 4

4 4 4 4 225 26 32

ORG C

MG/L

100 99

180 65 95

110

110

130

130

100

S-2

UMOL/L

- - - - - - - - -

INORG C

MG/L 26 61 93

140

160

210

230

250

270

290

S-2 ELECT

UMOL/L

- » - - - - ~ -

POROSITY

0.92

0.89

0.90

0.89

0.88

0.86

0.85

0.85

0.84

0.83

Page 66: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7908-V BB BRETON BAY

8/5/79

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 9

16

26

36

46

61

DEPTH

CM I 3 5 7 9

16

26

3646

61

DEPTH

CM 1 3 5 7 916

26

36 46

61

PH

6.93

7.38

7.29

7.43

, 7.59

7.78

7.78

7.82

7.85

7.BO

CL

MMOL/L

173.0

145.0

154.0

145.0

143.0

150.0

169.0

175.0

183.0

181.0

TOT C

UHOL/6

- - - - - - - - - -

PH SED

504

MMOL/L

0*30

1*20

1.10

1.10

1.40

2.30

2.20

0.10

0.10

0.10

OR6 C

UMOL/G

- - - - - - - -

EH

HV

-5

53

75

130

110

-15

49

-98

-140

-140

NA

MMOL/L

140.0

140.0

137.0

120.0

122.0

128.0

148.0

152.0

155.0

157.0

TOT N

UHOL/6

- - - - - - - - - -

EH SED

ALK

MV

MEQ/L

-42

3.3

-100

8.1

-120

10.0

-160

8.8

-140

8.6

-73

7.8

-93

9.8

-150

11.3

-180

14.0

-180

KMMOL/L

4.2

3.8

3.7

3.2

3.5

3.7

4.2

4.4

4.4

4.4

...

TOT P

UMOL/G

- - - - - - - - - -

19*1

CA

MHOL/L

3.5

3.5

3.4

3.1

3.1

3.2

3.6

3.9

3.8

3.7

SEDIMENT

INORG P

UHOL/G

- - - - - - - - -

NH4

HMOL/L

0.45

0.88

0.87

0.83

0.69

0*59

1.12

HG

MHOL/L

16.1

14.9

14.2

12.7

12.8

13.4

15.1

16.0

16.1

16.2

DATA - -

UT LOSS

t - - -

- - « » -

P04

SILICA

TOT C

UHOL/L UMOL/L

M6/L

467

700

650

617

583

583

533

567

667

HN

UHOL/L

28 36

2833 39

41 36

24

2121

-

POROSITY

0.93

0.93

0.91

0.89

0.87

0.83

0.81

0.82

0.85

0.83

683

FE AA

FE FERRO

UHOL/L

UMOL/L

4 4 3 2 124 ' 0 1 1 2

OR6 C

MG/L "

S-2

UMOL/L

7120

120 0 013 15 38

130

230

INORG C

MG/L

S-2 ELECT

UMOL/L

- . . . - - - -

Page 67: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

05

-1/8

S

T.

CL

EM

EN

TS

IS

L.

5-1

5-7

8

11

.0

ME

TE

RS

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

fo

DEPTH

CM 1 3 5

10 12 16 26 36 46 66

DEPTH

CM 1 3 5

10 12 16 26

36 46

66

PH

7.22

7.60

7.70

7.80

7.75

7.71

7.65

7.66

7.63

7.55

CL

MMOL/L

143.0

148.0

151*0

185.0

187.0

213.0

208.0

206.0

192.0

222,0

PH SED

- - - - - - - -

S04

MMOL/L

7.1

6.0

5.7

4.4

4.7

4.7

5.4

5.9

4.4

3.9

EHMV

140 46 15 23 36 74

100 95

76

81

NA

MMOL/L

- - - - - - - - - -EHMV

140 46 15 23 36 74

100 95

76

81

EH SED

MV- - - - - - - - - -

ALK

MEQ/L

2.6

5.0

6.2

9.1

10.8

11.2

10.6

10.0

8.1

7.6

NH4

MMOL/L

0.12

0.27

0.48

0.69

0.73

0.79

0.76

0.53

0.51

0.47

P04

UMOL/L

17

112

142

174

159

156

136

107

94 76

SILICA

UMOL/L

335

560

701

723

712

679

754

751

764

705

TOT p

MG/L

110

130

180

220

260

230

200

200

250

250

ORG C

MG/L 6886

110

130

160

120

110

110

170

' 180

INOR6

MG/L 21 43

64 90 94

110 9786

81 71

K

CA

MG

MMOL/L

MMOL/L

MMOL/L

MN

UMOL/L

84 81 51 41 46

4539

32 26

19

FE AA

UMOL/L

35 2 1 0 1 1 1 1 0 0

FE FERRO

UMOL/L

33 9 2 4 6 4 4 2 4 2

S-2

S-2 ELECT

UMOL/L

UMOL/L

- -

- SEDIMENT DATA -

- -

DEPTH

CM 1 3 5

10

12

16

2f

36

46

66

TOT C

ORG C

TOT N

UMOL/G

UMOL/G

UMOL/G

TOT P

INORG P

UT LOSS

UMOL/G

UMOL/G

%POROSITY

0.93

0.91

0*89

0.69

0.88

0*82

0.75

0.73

0.70

Page 68: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V9 COB3 ISL.

5-16-78

7.3 METERS

- -

- INTERSTITIAL UATER DATA -

- -

DEPTH

CM1 3 5 7 9

16 26 36 4G 66

DEPTH

CM1 3 f> 7 9

1£ 26 36 46 66

DEPTH

CM 1 3 5 7 916

26 36

4666

PH

7.05

7.37

7.44

7.47

7.5B

7.65

ft. 00

7.92

7.90

7.70

CLMMOL/L

81*0

90.0

104.0

117.0 -

158.0

174.0

176.

0182.0

191.0

TOT C

UMOL/G

- - - - - - - - -

PH SED

- - - - - - - - - S04

MMOL/L

3.5

4.0

53.0

13.0 1.0

63.0 0.0

84.0

0.0

63.0

ORG C

UMOL/G

- - - - - - - - -

FH

MV2f

tO170

200

210

130

180 2ft

150

110

-160

NAMMOL/L

- - - - - -.

- -

TOT N

UMOL/G

- - - - - - - - - -

EH SEO

MV- - - - - - - - - K

MMOL/L

- - - - - - - - -

...

TOT

PUMOL/G

- - - - - - - - - -

ALK

MEQ/L

2.3

2.9

3.6

4.4

6.2

13.2

14.4

17.1

18.4

20.5

CAMMOL/L

- - - - - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - -

NH4

MMOL/L

0.09

0.13

0.19

0.24

0.30

0.52

0.72

0.80

0.89

.1.05

MGMMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

UMOL/L

937 47 56 68 95

120

121

123

133 MN

UMOL/L

75 47 31 22 23 27 19 24 22 23

-

SILICA

UHOL/L

201

306

403

358

444

445

410

449

536

703

FE AA

UMOL/L

16 338 6 9

134 3 0 0

TOT C

MG/L 90 99

130

. 15

014

0200

270

310

320

360

FE FERRO

UMOL/L

17 309

10 10 125 4

14

21

s

ORG C

MG/L 76

7799

110 84

100

120

120

130

130

S-2

UMOL/L

- - - - - - - -

INORG C

MG/L 14 22 34

44 57 99150

180

190

220

S-2 ELECT

UMOL/L

- - - .. - - - -

POROSITY

0.92

0.88 - -

0.82 -

0.79

0.82

0.84

0.84

Page 69: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V10 WICOMICO R. 5-16-78

9.1 METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916 263646 66

DEPTH

CM i

-P-

3 5 7 916

26

36 46

66

DEPTH

CM 1 3 5 7 9

16

26 36

4666

PH

6.96

7.34

7.5<5

7.66

7.57

7.39

7.34

7.23

7.23

7.26

CL

MMOL/L

96.0

103*0

121.0

133.0

144.0

168.0

177.0

180.0

180.0

190.0

TOT C

UMOL/G

- - - - -.

- - - - -

PH SEO

- - - - - - - - -

S04

MMOL/L

4.5

4.0

3.0

?. 0

1.0

79.0

0.0

0.5

0.0

51.0

ORG C

UMOL/6

- - - - - - - -.

EH MV

390

130 84 68

64 58

-1 -7

-19 3

NA

MMOL/L

- - - - - - - -

TOT N

UMOL/6

- - - - - - - - - .

EH SED

MV - - - - -

. - - - - K

MMOL/L

- - - - - - *

- -

-

TOT P

UMOL/6

- - - - - . - - - _.

ALK

MEQ/L

1.9

4.8

8.8

12.4

14.7

21.6

26.9

28.5

34.1

36.9

CA

MMOL/L

- - - -.

- - - -

SEDIMENT

INORG P

UMOL/G

- - - - - . - - - .

NH4

MMOL/L

0.21

0.23

0.59

0.85

1.12

1.87

2.65

3.52

4.21

4.00

MG

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

t - - - - - . - - - _

P04

UMOL/L

249

208

204

242

300

177

145

139

337

MN

UMOL/L

50

200

182

150

140

309

582

692

528

455

-

SILICA

UMOL/L

152

410

5 0

627

637

606

703

700

724

641

FE AA

UMQL

/I 472 10 10 13 35

251

340

358

197

POROSITY

0.93

0.91

0.89

0.89

0.88 -

0.82

0.75

0.73

.

TOT C

MG/L

91140

140

240

280

340

420

450

490

510

ORG C

MG/L 76 88

51110

120

100

110

120

120

110

INORG

MG/L 15 49 88

130

160

240

310

340

380

400

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

683 9 7

11 36

237

322

713 90

Page 70: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

Q5

-V1

1

PO

TO

HA

C

BE

AC

H

5-1

7-7

8

10

.7

ME

TE

RS

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

DEPTH

CM I 3 5 7 916 2ft

36 46 66

DEPTH

CM 1 3 5 7 916 28 36 46 66

DEPTH

CM 1 3 5 7 916 28 36 46

66

PH

6.8*

7.13

7.27

7.38

7.58

7.87

7.58

7.50

7.43

7.39

CL

MMOL/L

49,0

53.0

60.0

f9.0

86.0

140.0

162.0

166.0

167.0

172.0

TOT C

UMOL/6

- - - - - - - - - -

PH SED

- - - - - - - -.

S04

MMOL/L

2.0

2.0

24.0

14.0

3.5

3.0

1.0

1.0

0.5

0.5

ORG C

UMOL/6

- - - - .

- '

- - - - -

EHMV

470

4=50

390

3*0

330

3^0

32064 3413

NAHMOL/L

- - - - - - - - -

TOT N

UMOL/6

- -. - - - - - - - -

EH SED

MV - - - - - - - . " K

MMOL/L

- - - - - - - -

- -

-

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

2.1

2.4

2.8

3.5

4.1

8.9

16.1

18.3

19.7

21.6

CA

MMOL/L

- - - - -^ - - -

SEDIMENT

INORG P

UMOL/6

- - - - - - -.

- -

NH4

MMOL/L

0.03

0.00

0.03

0.09

0.17

0.62

1.21

1.44

1.67

2.01

MGMMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - -

- - -

P04

UMOL/L

1 2 412 3586

109

10486 56 MN

UMOL/L

0 619 37

49 36 78 80 92 87

-

SILICA

UMOL/L

137

188

238

315

386

442

486

498

513

481

FE AA

UMOL/L

2 0 4 7 9 340

166

251

376

TOT C

MG/L

140 90

290

160

140

210

270

290

310

330

FE FERRO

UMOL/L

5 4 8 7 9 351

138

208

318

ORG C

MG/L

130 74

260

14097

120 99

8787

89

S-2

UMOL/L

- - - - - - - - - *

INORG C

HG/L 12 16 22 24 40 90

170

200

220

250

S-2 ELECT

UMOL/L

- - - - - - -

POROSITY

0.87

0.80

0.77

0.77

0.78

0.79

0.78

0.76

0.78 -

Page 71: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

05

-V1

2

OFF

P

OP

ES

C

RE

EK

5-1

7-7

8

20

.7

ME

TE

RS

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA -

- -

ON

DEPTH

CM 1 4 6 810 15 26 36 46 66

DEPTH

CM 1 4 6 8

10 16

26 36

46 66

DEPTH

CM 1 4 6 8

10 16 26 36

46 66

PH

7.20

7.33

7.55

7.59

7.54

7.54

7.74

7.61

7.56

7.41

CL

MMOL/L

26.0

47.0

63*0

80*0

95.0

134,0

138.0

139,0

142.0

151*0

TOT C

UMOL/G

- - - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

2.0

2.5

3.0

3.5

4.5

5.0

6.0

4.0

2.0

0.5

ORG C

UMOL/G

- - - - .

- '

- - - - -

FHMV

380

340

200

180

140

210

130 92

140

200

NA

HMOL/L

- - - - - - - "

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV- - - - - - - -

1 - K

MMOL/L

- - - - - - - - - *

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

2.4

3.9

4.0

4.0

4.3

6.2

7.1

8.3

9*4

11*8

CA

MMOL/L

- -

- - - - - -

SEDIMENT

INORG P

UMOL/G

- - » - - - - -

NH4

MMOL/L

0.04

0.10

0.19

0.22

0.26

0.38

0.63

0*84

0.96

1.12

MG

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

*

- - -.

- - - - - - -

P04

UMOL/L

2 552 5263 78 97

132

149

175

MN

UMOL/L

0170

127

71 70117 78 55

49 45

-

SILICA

UMOL/L

131

303

417

491

.554

745

909

986

942

964

FE AA

UMOL/L

0 628 15 14 a

12 19 20 25

TOT C

MG/L

130

140

110

190

160

110

190

210

210

250

FE FERRO

UMOL/L

2 5 9 13 64 7 1312

6 213

ORG C

HG/L

110

100 72

150

120 50

120

120

120

140

S-2

UMOL/L

- - - - - - - - -

INORG C

MG/L 18 35 38 39 43 61 72 89 91

110

S-2 ELECT

UMOL/L

- - - - - - - - -

POROSITY

- - - - - - - - - -

Page 72: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V13 OFF

POPES CREF.K

5-18-78

10.4 METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916 26

36 46 66

DEPTH

' CM

ON

" 1 3 5 7 9

16 26

3646

66

DEPTH

CM 1 3 5 7 916

2* 3646

66

PH

7.10

7.12

7.49

7,76

7.72

7.77

7.66

7.59

7.46

7.42

CLMMOL/L

-26.0

36*0

54.0

67.0

101.0

121.0

124.0

127,0

135.0

TOT C

UMOL/G

- - - - - - - - - -

PH SEO

- - - - - - - - - -

S04

MMOL/L

0.5

. i.

o1.

02.0

2.0

0.0

0.0

0.0

0.0

0.0

ORG C

UMOL/G

- - - - -

- - - - -

EHMV

320

290

280

270

270

250

230

21094 12

NAMMOL/L

. - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SEO

MV - - - - . - - - - K

MMOL/L

. - - - - - -

- -

-

TOT P

UMOL/G

- - - - ,

- - - - ~ -

ALK

MEQ/L

, 2.2

2.2

3.1

4.1

5.7

11.2

13.8

15.3

17.6

21.7

CA

HMOL/L

« - - - - - - - -

SEDIMENT

TNORG P

UMOL/G

- - - - - - -. - - -

NH4

MMOL/L

0.04

0.06

0.13

0.29

0.40

0.70

1.01

1.30

1.59

1.94

MG

MMOL/L

. - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

UHOL/L

018 63

89

136

127

118

102

102 76 MN

UMOL/L

116

27

47

70 98

154

170

13885

-

SILICA

UMOL/L

92

37f

477

597

637

645

549

558

597

565

FE AA

OMOL

/L 121 5 7 6 430 36

118

287

TOT C

MG/L

130

140

130

140

130

210

24U

240

280

330

FE FERRO

UMOL/L

10 174 7 9

40 26 35146

197

ORG C

MG/L

120

120

100 9975

94 83

76 79

85

S-2

UMOL/L

- - - - - - - -

INOR6 C

MG/L 14 16

26 38 57

120

160

160

200

240

S-2 ELECT

UNOL/L

«. - - - .. *"

POROSITY

0.82

0.80

0.80

0.79

0.79

0.78

0.76

0.77

0.77

0.76

Page 73: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

79

D8

-V

PT

P

OR

T TO

BA

CC

O 8

/1/7

9

2.7

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

DEPTH

CM 1 3 5 7 916

2636 46 66

DEPTH

CM I

oo

3 5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

6.P6

7.02

7.09

7.10

7.26

7.53

7.41

7.51

7.84

7.68

CL

MMOL/L

53*0

50.8

49.4

48.5

48.0

48.5

67.1

78.4

82.4

68.9

TOT C

UMOL/G

- - - - --

- - -

PH SED

- - - - - - - - -

S04

MMOL/L

0.25

0.24

0.16

0*15

0.15

0.13

0.12

0.03

ORG C

UMOL/G

- - - -

- - - - -

EH MV

200 89

72100

130

100

120

160

130

160

NA

HMOL/L

44.4

42.8

42.8

40.5

40.5

43.1

58.7

68.7

72.2

77.4

TOT N

UMOL/G

- - - - - - - - -

EH SED

MV -17

-32

-54

-34

-37

-7 0

-50

-100

-77

KMMOL/L

1.2

1.2

1.2

1*3

1.3

1.5

1.8

2*0

2*2

2.4

- -

-

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

2.9

3.4

3.7

4.8

4.6

5.3

8.2

10.4

11.6

14.4

CA

MMOL/L

1.6

1.7

1.8

1.8

1.6

1.2

1.5

1.9

2.0

2.1

SEDIMENT

INORG P

UMOL/G

- - - - - - - - -

NH4

MMOL/L

0.16

0.25

0.30

0.30

0.28

0.28

0.39

0.43

0.65

0.88

MG

MMOL/L

5.3

5.1

4.9

4.6

4.8

4.3

5.8

7.2

8.0

8.6

DATA -

-

UT LOSS

x - - - - - - - - - -

P04

SILICA

TOT C

UMOL/L UMOL/L

MG/L

514 8 4

-6 7 8

12 14 MNUMOL/L

95

170

118

64 45 26 33

26 31 28

-

POROSITY

0.89

0.86

0.82

0.79

0.78

0.74

0.74

0.73

0.74

0.77

300

517

533

483

450

417

450

433

433

750

FE AA

FE FERRO

UMOL/L

UMOL/L

585 71 19 9 6 6 3 2 1

ORG C

INORG C

MG/L

MG/L

- -

-- -

- . - .

- -

- -

*

S-2

S-2 ELECT

UMOL/L

UMOL/L

- « «.

- - .

- .

- .

-.

- - -

Page 74: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

79

10

-JP

T

PO

RT

T

OB

AC

CO

1

1/5

/79

2.1

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

vo

DEPTH

CM 1 3 5 7 916

26 36

46

61

DEPTH

CM 1 3 5 7 916

26 36 46 61

DEPTH

CM 1 3 5 7 916 26 36 46 61

PH

6.98

7,07

7.45

--

7.55

7.59

7,84

8.12

8.62

CL

MMOL/L

- - - - - - - - -

TOT C

UMOL/6

- - - - - - - - - -

PH SEO

- - - - - - - - -

S04

MMOL/L

- - - - - - - - - ^

ORG C

UMOL/G

- - - - -

- «» - -

EH

MV

340

100

160

- -200

170 83

90 16

NA

MMOL/L

30.1

29.7

30.7 - -

43.9

53.1

63*1

69.2

75.7

TOT N

UMOL/G

- - - - - - - - -

EH SEO

ALK

MV 53 7

-59

-93

-69 9

--19

-64

-26

KMMOL/L

1.1

1.0

1.0 - -

1.5

1.8

2.0

2*2

2.4

...

TOT P

UMOL/6

- - - - - - - - - -

MEO/L

1.5

2.3

3.9 -

5.0

5.5

6.0

8.0

10.1

13.5

CA

MMOL/L

1.2

1.3

1.1 - -

1.1

1.3

1.6

1.7

2.0

SEDIMENT

INORG P

UMOL/G

- - - - - - - -

NH4

MMOL/L

0.16

0.21

0.36

-0.41

0.41

0.46

0.58

0.60

0*83

Mr,

MMOL/L

3.7

3.8

3.7 - -

4.6

5.7

6.7

7.7

8.7

DATA - -

UT LOSS

X - - - - - - - -

P04

SILICA

TOT C

UMOL/L UMOL/L

MG/L

496

167

119

- 62 71 98

136

168

MN

UMOL/L

16

181

107

- . 21 29

25 19 17

-

POROSITY

0.88

0.82

0.77

0.74

0.69

C.68

0.65

0.65

0.69

0*71

243

423

528

_ -

483

338

350

370

398

665

FE AA

FE FERRO

UMOL/L

UMOL/L

0126 34 -

..

.2 2 0 0 0

ORG C

INORG C

MG/L

MG/L

- -

- -

- .

. .

. -

.

_ .

- -

- .

.

S-2

S-2 ELECT

UMOL/L

UMOL/L

- - -_

.

«

-

«

~

.

- ~

Page 75: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V

14

OF

F

NA

NJE

MO

Y

CR

EE

K

5-1

8-7

8

7.6

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

WA

TER

D

AT

A -

- -

DEPTH

CM 1 3 5 7 9 16 26 36 46

66

DEPTH

CM 1 3

o

5 7 91626 36 46

66

DEPTH

CM 1 3 5 7 9

16 26 36

46 66

PH

7.31

7. 2*

7,29

7.44

7*54

7.64

7.32

7.27

7.33

7.25

CLMMOL/L

19.0

19.0

25.0

28.0 -

60.0

102.0

105.0

98,0

112.0

TOT C

UMOL/G

2140 - -

1670 - -

1420 - -

1180

PH SEO

- - - - - - - -

' S04

MMOL/L

0.5

1.0

1.0

1.5

1.5

1.5

0.5

0.5

0.5

13.0

ORG C

UMOL/G

2030

1840

1660

1580

1549

1470

1340

1300 -

1140

EH MV

380

260

110

150

170

210 1932

10 10

NAMMOL/L

3.3

8.3

12.8

17.3

22,1

47.8

82.6

81.8

86.1

88.7

TOT N

UMOL/G

220

190

150

160

140

160

150

130

- 91

EH SED

MV- - - - - - - - - K

MHOL/L

0.2

0.4

0.5

0.7

0.8

1.4

2.9

2.1

2.9

2.3

...

TOT P

UMOL/G

41 28

27 2825 20 21 20

- 18

ALK

MEQ/L

2.8

2.7

2.8

3.0

3.3

6.1

12.2

13.7

16.0

18.1

CA

MHOL/L

0.6

0.5

0.4

0.4

0.5

1.0

1.5

2.2

1.3

2.3

SEDIMENT

INORG P

UMOL/G

30 20 19 21 19 15

16 14 - 13

NH4

MMOL/L

0.04

0.05

0.06

0.12

0.41

0.43

1.41

1.45

1.59

1.89

MG

MMOL/L

0.6

0.9

1.1

1.4

1.7

3.8

8.6

9.1

10.0

10*2

DATA -

-

UT LOSS

X11.2

10.9

10.0

10.0

9.7

9.7

9.1

9.0

-8.8

P04

UMOL/L

1 962

72 84106

67 45 47 58 MN

UMOL/L

420 22 24 29 61

218

237

237

218

-

SILICA

UMOL/L

162

241

377

457

511

658

658

625

596

602

FE AA

UMOL/L

2 917 6 4 6

233

322

358

358

TOT C

MG/L

150

140

140

130

140

150

210

250

260

270

FE FERRO

UMOL/L

210 95 55 247

394

378

298

228

ORG C

MG/L

120

120

110

110

120 88 95 95

9267

S-2

UMOL/L

- - - - - - - - -

INORG C

MG/L 22 20 21 23 2ft

62120

150

170

210

S-2 ELECT

UMOL/L

- - - - - - - - .

POROSITY

0.87

0.83

0.80

0.79

0.80

0.79

0.79

0.75

0.77

0*75

Page 76: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7RQ9-V14A OF

F NANJLMOY CREEK 9/14/78

7.6

METtRS DEPTH

120

METERS EAST

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

6.70

7.40

7.38

7*36

7.29

7.17

7.19

7.26

7.28

7.35

CLHHOL/L

92*0

83.0

68.0

58.0

52.0

46.0

64.0

76.0

85*0

94.0

TOT C

UMOL/G

- - - - - - -

- - -

PH SED

7.44

7.35

7.25

7.25

7.20

7*00

7.08

7.00

7.42

7-30

S04

MMOL/L

4.C

1.5

0.0

0.0

0.0

5.5

-1.

00.

00.0

ORG C

UMOL/G

- » - - - - - - -

EH MV

470 73 25 -11

38 50 38 38 36

NAMHOL/L

- - - - - - - - -

TOT

NUMOL/G

- - - - - - - - - -

EH SED

MV10

-18

-20

-24

-26

-40 -3

-140

-180

-150 K

MMOL/L

- - - - - - - - -

- -

-

TOT

PUMOL/G

- - - - - - - - -

ALK

MEQ/L

4.9

13.0

20.1

22.7

25.1

20.9

18.5

20.8

22.9

23.1 CA

HMOL/L

- - - -

--

- -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.16

0.66

1.09

1.45

1.62

1.81

3.04

3.81

3.69

2.60

MGMMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SILICA

UMOL/L UMOL/L

5129

100 71 64 54 58 53 65 72 MN

UMOL/L

29564

746

946

1000 382 91

100

131 65

-

POROSITY

0*90

0.86

0.85

0.85

0.85

0*79

0.80

0.79

0.76

0.76

165

600

714

696

684

680

821

666

661

581

FE AA

UMOL/L

39215

448

609

752

698

537

537

484

430

TOT C

MG/L

110

200

270

290

330

280

290

290

300

310

FE FERRO

UMOL/L

- - - - - - -

- -

ORG C

MG/L 73

70 62 45 75 7511

0 84 63 66

S-2

UMOL/L

- - - - - - - - «

INORG C

MG/L 4213

0210

240

260

200

180

210

240

240

S-2 ELECT

UHOL/L

- - - - - - - -

Page 77: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V14B OFF NANJEMOY CREEK 9/15/78

6.7 METERS DEPTH

135 METERS WEST

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 9

'

lf>

26 36 46 66

DEPTH

CM 1 3 5 7

, 9

16 26 3646

66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

7.03

7.26

7.38

7.52

7.59

7.38

7.38

7.31

7.28

7.26

CL

MMOL/L

100. 0

91.7

92.5

93.1

86.9

76.2

86.0

90.8

94.5

102.0

TOT C

UMOL/G

2020

1850

1820

1830

1880

1820

1640

1570

1560

1460

PH SED

7.25

7.27

7*46

7,53

7.53

7.27

7.27

7.17

7.18

7.12

S04

MMOL/L

5.0

4.5

3.5

2.0

3,0

0.5

0.0

0.0

0.0

0.0

ORG C

UMOL/G

1950

1820

1760

1770

1830

1730

1610

1530

1530

1420

EH

MV

420

300

290

310

320

140 81 67 40 42

NAMMOL/L

80.9

80.5

77.0

77.0

71.8

64.4

73*9

77.0

80.9

87.9

TOT N

UMOL/G

200

150

210

180

170

160

210 33

63 81

EH SED

MV78

-38

-130

-100

-220

-220

-250

-240

-220

-200 K

MMOL/L

2.4

2.0

1.9

2.0

1*9

1.9

2.1

2.4

2.4

2.5

...

TOT P

UMOL/G

35 40 40 34 33 4624 21 25 21

ALK

MEQ/L

2.8

3.2

3.9

4.6

6.8

11*6

15.7

17.9

18.9

19.7

CA

MMOL/L

2.4

2.3

2.3

2.3

2.0

1.8

2.2

2.3

2.2

2.2

SEDIMENT

INORG P

UMOL/G

27

33 32 28

.27

41 19 16 21 16

NH4

MMOL/L

0.12

0.13

0.25

0.31

0.50

1.11

1.75

2.04

2.21

2.49

MG

MMOL/L

9.5

9.4

9.3

9.2

8.3

7.2

8.9

9.7

9.5

10.7

DATA -

-

UT LOSS

X10.1

9.7

9.6

9.7

9.9

10.1

9.8

9.4

9.3

9.1

P04

SILICA

UMOL/L UMOL/L

857

81

111

155

10894

114

74

70 MN

UMOL/L

135

175

160

142

155

200

291

255

149

60

-

POROSITY

0.85

0.82

0.81

0*84

0.84

0.82

0.79

0.78

0.79

0.78

214

436

536

552

593

736

761

748

674

571

FE AA

UMOL/L

107 38 52 17 20

113

145

251

430

448

TOT C

MG/L

120

150

170

120

140

200

250

270

250

260

FE FERRO

UMOL/L

- - - - - - - - -

ORG C

MG/L

100

120

140 74 77

8593

80 50 63

S-2

UMOL/L

- - - - - - - -

INORG C

MG/L 20 24 33 44 65

120

160

190

200

200

S-2 ELECT

UMOL/L

- - -, - - - - - -

Page 78: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V14C OF

F NANJEMOY CREEK 9/15/78

7.3 METERS DEPTH

160

METERS SOUT

- -

- INTERSTITIAL WATER DATA -

- -

U)

DEPTH

CM1 3 5 1 9

16

26

36

46

66

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

7.13

7.36

7.48

7.50

7.39

7.31

7.24

7.19

7.20

7.19

CLHMOL/L

80.4 -

73.9

70.5

70.5

73.3

84.6 - -

94.5

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

4.0

1.5

0.5

0.5

0.5

0.5

0.5

0.0

. O.

C0.

0

ORG C

UMOL/G

- - - -

- - - - -

fH H\l

440

170

330

270

220 75 49 53 47

29

NAMMOL/L

77.0

68.7

61.8

60.5

61.3

66.6

75.7

77.9

82*2

83.5

TOT

NUHOL/G

- - - - - - - - - -

EH SED

MV- - - - - - - - - - K

MMOL/L

2.0

1.7

1.6

1.7

1.8

2.0

2.3

2.5

2.7

2.T

...

TOT

PUMOL/G

- - - - - - - - - -

ALK

MEO/L

3.6

6.5

8.1

8.8

8.8

11.0

14.1

15.9

17.0

19.8

CAMMOL/L

2.3

2.3

1.9

1.9

1.9

1.9

2.2

2.2

1.9

2.2

SEDIMENT

INCRG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.14

0.38

0.50

0.54

0.64

0.90

1.25

1.48

1.67

1.96

MGMMOL/L

9.3

8.2

7.3

7.2

7.2

7.2

8.6

9.2

9.7

10.3

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SILICA

UMOL/L UMOL/L

11103

108

166

171 93 75 55

50 67 MN

.UMOL/L

80169 84

115

162

218

273

218

155

122

-

POROSITY

0.86

0.84

0.83

0.84

0.84

0*80

0.78

0.79

0.77

0.77

255

558

611

682

720

826

781

677

649

607

F£ AA

UMOL/L

970 179

41127

233

340

376

443

TOT C

MG/L

130

160

1/0

180

170

220

240

250

270

290

FE FERRO

UMOL/L

- - - - -

ORG C

MG/L

100

110 94

100 93

110 95 93

93

87

S-2

UMOL/L

- - - - - - - -

INORG C

MG/L 26 57 75 80 79

110

140

160

180

200

S-2 ELECT

UMOL/L

- - - -

- -

- - .

Page 79: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V140 OFF N4NJEMOY CREEK 9/18/78

6.4 METERS DEPTH

185 METERS NORT

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916

2f>

36 46

. 66

DEPTH

CM 1 3 5 7 916

26 36

46 66

DEPTH

CM 1 3 5 7 91626 36 46 66

PH

7.09

7.47

7.59

7.64

7.68

7.59

7.43

7.42

7.40

7.40

CL

MMOL/L

100.0

94.0

97.0

91.0

88.0

82.0

101,0

107*0

104,0

119.0

TOT C

UMOL/G

- - - - - - - - - -

PH S

FD

7.25

7.35

7.42

7.47

7,45

7.32

7.23

7*28

7.25

7.25

S04

MMOL/L

3.5

1.5

0.0

0.0

2.0

6.0

0.0

0.0

-0.0

ORG C

UMOL/G

- - - - - .

- - - - -

EH MV

340

270

320

320

320

300

120 48

46 19

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - -

EH SED

MV 55

-71

-170

-220

-250

-230

-250

-250

-170

-240 K

MMOL/L

- - - - - - - - -

...

TOT P

UMOL/G

- - -

- - - - - -

ALK

MEQ/L

3.6

5.9

7.7

9.0

10.0

11.8

14.4

16.4

18.5

21*8

CA

MMOL/L

- - - - '

- - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.17

0.44

0.52

0.57

0*65

0.90

1.26

1*48

1.71

1.87

MG

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - -. - - - -

P04

SILICA

UMOL/L UMOL/L

16 78 99

116

135

132

12096 69

94

307

623

634

659

686

743

768

727

651

579

MN

FE AA

UHOL/L

10693 78

104

120

160

200

200

173

182

-

POROSITY

0.84

0.80

0.75

0.81

0.81

0.78

0.79

0.79

0.69

0.79

UMOL/L

34 32 10 308

3288

172

197

269

TOT C

MG/L 99

170

150

170

180

220

230

230

280

290

FE FERRO

UMOL/L

- - - - - - - -

ORG C

MG/L 78

110 85

81 80 978465 80

61

S-2

UMOL/L

- - - - - - - - - -

INORG C

MG/L 21 51 70 89 99

120

140

160

200

230

S-2 ELECT

UMOL/L

- - - * - - - * *

Page 80: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7PQ3-V14B

OFF NANJEMOY CREEK

7.3 METERS

3/21/79

- -

- INTERSTITIAL WATER DATA -

- -

Ui

DEPTH

CM 1 3 5 7 916 26 36 46

56

DEPTH

. CM 1 3 5 7 916 26 3646

56

DEPTH

CM

PH

5.97

6.99

7.24

7.31

7.31

7.38

7.35

7.26

7.33

7.40

CL

MMOL/L

45-1

43,7

57.0

70.5

81.8

90.3

81.8

84.6

90.3

97.3

TOT C

UMOL/G

PH SEO

- - - - - - - -

- S04

MMOL/L

2.50

2.40

2.90

3.00

2.80

0.33

0*25

0.13

0.17

0.17

ORG C

UMOL/G

FH MV

460

210

170

190

190

130 78 67

35 15

NAMMOL/L

38.3

37.2

50.9

62.2

68.3

73.5

69.6

71.8

75.7

80.5

TOT N

UMOL/G

EH SED

MV 3CO 22

-160

-190

-200

-180

-150

-240

-230

-240 K

MMOL/L

1.1

1.1

1.4

1.5

1.6

1.7

1.7

1.9

2.0

2.1

- -

-

TOT P

UMOL/G

ALK

MEQ/L

1.4

2.1

3.8

4.9

6.0 -

12.2

14.4

16.4

18.0

CA

MMOL/L

1.5

1.2

1.4

1.8

2.1

2.4

2.1

2.2

2.4

2.5

SEDIMENT

INORG P

UMOL/G

NH4

MMOL/L

0.07

0.1R

0.31

0.36

0.46

0.73

0.96

1.19

1.40

.1.60

MG

MMOL/L

4.5

4.2

5*2

6.6

8.0

9.2

8.5

8.7

9.8

10.5

DATA -

-

VIT LOSS

X

P04

UHOL/L

24694

118

128

139

122 90 74 74 MN

UMOL/L

3140

140

129

124

182

246

251

233

206

-

SILICA

UMOL/L

132

296

413

384

470

584

621

582

509

475

FE AA

/UMO

L/I

152 31 128

3511

2186

310

373

POROSITY

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

o «»

^26 36 12 10 37

- -

114

192

317

382

DEPTH

CM1 3 5 7 9

16 26 36 46 56

TOT C

UMOL/G

- - - - - - - - - -

ORG C

UMOL/G

- - - - -

- - - - -

TOT N

UMOL/G

- - - - - - - - - -

TOT

PUMOL/G

- - - - - - - - - -

Page 81: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7903-V14D

OFF

NANJEMOY CREEK

6.4

METERS

3/21/79

- -

- INTERSTITIAL WATER DATA -

- -

cr*

DEPTH

CM1 3 5 7 9

16

.26 36 46 56

DEPTH

CMI 3 5 7 9

16 26 36 46 5o

DEPTH

CM1 3 5 7 9

16 26 36 46 56

PH

6.76

6.72

6.R3

7.31

7.42

7.49

7.39

7.35

7.44

7.49

CLMMOL/L

48-.0

45.7

57*8

70.5

R6.0

95.9

87.5

87.5

89*4

93.1

TOT C

UMOL/6

- - - - - - - - - -

PH SED

- - - - - - - - - S04

MMOL/L

3., 50

2.80

4.70

4.00

3.40

0.42

0.06

0,06

C.07

0.13

ORG

CUMOL/G

- - - - -

- - - - -

EH MV

370

200

200

150

170

120 65 57 31 10

NAMMOL/L

42.4

40.0

52.6

63.9

75.7

81.8

75.7

76.6

79,2

83.5

TOT

NUMOL/G

- - - - - - - - - -

EH SED

MV- - - - - - - - K

MMOL/L

1.0

1.1

1.4

1.6

l.fl

1.9

1.8

1.9

1.9

2.0

- .

-

TOT

PUMOL/G

- - - - - - - - - .

ALK

MEQ/L

1.3

1.4

2.9

4.2

5.8

10.9

14.4

17.0

19.2

20.6

CAMMOL/L

1.6

1.7

1.6

1.8

1.7

2.7

2.4

2.4

2.5

2.6

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.06

0.15

0.23

0.30

0.44

0.84

1.14

1.33

1.54

1.68

MGMMOL/L

4. A

4.5

5.3

6.6

8.4

10.0 9.6

9.7

10.0

11.0

DATA -

-

UT LOSS

% - - - - - - - - -

P04

UMOL/L

126 56 72 82

130

115 77 66 73 MN

UMOL/L

164 71 83

115

193

260

215 -

161

-

SILICA

UMOL/L

125

210

305

391

438

559

577

563

513

478

FE AA

UMGL/ 2

121 30 19 15 33

121

202 -

310

POROSITY

- - - - - i - \- - - .

TOT C

MG/L

ORG C

MG/L

INORG C

HG/L

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

154 32 20 15 38

121

206

274

322

Page 82: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

79T8-V14

NANJEMOY

8/1/79

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 9

16 26

36 46 56

DEPTH

CM 1 3 5 7 916 2636

46 56

DEPTH

CH 1 3 *> 1 916 26 36 46 56

PH

6.14

6.68

6.69

6.71

7.12

7.17

7.19

7.15

7.31

CL

MMOL/L

84.6

89.7

71.9

67,1

59.8

48.0

68.8

84*1

86.9

TOT C

UMOL/G

22fiO

2250

2190

2070

1820

1670

1530

1510

1490

1290

PH SED

- - - - - - - - -

S04

HMOL/L

G.44

0.22

O.?l

0.21

0.13

0.05

0.05

0.05

0*05

ORG C

UMOL/G

- - - - '

- - - - -

EHMV

240

120 84 72 18 53

51 36 23

NA

MMOL/L

72.6

71.8

58.7

53.9

49,2

43.5

60.5

73.5

80.0 ~

TOT N

UMOL/G

230 -

200

200

160 - 110

120

160 97

EH SEO

MV 29

-25

-39

-36

-160

-230

-280

-250

-250

-210 K

MMOL/L

2.4

2.0

1.5

1*4

1.4

1.6

2*0

2.3

2.5

...

TOT P

UMOL/G

42 41 44 40 29 25 23 2222

20

ALK

MEO/L

1.4

2.5

4.9

7.3

6.6

9.9

11.7

13.9

15.3

CA

MMOL/L

2.3

2.5

3.2

3.4

2.8

1.6

1.7

2.1

2.1

SEDIMENT

INORG P

UMOL/G

34 33 36 32 22 19 19 18 18 15

NH4

MMOL/L

0.19

0*19

0.38

0.53

0.53

0.55

0.79

1.22

1*08 "

MGMMOL/L

8.2

8.0

6.2

5.7

5.4

4.9

6.1

8.1

8.7

*

DATA -

-

UT LOSS

X10.9

10.8

10.6

10.0

9.4

9.3

8.9

9.1

8*9

8.2

P04

SILICA

TOT C

UMOL/L UMOL/L

MG/L

6 b12 129

18

2826

12

MN

UMOL/L

217

275

409

428

284

104

135

187

180

-

POROSITY

0.89

0.87

0.86

0.85

0.81

0.81

0.77

0.78

0.78

0.75

158

350

483

483

433

650

700

717

1 -

*

FE AA

FE FERRO

UMOL/L

UMOL/L

43117

292

390

279 27

23

91125

ORG C

INORG C

MG/L

MG/L

-- - - -

--

-

--

--

-.

*

S-2

S-2 ELECT

UMOL/L

UMOL/L

- -. -.

- -

- - ~

- - .

- -

*

Page 83: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V

15

OF

F

NA

NJE

MO

Y

CR

EE

K

5-1

8-7

8

5.5

H

ET

ER

S

- -

-

INT

ER

ST

ITIA

L

UA

TE

R

DA

TA

- - -

DEPTH

CM 1 3 b 7 916 26

36 46 66

DEPTH

CM 1 3 5 7 9 16 26 36 46

66

DEPTH

CM 1 3 5 7 916 26364666

PH

7.21

7,54

7.69

7.72

7.66

7*48

7.46

7.40

7.44

7.43

CL

MMOL/L

-17.0

25.0

42.0

52.0

79.0

80.0

80*0

80.0

86.0

TOT C

UMOL/G '

- - - - - - - - - -

PH SEO

- - - - - - - - -

S04

MMOL/L

0*5

0.5

1.0

0.5

10.0

0.5

0.5

0.5

0.5

0.5

ORG C

UMOL/G

- - - - -

- - - - -

EHMV

360

270

280

260

260

170 88

431723

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV - - - - - - - - - K

MMOL/L

- - - - - - - - -

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

2.2

2.7

3.9

6.2

7.6

11.0

12.0

12.5

13.5

15.1

CA

MMOL/L

- -

_- - - - - -

SEDIMENT

INOR6 P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

-0.13 -

0.36

0.47

0.80

0.97

1.17

1.15

1.26

MG

MMOL/L

- - - - - - - - - "

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

UMOL/L

367 91

100 92

117

104 63 56

53 MN

UMOL/L

916

26 46 73

218

218

172

177

182

-

SILICA

UMOL/L

176

521

604

648

687

724

744

734

667

586

FE AA

UMOL/L

0 4 7 4 651

.76

140

158

169

TOT C

MG/L

120

130

130

150

200

200

210

240

230

, 28

0

FE FERRO

UMOL/L

449 13 157

51 68146

158

155

ORG C

MG/L

100

100 92 87

120 67 71 93 81

100

S-2

UMOL/L

- - - - - - - - -

INORG C

MG/L 16 24 38 62 81

130

140

140

150

180

S-2 ELECT

UMOL/L

- - - - - - - - -

POROSITY

0.84

0.85

0.84

o.ai

0*80

0.81

0.80

0.78

0.78

0.76

Page 84: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

05

-V1

6

MA

RY

LAN

D

PT

. 5

-19

-78

8.2

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

- -

-

DEPTH

CM 1 3 5 7 9 16 26 36 4666

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 91626

36

4666

PH

6.97

7.09

7.36

7.46

7.33

7.34

7,18

7.22

7.19

7.14

CL

MMOL/L

- - «25.0

37.0

56.0

62.0

59.0

61*0

64.0

TOT C

UMOL/G

1270 - -

1300 - -

1250 - -

2320

PH SED

- - - - - - - - '

-

S04

MMOL/L

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

ORG C

UMOL/G

1230

1220

1260

1270

1400-

1180

1200

1210

1220

2280

EH MV

180

110 85

58

110

-19 40 2427

41

NAMMOL/L

0,8

2.3

7.1

15.7

25.8

40.8

45.2

45.2

48.7

48.7

TOT N

UMOL/G

120

110 99

130

120 94

120

110

130

210

EH SED

MV- - - - - - - - - K

MMOL/L

0.1

0.2

0.3

0.5

0.7

1.0

1.6

1.2

1.7

1.3

...

TOT P

UMOL/G

19 18 1919 21 19 18 18 19

15

ALK

MEQ/L

1.8

2.0

2.8

4.2

6*0

9.1

10.8

11.8

12.8

14.2

CA

MMOL/L

0.5

0.4

0.3

0.3

0.6

1.1

1.1

1.2

1.0

1.3

SEDIMENT

INORG P

UMOL/G

12 13 13 14 15 15 11 15 15 14

NH4

MMOL/L

0.08

0.12

0.17

0.28

0.39

0.98

1.36

1.54

1.63

1.90

MG

MMOL/L

0.3

0.5

0.7

1.1

2.1

4.5

5.2

5.2

5.5

6.0

DATA -

-

UT LOSS

X8.8

8.9

8.9

8.7

9.0

8.5

9.0

8.8

9.1

11.1

P04

UMOL/L

018 3668 76 77 72 66 78 80 MN

UNOL/L

624 16 13 19 39 58 72 76 70

-

SILICA

UMOL/L

115

225

402

520

592

617

649

708

780

979

FE AA

UMOL/L

130 18 26 El

287

376

358

304

233

TOT

CMG/L

150

110

110

150

150

180

200

230

260

290

FE FERRO

UMOL/L

226 18 24 48

241

349

317

292

247

ORG C

MG/L

130 92 83

110 88 94 87

100

120

130

S-2

UMOL/L

- - - - - - - - -

INORG C

MG/L 11 16 24 42 63 88

110

130

140

160

S-2

ELECT

UMOL/L

- - - - - -. - - -

POROSITY

0.77

0.80

0.79

0.78

0.78

0.80

0.80

0.80

0.83

0.81

Page 85: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

Q9

-V1

6A

M

AR

YLA

ND

P

T.

9/7

/78

8.8

M

ET

ER

S

DE

PT

H

185

ME

TE

RS

N

OR

TH

- -

- IN

TE

RS

TIT

IAL

U

ATE

R

DA

TA

- -

-

DEPTH

CM 1 3 5 7 916 26 36 46

DEPTH

CM

00

1

0

3 5 7 916 26

36 46 66

DEPTH

CM 1 3 5 7 916

26

36 4666

PH

7.UO

7,24

7.32

7.55

7.36

7.27

7.27

7.27

7*43

CL

MMOL/L

53.0

47.0

47.0

57.0

42.0

64.0

73.0

72.0

66.0

TOT

CUMOL/G

- - - - - - - - - -

PH SED

7.34

7.25

7.30

7.39

7.27

7.22

7.2?

7.23

7.20

S04

MMOL/L

« - - - - - - - - *

ORG C

UMOL/G

- - - - '

- - - - -

EH MV

350

230

200

240

180 74 50 43 38

NAMMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SEO

HV 27

-22

-39

-210

-200

-250

-210

-210

-85 K

MMOL/L

. - - - » - - - - *

...

TOT P

UMOL/G

- - - - - - - -' -

ALK

MEQ/L

2.7

3.7

4.9

5.3

6.1

7.6

11.4

11.5

11.7

CA

MMOL/L

. -

- - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - -

NH4

HMOL/L

0.09

0.35

0.46

0.57

0.60

0.79

1.02

1.05

0.97

MGMMOL/L

. - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SILICA

UHOL/L UHOL/L

16 67 85

70 88 94

80 64 37 MN

UMOL/L

93

100 84

89

100

127

142

107

91

-

POROSITY

0.84

0.81

0.81

0.83

0.82

0.80

0.77

0.73

0.73

0.44

269

676

750

758

769

756

690

615

506

F£ AA

UMCL/L

2975 50 45 72

116

215

215

197

TOT C

MG/L

160

140

140

240

160

170

250

310

340

FE FERRO

UMOL/L

. - - - - - - - - "

ORG C

MG/L

140

110 91

180 96

91140

190

220

S-2

UMOL/L

- - - - . - - -

INORG C

MG/L 19 33 48 52 62 82

110

120

110

S-2 ELECT

UMOL/L

- - - - - - - - -

Page 86: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78Q9-V168 MARYLAND PT. 9/7/78

7.0 METERS DEPTH

115 METERS UEST

- -

- INTERSTITIAL WATER DATA -

- -

oo

DEPTH

CM 1 3 5 7 9

16

26 36 46 66

DfPTH

. CM 1 3 5 7 916

26 36 46 66

DEPTH

CM 1 3 5 7 916

.26 36 46 66

PH

7.32

7.44

7.43

7.50

7.46

7.27

7.19

7.15

7.15

7,12

CL

MMOL/L

28-9

25.7

24.3

24-7

?5.0

31.4

41.6

47.2

49.4

53.3

TOT C

UMOL/G

2110

1990

1420

1230

1150

12fl

O1270

1220

1110

1130

PH SED

7,52

7.45

7.42

7.42

7.42

7.15

7.0f

t6.99

7.01

7.01

S04

MMOL/L

- - - - - - - - -

ORG C

UMOL/G

2040

1930

1380

1190

1120

1230

1230

1180

1080

1110

EH MV

310

200

100

170

210

110 41 30 33

44

NA

MMOL/L

25.8

21.7

21.2

20.8

22.1

29.0

37.3

41. 3

42.9

47.4

TOT N

UMOL/G

180

180

180

130

100 - - - -

EH SEO

MV-42

-180

-230

-240

-220

-240

-210

-170

-220

-200 K

HMOL/L

1.3

0.8

0.8

0.8

0.9

0.9

1.1

1.3

1.3

1.4

- -

-

TOT P

UMOL/G

33 31 20 18 19 17 19 20 17 17

ALK

MEQ/L

3.4

4.6

4.9

4.6

5,0

6.0

7.8

8.8

9.4

10.8

CA

MMOL/L

1.3

1.4

1.1

0.9

0.8

0.9

1.2

1.3

1.3

1.4

SEDIMENT

INORG P

UMOL/G

232313 12 13 12 15 15 13 13

NH4

MMOL/L

0.16

0.34

0.38

0.36

0.60

0.61

0.97

1.28

1.52

1.82

MGMMOL/L

3.0

2.6

2.5

2.5

2.3

2*4

3.7

4.5

4.7

5.6

DATA -

-

UT LOSS

X10.0

10.1 8.7

8.4

9.3

8.4

8.8

8.7

7*9

8.8

P04

SILICA

UHOL/L UMOL/L

29

84 66

66

73 79 62 46 37 46 MN

UMOL/L

.829862

51 40 47

6558

51 51

-

POROSITY

0.85

0.84

0.80

0.76

0.73

0.79

0.78

0.77

C.76

0.78

379

682

660

631

629

711

739

718

678

711

FE AA

UMOL/L

54 38 21 915 £8

322

448

394

376

TOT C

MG/L

210

170

150

160

150

160

180

250

190

210

FE FERRO

UMOL/L

- - - - - - - -

ORG C

INORG C

MG/L

MG/L

180

34130

48

100

45

110

48

100

50

- .

- - - i

-

S-2

S-2 ELECT

UMOL/L

UMOL/L

--

--

- - --

--

-- -

-

Page 87: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V

16C

M

AR

YLA

ND

P

T.

9/8

/78

6.7

M

ET

ER

S

DE

PT

H

275

ME

TE

RS

S

OU

TH

- -

- IN

TE

RS

TIT

IAL

WA

TER

D

AT

A -

- -

oo NJ

DEPTH

CM 1 3 5 7 916 26 36 4666

DEPTH

CM 1 3 5 7 916 26 36

46 66

DEPTH

CM 1 3 5 7 916

26

36 46

66

PH

6,24

7.39

7.50

7.51

7.43

7.20

7.13

7.15

7.13

7.13

CLMMOL/L

34.0

34.0

35.0

32.0

37.0

44.0

61.0

55.0

55.0

TOT C

UMOL/G

- - - - - - - - - -

PH SED

7.40

7.49

7.45

7.42

7.25

7.15

7.06

7*03

7.08

7.01

S04

MMOL/L

- - - - - - -

ORG C

UMOL/G

- - - - -

- - - - -

EHMV

310

220

260

280

130

100 60 45 57 39

NAMHOL/L

- - - - - - -

TOT N

UMOL/G

- - - -.

- - - - -

EH SED

MV -16

-230

-220

-240

-230

-210

-220

-230

-250

-210 K

MMOL/L

- - - - - - - -

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

2.9

3.0

3.6

4.1

5.2

6.3

8.2

9.3

10.1

11.5

CA

MMOL/L

- - -'

- - - .

SEDIMENT

INORG P

UMOL/G

« - - - - - - -'

-

NH4

MMOL/L

0.26

0.27

0.31

0.34

0.41

C.82

1.28

1.66

1.90

2*30

MG

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - - _- - - .

P04

SILICA

UMOL/L UMOL/L

42 45 5365

81 74

53 45 51 56 MN

UMOL/L

111 69

47

4445 55 75

71 76

58

-

POROSITY

0.83

0.79

0.78

0.79

0.78

0.76

0.77

0.77

0*76

0.77

426

488

493

555

641

722

667

655

639

665

FE AA

UMOL/L

39 27

18

20 27

150

430

448

430

501

TOT C

MG/L

110

130

130

130

140

170

200

200

200

240

FE FERRO

UMOL/L

- - - - - - - « -

ORG C

MG/L 87

110 95 90 98

100

120

120

110

. 13

0

S-2

UMOL/L

- - - - - - -' - .

INORG C

MG/L 23 24 31 39 44 62 78 81 97

110

S-2 ELECT

UMOL/L

- - - . - - - - -

Page 88: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V16D MARYLAND PT. 9/8/78

7.9 METERS DEPTH

25 METERS WEST

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916 26 36 46

66

DEPTH

CM 1

oo

*oo

5 7 916 26 36

4666

DEPTH

CM 1 3 5 7 916 26

36 46 66

PH

7*10

7.31

7.4Q

7.65

7.53

7.46

7.26

7.24

7.24

7.24

CL

MMOL/L

24.7

28-2

29.6

27,3

28.8

33.9

48.0

53.6

57*0

61.5

TOT C

UMOL/G

- - - - - - - - - -

PH SED

7.25

7.40

7.42

7*47

7.42

7,30

7.20

7.17

7.15

7.1R

S04

MMOL/L

2.3

1.6

1.1

1.0

0.8

- - - -

ORG C

UMOL/G

- - - - - .

« - - - -

EH MV

170

140

130

180

150

150 51 37 22 17

NA

MMOL/L

22.6

24.1

24.4

24.4

24.5

30.3

41.9

45.7

48.3

53.9

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV-130

-180

-220

-220

-210

-260

-270

-250

-230

-200 K

MMOL/L

0.6

0.7

0.8

0.8

0.9

0.9

1.3

1.5

1.4

1.6

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEO/L

2.4

2.7

3.6

3.8

4.0

7.0

9.4

10.5

11.1

12.6

CA

MHOL/L

1.5

1.3

1.3

1.1

1*0

1*1

1.4

1.6

1.6

1.8

SEDIMENT

INORG P

UMOL/G

- -' - - - - - - - -

NH4

KMOL/L

0.12

0.23

0.35

0.37

0.41

0.60

0.93

1.21

1.33

1.53

MG

MMOL/L

3.0

2.9

3.0

3.0

2.8

3.3

4.9

5.9

6.2

7.0

DATA -

-

UT LOSS

X - - - - - - - - -

P04

SILICA

UMOL/L UHOL/L

14 60 91 81 83

103 87

74 60 71 MN

UMOL/L

8284 69 58 58 78

106

106 98

107

-

POROSITY

0*85

0.84

0.84

0.82

0.82

0.80

0.75

0.78

0.77

0*78

335

499

615

620

657

750

701

723

700

731

FE AA

UMOL/L

50 383823 41 21

145

287

322

376

TOT C

MG/L

140

130

120

140

120

180

230

190

200

230

FE FERRO

UMOL/L

- - » - » - -

ORG C

HG/L

130

110 87

110 89

110

130 547475

S-2

UHOL/L

- - - - - - - *

INORG C

HG/L 10 20 31 31 36 70 97

130

130

160

S-2 ELECT

UMOL/L

- - . - - -

Page 89: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7908-V16

MARYLAND POINT

8/2/79

6.7 METFRS

- -

- INTERSTITIAL WATER DATA -

- -

oo

DEPTH

CM 1 3 5 7 916 26 36

4666

DEPTH

CM 1 3 5 7 9

16

2636 46 66

DEPTH

CM 1 3 5 7 9

16 26 36 46

66

PH

6.91 -

6-93

7.17

7.19

7.14

7.22

7.19

7.22

7.19

CL

MMOL/L

28.2 -

22.6

22.6

23.3

31.0

45.1

52.2

52-2

55.0

TOT C

UMOL/G

2050

1960

1870

1830

1870

1890

1820

1790

1830

1670

PH SED

- - - - - - - - -

S04

MMOL/L

0.30 -

0.10

0.05

0.03

- - -

ORG C

UMOL/G

-1R40 - - -

- -

1590 - -

EH MV

410 - 51 4557

26 -43

-31 »

NAMMOL/L

22-2 -

18.3

18.7

19-6

28.7

39.1

43.1

43.9

52.2

TOT N

UMOL/G

140

360

240

190

220

200

200

210

180

130

EH SED

MV7

-28

-140

-92

-54

-34

-250

-240

-240

-220 K

MMOL/L

0.6

-0.6

0.8

0.7

1.0

1.3

1.6

1.6

1.7

- -

-

TOT P

UMOL/G

50 50 51 56

56

60 60 45 31 25

ALK

MEQ/L

2.9

-3.8

6.0

6.6

11.1

15.2

17.4

18.7

18.0

CA

MMOL/L

1.5 -

1.3

1.2

1.1

1.5

2.1

2.2

2.1

2.0

SEDIMENT

INORG P

UMOL/G

42 4345

50 49 53 54 40 25

20

NH4

MMOL/L

0.23 -

0.37

0.76

i.on

1.90

2.66

3.30

3.43

3.68

MG

MMOL/L

2.7

- 2.4

2.2

2.2

3.3

4.9

5.9

6.1

6.8

DATA -

-

UT LOSS

X9.2

9.6

9.5

9.2

9.2

9.2

9.2

9.1

9.1

9.0

P04

SUHOL/L U

1040 -

960

720

600

600

680

720

720

740 MN

UMOL/L

195

- 87

58

58

93

145

139

170 95

-

POROSITY

0.86

0.84

-0.83

0.82

0.81

0.81

0.80

0.78

0.80

TOT C

MG/L

ORG C

MG/L

INORG C

HG/L

SILICA

IOL/

L 217

583

650

733

667

600

617

617

567

FE AA

FE FERRO

S-2

S-2 ELECT

UMCL/L

UMOL/L

UMOL/L

UHOL/L

116

-

77 86

107

-265 ...

315

-346 ...

376 ...

428

-

Page 90: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7910-J

16

MA

RY

LAN

D

PO

INT

11/6

/79

4.9

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

- - -

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM

oo

1 3 5 7 916 26 36 46

66

DEPTH

CM 1 3 5 7 916

26 36 46

66

PH

7.31

7.22

7.22

7.24

7.29

7.24

7.24

7.28

7.26

CL

MMOL/L

3.5

6.7

9,4

15.0

19.9

31.6

42.3

48.2

55.0

TOT C

UMOL/6

- - - - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

_ - - - - - - -

ORG C

UMOL/6

- - - - -

- - - - -

EH MV

240

1?0 87 72 68 67

45 53 35

NA

MMOL/L

3.5

6.3

9.6

14.3

19.7

31.0

38.9

43.5

46.1

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV 32

-28

-130

-190

-210

-240

-220

-150

-75

-190 K

MMOL/L

0.2

0.2

0.3

0.4

0.5

0.7

1.0

1.0

1.0

- -

-

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

2.5

3.4

4.6

6.3

7.9

10.6

11.9

12.2

12.4

CA

MMOL/L

1.0

1.2

1.1

1.1

1.1

1.4

1.7

1.7

1.7

SEDIMENT

INORG P

UMOL/G

- «- -. - - - - '

- - -

NH4

MMOL/L

0.16

0.33

0.68

0.69

1.35

1.47

2.11

2.59

2.63

MG

MMOL/L

0.6

0.9

1.4

2.2

2.8

4.1

5.3

5.8

6.2

DATA -

-

UT LOSS

X - - - - - «. - - -

P04

SILICA

TOT C

UMOL/L UMOL/L

MG/L

367

100

10491 75 68

5445

MN

UMOL/L

37

113

140

158

175

220

204

110 47

"

-

POROSITY

0.87

0.83

0.82

0.82

0.82

0.81

0*81

0.80

0.77

0.77

232

372

472

380

575

637

625

632

602

<

F£ AA

FE FERRO

UMOL/L

UMOL/L

064

112

120

144

245

330

364

369

«

ORG C

INORG C

MG/L

MG/L

- -

-- .

- - -

- .

-

S-2

S-2

ELECT

UMOL/L

UMOL/L

. .

- «. -

- - * ~

- - -

- -

"

Page 91: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

05

-V1

7

MA

RY

LAN

D

PT

. 5

-19

-78

4

.3

ME

TE

RS

- -

- IN

TE

RS

TIT

IAL

U

ATE

R

DA

TA

-

- -

oo

DEPTH

CM 1 3 5 7 916 26

36 46 66

DEPTH

CM1 3 5 7 9

16 26364666

DEPTH

CM i 3 5 7 916 2636 46 66

PH

7.07

7.44

7.49

7.43

7.39

7.35

7.42

7.35

7.28

7.26

CL

MMOL/L

-19.0

24.0

36.0

41.0

47.0

58.0

58.0

54.0

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

0.5

0.5

0,5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

ORG C

UMOL/G

- - - - -

- - - - -

EH MV

140 39

-10

-13 -5

-17

-14 -5

-10

-12

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - -

EH SED

MV - - - - - - - - K

MMOL/L

- - - - - - - -

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEO/L

2.1

3.4

10.4

14.3

15.2

15.6

15.0

12.6

11.3

11.7

CA

HHOL/L

- - - - - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.18

0.52

1.08

1.71

1.89

1.63

1.17

1.14

1.37

1.77

MG

MHOL/L

- - - - - - - -

DATA -

-

UT LOSS

t ~ - - - - - - - - -

P04

UHOL/L

436

58 5547

49

70 77

62 52 MN

UMOL/L

19

46

139

273

328

328

255

309

309

200

-

SILICA

UMOL/L

231

405

585

627

657

614

622

693

690

601

FE AA

UMOL/L

6.41

131

269

287

322

128

131

233

287

TOT C

MG/L

130

150

230

270

260

230

280

270

240

250

FE FERRO

UHOL/L

640

162

282

375

317

142

152

244

254

ORG C

MG/L

110

110

130

110 99

110

120

130

110

120

S-2

UHOL/L

- - - - - - .. - -

INORG C

MG/L 17 36

100

160

160

170

160

140

120

130

S-2 ELECT

UMOL/L

- - - - - - - - -

POROSITY

0.78

0.83

0.82

0.82

0.82

0.82

0.73

0.80

0.79

0.79

Page 92: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

8006-J-MP-A

MARYLAND POINT

6-18-80

5.5 METERS

- -

- INTERSTITIAL UATER DATA -

- -

oo

DEPTH

CM I 3 5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

7.20

7.32

7*37

7.44

7.27

7.20

7.25

7.19 -

7.17

CL

MMOL/L

43*7

33.9

31.6 '

30.5

26.8

19.0

33*9

45.1 -

59*2

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - -

S04

HMOL/L

- -

_- - - - - -

ORG C

UMOL/G

- - - - .

-

- - - - -

EH MV

340

330

330

310

130

110 78 74

- 50

NA

MMOL/L

34.2

28.6

27.4

26.2

22.8

18.0

31.1

42.3 -

53.1

TOT N

UMOL/G

- - - - - - - - - -

EH SED

HV 480

360

100 014 -2

-97

-110

-30

-97

KMMOL/L

0.9

0.7

0.7

0.7

0.6

0.6

1.0

1.3

-1.6

- -

-

TOT P

UMOL/6

- - - - - - - - - -

ALK

MEQ/L

2.5

3.3

5.3

6.1

5.2

6.7

12.9

14.3

15.7

CA

MMOL/L

1.4

1-4

1.4

1.7

1.9

1.3

1.4

1.6

-1.7

SEDIMENT

INOR6 P

UMOL/G

- - - - - - - - - _

NH4

MMOL/L

0.14

0.09

0.11

0.23

0.25

0.87

2.01

2.55

-2.89

MGMMOL/L

4.3

3.8

4.1

3.9

3.0

2.4

4.1

5.4

-6.8

DATA -

-

UT LOSS

% - - - - - - - - - _

P04

SUMOL/L U

- - - - - - - - - MM

.UMOL/L

23 54

182

258

220

113

114 87

- 21

-

POROSITY

-' - - - - - - - - -

ILIC

MOL/I

- - - - - - - - -

FE A

UMOL -6 1

11 SB108

204

304 -

333

TOT C

MG/L 34 47 70 85 76 91

170

190

OR6 C

MG/L

- - - - - - - -

INORG

MG/L 25 36 62 71 62 78

160

ISO

200

190

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

Page 93: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

8006-J-MP-8

MARYLAND POINT

6-19-80

5.5 METERS

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

- - -

oo

oo

DEPTH

CM 1 3 5 7 9

-16 26 36 46 66

DEPTH

CM 1 3 5 7 916

26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36 4666

PH

7.39

7.47

7.61

7.54

7.51

7.25

7.32

7.22

7*27

7.25

CLMMOL/L

38.9

38.1

33*9

31.0

29*9

24.7

32.7

41.2

50.2

57.0

TOT C

UHOL/G

- - - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

- - - - - - - - -

ORG C

UMOL/G

- - - - -

- - - - -

EHMV

320

310

290

280

210 92 69

58 52 45

NAMMOL/L

33*5

32.6

28.9

27.6

25.8

20.2

32.3

41.2

46.1

51.3

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV 400

180

120 910

-85

-230

-260

-52

-59 K

MMOL/L

0.8

0.8

0.7

0.7

0.7

0.6

1.0

1.2

1.3

1.5

...

TOT P

UMOL/G

- - - - - - - -

- -

ALK

MEQ/L

2.8

3.8

4.9

5.6

5.9

6.6

13.3

14.6

14.4

15.8

CA

MMOL/L

1.4

1.5

1.5

1.5

1.6

1*7

1.6

1.6

1.6

1.7

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MHOL/L

0.37

0.02

0.09

0.10

0.27

0.39

0.70

2.02

3.09

3*21

MGMMOL/L

4.3

4.4

4.3

4,3

3.9

2.7

4.6

5.4

5.8

6.7

DATA -

-

WT LOSS

X - - - - - - - - - -

P04

SUMOL/L U

- - -.

- . - - - MN

UMOL/L

31100

171

202

246

178

136

108 61 53

-

POROSITY

0.90

0.86

0.83

0.82

0.81

0.81

0.80

0.80

0.82

0*78

ILIC

MOL/I

- - - -. - - - - -

FE A

UMOL -0 0 2 6

127

156

240

258

294

TOT C

MG/L 32 48 71 79 80 93

170

180

180

200

ORG C

MG/L - - - - - - - - - -

INORG C

MG/L 29 41 54 63

69 80160

180

170

180

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UHOL/L

Page 94: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7908-V PC

POTOHAC CREEK

8/2/79

3.4 METERS

- -

- INTERSTITIAL WATER DATA -

- -

00

DEPTH

CM 1 3 5 7 91626 36 46

66

DEPTH

. CM 1 3 5 7 916 26

36 46

66

DEPTH

CM 1 3 5 7 916

.

26 36

46 66

PH

7.16

7.14

7.21

7.45

7.53

7.59

7.43

7.29

7.40

7.52

CL

MMOL/L

7.4

4.2

3.8

4.5

5*4

10.4

20.9

30.5

27.1

28.2

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - -

-

S04

MMOL/L

0.06

- -' - - - - - - *"

ORG C

UHOL/G

- - - - -

- - - - -

EHMV

190 84 77 83 8692 84 88 85

100

NA

MMOL/L

6.5

3.9

3.9

4.5

5.8

11.7

20.3

24.6

25.9

28.1

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV -11

-31

-22

-47

-110

-100

-180

-53

-31

-64 K

MMOL/L

0.8

0.8

0.8

0.8

0..9

1.0

1.2

1.4

1.5

1.6

- -

-

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

3.6

4.2

3.9

5.0

5.0

5.5

6.5

6.7

7.2

7.8

CA

MMOL/L

1.0

1.1

0.8

0.6

0.5

0.4

0.7

0.9

1.0

1.1

SEDIMENT

INORG P

UMOL/G

- - - - - - - - -

NH4

HMOL/L

0.22

0.39

0.39

0.32

0.29

0.29

0.36

0*44

0*48

0.47

MG

MMOL/L

1.0

0.8

0.7

0.9

0.9

1.0

1»9

2.5

2.9

3.0

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SILICA

TOT C

UHOL/L UMOL/L

MG/L

320

250

160

160

120

100

200

200

140

120 MN

UMOL/L

,60

104

73 41 23 17 32 56

69 64

-

POROSITY

0.91

0.88

0.85

0.83

0.77

0.79

0.76

0.77

0.79

0.73

383

700

700

617

500

533

617

650

733

83

FE AA

F£ FERRO

UMOL/L

UMOL/L

483 70 256 2

11 32 35 20

ORG C

INORG C

MG/L

MG/L

- - - -

- - - -

- -

- -

- -

. .

S-2

S-2 ELECT

UMOL/L

UMOL/L

- - -

- - - «

- -

- - -

-

-

Page 95: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7910-JPC

POTOMAC CREEK

11/7/79

3.4 METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916 26 36 4666

DEPTH

CM 1 3 5 7 916 2636

46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

7.12

7.22

7-36

7.46

7.53

7.57

7.57

7.55

7.51

7.62

CL

MMOL/L

0.5

0-8

1.2

1.4

1.9

5.6

14.8

22.6

31.0

32.7

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - - - S04

MMOL/L

- - - - - - - - -

ORG C

UHOL/G

» - - -. - - - - -

EH MV

320

130

210

170

200

230

230

210

15077

NA

MMOL/L

0.6

1.1

1.6

2.0

2.4

6.3

16.4

21.6

25.6

30.1

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV 49

-49

-140

-110

-72

*** «

3

-50

-230

-240

-39

KMMOL/L

0.1

0.1

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.6

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

1.3

1.5

1.9

1.8

1.8

2.3

3.9

4.9

5.3

5*6

CA

MMOL/L

0.6

0.4

0.4

0.3

0.3

0.2

0.5

0.7

0.9

1.0

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.13

0.18

0.26

0.21

0.22

0.23

0.30

0.37

0.37

0*44

MG

MMOL/L

0.3

0.4

0.4

0.4

0.4

0.7

1.6

2.3

2.9

3.6

DATA -

-

UT LOSS

X - - - - - - _- - -

P04

UMOL/L

132 4549 43 57 99

115

106 95

MN

UMOL/L

526 14 108

11 26

48 67 89

-

SILICA

UMOL/L

209

282

400

347

322

372

480

650

710

695

FE AA

UMCL/ 0

23 5 4 2 2 2 938

41

POROSITY

0.91

0.82

0.76

0.82

0.78

0.73

0.77

0,78

0.78

0.77

TOT C

ORG C

INORG C

M6/L

MG/L

HG/L

FE FERRO

S-2

S-2 ELECT

UMOL/L

UNOL/L

UMOL/L

Page 96: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

8006-J-BEL A

BELVEDERE BEACH

6-15-80

2.7 METERS

- -

- INTERSTITIAL WATER DATA -

- -

V£>

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM1 3 5 7 9

16 2f.

36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

6.10

6.80

7.00

7.15

7*27

7.56

7.47

7*58

-

CLMMOL/L

14.4

8.5

8.1

7.8

6.0

7.1

14.4

19.7 -

TOT C

UMOL/6

- - - - - - - - - -

PH SED

- - - - - - - - - S04

MMOL/L

0.89

0.60

0.50

C.45

0.30

0.08

C-02

0.02

-

ORG C

UMOL/G

- - - - -

- - - - -

EHMV

360

220

210

230

320

320

310

290 -

NAMMOL/L

12.4

6.9

6.0

6.3

5.4

8.4

15.1

19.3 -

TOT N

UMOL/6

- - - - - - - - - -

EH SED

MV 130 68

-50

-45 1 213 58 - K

MMOL/L

0.4

0.2

0.3

0.3

0.3

0.3

0.5

0.6 -

...

TOT

PUMOL/G

- - « - - - - - -

ALK

MEQ/L

1.6

1.3

1.4

1.7

1.9

3.1

4.3

4.6 -

CAMMOL/L

1.2

1.0

0.9

0.8

0.5

0.2

0.4

0.5 -

SEDIMENT

INORG P

UHOL/G

- - - - - - - - - -

NH4

MMOL/L

0.08

0.08

0.11

0.12

0.14

0.09

0.21

0*30 -

. MG

MMOL/L

1.6

0*9

1.0

1.0

0.9

0.6

1.1

1.5 - "

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SUHOL/L U

8 810 13 21 47 42 34 - MN

UMOL/L

24 52 51 33 21 10 17 23 -

-

POROSITY

0.89

0*86

0.75

0.77

0.77

0.72

0.65

0*64 - -

SILICA

IOL/L

320

530

565

585

612

635

692

700

632

680

TOT C

HG/L

16

14

17

67

31

61

65

67

ORG C

M6/L

INORG

MG/L

14

10

12

15

18

36

48

52

FE AA

FE FERRO

S-2

S-2 ELECT

UHOL/L

UHOL/L

UMOL/L

UHOL/L

742 20 12

. -

4 3 3 8 -

Page 97: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

8006-J-BEL C

BELVEDERE BEACH

6-17-80

2.7 METERS

N>

- -

- INTERSTITIAL WATER DATA - - -

P04

SILICA

UMOL/L UMOL/L

17

24

21

18

21

37

37

27

DEPTH

CM1 3 5 7 9

16

26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

7.15

7.10

7.10

7.15

7.27

7.46 - - -

CL

MMOL/L

3.0

4.5 -

7.6

7.6

7.1

13*8 - -

TOT C

UMOL/G

- - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

a. 34

0.46

0*53

0.52

0.45

0.00

0.00 - - **

ORG C

UMOL/G

- - - - .

- '

- - - - -

EH MV

340

250

240

250

260

330 - - -

NAMMOL/L

2.7

3.9

5.4

5.6

5.4

7.5

13.8 - - «

TOT N

UMOL/G

- . . - . . - - - -

EH SED

MV72

-12 64 55 40 22 30 22 - - K

MMOL/L

0.2

0.2

0.3

0.3

0.4

0.4

0.5 - -

...

TOT P

UMOL/G

- . . - . . . -

ALK

MEQ/L

2.2

1.5

1.5

1.6

1.7

3.3

4.3

4.3 .

CAMMOL/L

0.6

0.6

0.8

0.9

0.8

0.3

0.4 - -

SEDIMENT

INORG P

UMOL/G

. . . . - . . . - -

NH4

MMOL/L

0.09

0.05

0.05

0.1Q

0.10

0.08

0.09

0.15 -

MGHMOL/L

0.5

0.6

0.8

1.0

1.1

0.7

1.1 - -

DATA -

- -

UT LOSS

X - - . - - - - -

TO

T

CM

fi/L 31 29 15

37 38 46

41 83

OR

6 C

HG

/L - - - - - - -

INO

R6

HG

/L 16 16

14 16 17

33 44 43

C

MNFE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UHOL/L

UMOL/L

UMOL/L

24

31

43

3*?

32

14

21

19

27

21 13

11 4 9

POROSITY

Page 98: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7flO

fl-H

l A

CC

OK

EC

K

CR

EE

K

8/2

9/7

8

1.2

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

DEPTH

CM 1 3 5 7 91626

36

46 66

DEPTH

CM 1 3 5 7 9

16 26 36 46 66

DEPTH

CM 1 3 5 7 9 16 26 3646 66

PH - - - - - - - - -

CL

MMOL/L

-7.0

5.0

5,0

7.0

7.0

15.0

17*0

18,0

20.0

TOT C

UMOL/G

- - - - - - - - - -

PH SED

7.15

7.13

7.05

6.94

6.93

6.89

6.81

6.76

6.68

6.66

" S04

MMOL/L

- - - - - - - - -

OR6 C

UMOL/G

- - - - -

- - - -

- -

EH

MV

- - - - - - - - -

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/6

- - - - - - - - - -

EH SED

MV -4

-22

-64

-140

-160

-200

-110

-55

-21

-37 K

MMOL/L

- - - - - - - - -

- -

.

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

2.7

3.3

3.9

4.5

4.6

5.1

6.1

8.8

9.0

14.6

CA

MMOL/L

- - - - - -. - - -

SEDIMENT

INORG P

UMOL/6

- - - - - - - - - -

NH4

MMOL/L

0.14

0.32

0.38

0.43

0.47

0.52

0.85

1.35

1.56

2.14

MG

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - ' - - -

P04

SILICA

UMOL/L UMOL/L

13

42 57 47 45

48 43 32 32 46 MN

UMOL/L

22 40 45 36

31 31 53 85

71 53

-

POROSITY

- - - - - - - - - -

357

790

640

940

900

473

913

950

970

1000

FE AA

UMOL/L

41133

136

107 86

163

322

591

501

663

TOT C

MG/L

120

160

140

163

210

130

180

150

200

230

FE FERRO

UMOL/L

- - - - - - - - -

ORG C

MG/L 90

120

100

110

170 79

120 64

100

130

S-2

UMOL/L

- - - - - - -. - -

INORG C

MG/L 2fl

33 43 47 48 56 65 84 92 100

S-2

ELECT

UMOL/L

- - - - ~ - «

Page 99: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V1B BRENT PT

. 5-22-7R

11.0

METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM1 3 5 7 9

16 26 36

46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

7.28

7.52

7.52

7.23

7.27

7.29

7.30

7.25

7.23

7.02

CLMMOL/L

-17.0

21.0

24.0

28.0

31.0

36.0

34.0

38.0

38.0

TOT

CUMQL/6

- - . - - - - - - .

PH SED

- - - - - - - - - S04

MMOL/L

- - - - - - - - -

ORG C

UMOL/G

- - . - - - - - . .

EH MV

370 70 55 65 55

-54

-21 28 35 43

NAMMOL/L

- - - - - - - - -

TOT N

UMOL/G

- . . - - - . . - .

EH SEO

MV. - . . - - - - - K

MMOL/L

- . - - - - - -

...

TOT P

UMOL/G

- - . - - - . . . .

ALK

MEQ/L

5.2

8.5

7.3

9.3

11.4

12.9

14.2

15.2

14.2

12.7

CAMMOL/L

- - .'

- - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - -

NH4

MMOL/L

0.14

0.36

0.65

1.12

1.62

2.57

2.71

2.70

2.64

2*99

HGMMOL/L

- - . - - - - - -

DATA -

-

UT LOSS

X - - ~ - - - - - .

P04

UMOL/L

131 58 46 39 33 40 44 42 38 MN

UMOL/L

47200

117

112

182

273

200 94 33 19

-

SILICA

UMOL/L

256

403

524

639

644

683

626

601

590

562

FE AA

UMOL/L

069

147

251

448

788.

627

591

627

806

TOT

CMG/L

130

180

170

180

180

210

190

200

170

140

FE FERRO

UMOL/L

165

134

218

396

648

503

371

533

497

ORG C

MG/L 67 82 92 91 74 80 58 65

58 49

S-2

UMOL/L

- - - - - - .

INORG C

MG/L 66 95 80 94

110

130

140

130

110 86

S-2 ELECT

UMOL/L

- - . - . . - . .

POROSITY

0.90

0.83

0.81

0.83

0.83

0.82

0.75

0.76

0.65

0.74

Page 100: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

05

-V1

9

BR

EN

T P

T.

5-2

2-7

3

11

.0

ME

TE

RS

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

DEPTH

CM 1 3 5 7 916 26 36 4666

DEPTH

CM 1 3 5 7 916 2636 46

66

DEPTH

CM 1 3 5 7 916 26

3646 66

PH

7.36

7,39

7.55

7.60

7.64

7.45

7.07

7.28

7.29

7.36

CL

MMOL/L

- - -18.0

18.0

27.0

31.0

32.0

33.0

36.0

TOT C

UMOL/G

- - - -.

- - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

- - - - - - - - -

ORG C

UMOL/G

- - - -

- - - - - -

EHMV

210

150

170

150

180 85

75 40 33 49

NA

MMOL/L

- - - - - - - - - "

TOT N

UHOL/G

- - - - - - - - - -

EH SEO

MV«. «. - -

.- - - - K

MMOL/L

- - - - - '

- - -

...

TOT P

UMOL/G

- - - - - - - -

ALK

MEO/L

2.5

2.7

2.9

3.3

3.9

4.9

7.9

8.4

9.2

10.0

CA

MMOL/L

- - - - -

- - -

SEDIMENT

INCRS P

UMOL/G

- - - - - -

- - -

NH4

MMOL/L

0.09

0.10

0.12

0.17

C.22

0.46

0.78

0.86

0*87

0.85

MG

MMOL/L

- - « - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

UHOL/L

450 59 54 69 63 61 44 49 50 MN

UMOL/L

43

27 17 13 16

70172

182

200

237

-

SILICA

UMOL/L

256

400

442

434

466

618

655

633

624

879

FE

A A

UMOL/L

322 8 4 537

233

304

287

197

TOT C

MG/L

120

120

110

100

100

130

140

160

370

220

FE FERRO

UMOL/L

324 188 9

41231

278

261

357

ORG

CMG/L

100 99 79 71 63

73

51 62

260

110

S-2

UMOL/L

- « - - - - - -

INORG C

MG/L 20 23

27 32 39 61 86

100

110

110

S-2 ELECT

UMOL/L

- - - «. - - - .

POROSITY

0.80

0.85

0.85

0.83

0.82

0.80

0.80

0.79

0.76

0.82

Page 101: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7910-JQCA

QUANTICO, NEAR BUOY 37

11/8/79

6.1 METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916 26 36 46

66

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 9 16 26

36 4666

PH

7.23

7.16

7.33

7.36

. 7.57

7.35

7.38

7.36

7.29

7.33

CL

MMOL/L

- - - - - - - - -

TOT C

UMOL/G

- - - - - - - - -

PH SEO

- - - - - - - - -

S04

MMOL/L

- - - - - - - - - "

ORG C

UMOL/G

- - - - - .

- - - - -

EH

MV

140 57

70 69 67

66 60 6959

52

NA

MMOL/L

- - - "- - -

-

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV 41-48

-85

-120

-260

-260

-250

-230

-250

-230 K

MMOL/L

- - - - - - - - - "

. -

-

TOT P

UMOL/G

- - - - - - - - -

ALK

MEQ/L

1.8

2.4

3.0

3.9

3.7

5.4

6.7

7.6

a. 6

10.0

CA

MMOL/L

- -.

- - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.24

0.33

0.40

0.56

0.55

.0.74

0.94

1.17

1.15

1.32

MG

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - -'

- - - -

P04

SUMOL/L U

663 70 71 48 57 77 64

4545

MM

UMOL/L

- - - - - - - -

-

POROSITY

- - - - - - - - -

TOT C

MG/L

ORG C

MG/L

INORG C

HG/L

SILICA

10L/L

267

490

562

617

532 '

627

665

667

585

627

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

UMOL/L

Page 102: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7910-JQCB

QUANTICOt NEAR BUCY 37

11/8/79

6.1

REFERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CH 1 3 5 7 9

If.

26

36

4 6

66

DEPTH

' CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

7.23

7.16

7.33

7.36

7.57

7.35

7.38

7.36

7.29

7.33

CLMMOL/L

- - - - - - - - -

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - - - S04

HMOL/L

- - - - - - - - -

ORG C

UMOL/G

- - - - - - - - - -

EH n\i140 57 70 69 67 66 60 69 59 52

NAMMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - « - -

EH SED

H\l 41

-48

-85

-120

-260

-260

-250

-230

-250

-230 K

MMOL/L

- - - - m - - - - "

...

TOT P

UMOL/G

- - - - - .

- - - - -

ALK

MEQ/L

1.9

2.7

3.3

4.3

4.2

6.3

7.2

8.3

9.5

10.6

CA

MMOL/L

- - - - - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.17

0.28

0.38

0.51

0.55

0.71

0.96

1.04

1.12

1*30 MG

MMOL/L

- - - - - - - -

DATA -

- -

UT LOSS

X - - - - - - - - - .

ORG C

INORG C

MG/L

MG/L

MN

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L 'UHCL/L

UMOL/L

UMOL/L

UMOL/L

POROSITY

Page 103: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7910-JQCC

QUANTICO» NEAR BUCY 37

11/8/79

6.1 HETERS

00

- -

- INTERSTITIAL WATER DATA -

- -

P04

SILICA

UHOL/L UMOL/L

DEPTH

CM 1 3 5 7 9

16 26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

7.23

7.16

7.33

7.36

7.57

7.35

7.38

7.36

7.29

7.33

CL

HMOL/L

- - - - - - - - -

TOT C

UMOL/6

- - - - - - - - - -

PH SED

- - - - - - - - "

S04

MMOL/L

- - - - - - - - - *

ORG C

UMOL/6

- - - - .

-

- - - -

EH

MV

140 57

70 69 67 66

60 6959

52

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SED

Mtf 41

-48

-85

-120

-260

-260

-250

-230

-250

-230 K

MMOL/L

- - - - - - - -

...

TOT P

UMOL/G

- - - - - - - -

ALK

MEQ/L

2.1

2.8

3.0

4.1

4.2

5.8

7.4

8.5

9.8

11.1

CA

MMOL/L

- - -.

-.

- - -

SEDIMENT

INORG P

UMOL/G

- - - - - - -

NH4

MMOL/L

0.17

0.27

0.39

0.53

0.50

0.68

0.90

1.04

1.12 .

1.32

MG

MHOL/L

- - - - - - - - -

DATA -

- -

UT LOSS

X - - - - -'

- - -

TOT C

MG/L

ORG C

H6/L

INORG C

MG/L

12 79 76 70 55 6893

80 72 54

320

530

565

585

612

635

692

700

632

680

MN

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UHOL/L

UMOL/L

UMOL/L

UMOL/L

POROSITY

Page 104: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

79J8-V

Q

QU

AN

TIC

O

8/4

/79

4.9

M

ET

ER

S

- -

-

INT

ER

ST

ITIA

L

WA

TER

D

AT

A -

- -

DEPTH

CM 1 3 5 7 916 26

36 46

66

DEPTH

CM1 3 5 7 <»

16 26

36 46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

6.97

7.12

7.14

7.14

7.15

7.27

7.29

7.22

7.22

7.32

CL

MMOL/L

0.6

0.8

1.0

1.2

1.4

3.0

6.5

9.3

10.6

10.2

TOT C

UMOL/S

2490

2480

2470

2460

2360

1980

1680

1420

1370

1680

PH SED

- - - - - - - -

' S04

MMOL/L

1.60

0.20 - - - - - - -

ORG C

UMOL/G

-

- - - -

- - - - -

EH MV

270 68 51 43

55

535446 46 47

NA

MMOL/L

0.7

0.8

1.0

1.3

1.7

3.6

7.3

9.8

10.7

11.2

TOT N

UMOL/G

280

250

240

240

220

190

160

120

13090

EH SED

MV -37

-40

-44

-32

-29

-240

-230

-210

-77

-19

KMMOL/L

0.2

0.2

0.2

0.2

0.3

0.3

0.4

0.5

0.5

0.6

- -

-

TOT P

UMOL/G

40 39

40 40 42 3622

20 22 8

ALK

MEQ/L

3.7

6.8

7.0

7.0

6.7

6.1

7.2

7.4

8.1

7.4

CA

MHOL/L

1.2

1.6

1.7

1.6

1.4

0.9

0.8

0.8

0.8

0.7

SEDIMENT

INORG P

UMOL/G

29 29 31 32 35 29 17

14 16 5

NH4

MMOL/L

0.13

0.46

0.62

0.73

C.59

0.64

0.71

0.78

0.78 .

0.72

MG

MMOL/L

0.5

0.7

0.7

0.7

0.7

0.9

1*3

1.6

1.7

1.6

DATA -

-

UT LOSS

%10.6

10.5

10.5

10.2

10.3

9.8

8.9

8.3

8.4

9.3

P04

SILICA

TOT C

UMOL/L UMOL/L

MG/L

14 77

56

91 42

49 84 84 70 70 MN

UMOL/L

6130

147

136

118

70 7689

97

103

-

POROSITY

0.87

0.85

0.84

0.81

0.82

0.71

0.73

C.72

0.72

0.74

158

550

700

767

750

717

7EO

700

717

767

FE AA

FE FERRO

UMOL/L

UMOL/L

099

155

150

121 61 67

108

155 71

ORG C

INORG C

MG/L

MG/L

-- . -

--

- - -

~

S-2

S-2 ELECT

UMOL/L

UMOL/L

- --

-

- - -

« -

.

Page 105: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7910-JOAA

QUANTTCO

10/30/79

o

o

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916

2636 46

66

DEPTH

CM 1 3 5 7 916 26 36

PH - . - - - . . - -

CL

MMOL/L

- - - - - - - -

PH SED

. - - - - . - .

S04

MHOL/L

- - - - - - - -

EH

MV . . - . . . . - -

NAMMOL/L

- - - - - - - -

EH SED

MV. . . . . . . « . - K

MMOL/L

- - - - - - - -

ALK

MEQ/L

-3.4

3.7

4.5

4.2

5.0

5.7

-5.4

5.1

CA

MHOL/L

- - - -.

- - -

NH4

MMOL/L

0.70

0.14

0.52

0.46

G.84

0.52

0.41 -

0*76

0.45

MG

MMOL/L

- - - - - - - -

P04

UHOL/L

12 47

81 69

61 95 75

- 2929 MN

UMOL/L

- - - - - - - -

SILICA

UMOL/L

- - - - - - - - -

FE AA

UMOL/L

- - - - - - - -

TOT C

HG/L - . - - - - - -

-

FE FERRO

UMOL/L

- - - - - - -

-

ORG C

MG/L - - - - - - - - -

S-2

UMOL/L

- - - - - - -.

-

INORG C

HG/L

- - - - - . - - .

S-2 ELECT

UMOL/L

. - . - - -

66

- -

- SEDIMENT DATA -

- -

DEPTH

CM 1 3 5 7 9

16

26

36

46

66

TOT C

ORG C

TOT N

TOT P

INORG P

UT LOSS

UMOL/G

UMOL/G

UMOL/G

UMOL/G

UMOL/G

XPOROSITY

Page 106: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7910-JOAB

QUANTICO

10/30/79

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 "5 7 916 26 36 46 66

DEPTH

CM 1 3 5 7

16 26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH - - - -

,- . -' - *

CL

MMOL/L

- . . - . - - - *

TOT C

UMOL/G

- . - - . - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

- - - - . - - -

ORG C

UMOL/G

- - - - -

- - - -

EH MV

- - - - - - - - - *

NA

MMOL/L

- - - - . - - - **

TOT N

UMOL/G

- - - - - - - . - .

EH SED

MV . - - . - - - - - K

MMOL/L

- . . - . - - -

...

TOT P

UMOL/G

- - - . - - - - - .

ALK

MEQ/L

-3.4

4.0

4.7

5.0

5.4

5.9 -

5.7

5.2

CA

MMOL/L

- -.

- . - - -

SEDIMENT

INORG P

UMOL/G

- - - - . - . - .

NH4

MMOL/L

0.41

0.44

0.51

0.42

0.60

.0.54 -

0.37

.0*41

MG

MMOL/L

- - . - . - - -

DATA -

-

WT LOSS

% - - . . . - . - . .

P04

SILICA

TOT C

ORG C

INORG C

UMOL/L UMOL/L

MG/L

MG/L

MG/L

21 78

149

-75

....

84

9677.....

50 41

-

MN

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

UMOL/L

UMOL/L

.....

.....

.....

. .

. _

. .

.....

.....

.....

.....

.....

-

POROSITY

- - - . . -, . . - .

Page 107: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7910-JOAC

OUANTICO

10/30/79

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 9

16

26

36

46

66

PH

PH SFD

EH

HV

- - . - - - - . -

EH SED

MV . . - . - - - . -

ALK

MEQ/L

2.5 -

3.9 -

4.9

5.4 - . -

NH4

MMOL/L

C.26 -

0.45

0.51

0.46

0.68

0.50

0.41 -

P04

UHOL/L

31 31 - 67

88

9676

48 39

SILICA

UMOL/L

- - - - - - - -

TOT C

HG/L - - - - - - -

\ ** -

ORG C

HG/L - - - - - - -

INORG C

HG/L

. - - - - - . -

o

ro

DEPTH

CL

S04

NA

K CA

MG

CM

MHOL/L

MHOL/L

HMOL/L

MMOL/L

MMOL/L

MMOL/L

1 ------

3 -...-.

5 ......

MN

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UHOL/L

UMOL/L

UMOL/L

7 916

28

36

46 66

DEPTH

CM 1 3 5 7 9 16 26 36

46 66

...

TOT C

ORG C

TOT N

UMOL/G

UMOL/G

UMOL/G

- - -

-...

- -

.-

-

....

--

- -

-

--

-

- -

- SEDIMENT

TOT P

INORG P

UMOL/G

UMOL/G

- --

- - - - .

- . -

- - -

.

DATA -

- -

UT LOSS

X - - - - - - - - - -

POROSITY

Page 108: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7910-J

QB

Q

UA

NT

ICO

1

0/3

1/7

9

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

o

u>

DEPTH

CM 1 3 5 7 916 26 3646 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM 1 3 5 7 91626 36 46 66

PH

7.28

7.32

7.37

7.35

7.39

7.35

7.39

7.44

7.48

6.79

CLMMOL/L

0-7

1*5

2.1

2.8

3.4

3.5

5.6

8.5

9.4

9*9

TOT C

UMOL/G

- - . - - - - - - -

PH SE

D

- - - - - - - - -

S04

MMOL/L

- - - - - - - - -

OR6 C

UMOL/G

- - - - .

-'

- - - -

EH

MV

230 54 65 72 64 79

90 87

130

230

NA

MMOL/L

0.7

1.8

2.5

3.3

3.8

5.8

8.2

9.8

10.8

11*3

TOT N

UHOL/G

- - - - - - - - - -

EH SED

MV -35

-100

-120

-79

-170

-190

-160 -6 86

140 K

MMOL/L

0.1

0.1

0.2

0.2

0.2

0.3

0.3

0.4

0*6

2.0

...

TOT P

UMCL/6

- - . - - - - -

ALK

MEQ/L

3.1

5.4

5.9

6.3

6.3

6.5

6.7

6.7

5.9

5.2

CA

MMOL/L

1.2

1.5

1.5

1.4

1.5

1.2

1.0

0.9

0.8

0*7

SEDIMENT

INORG P

UMOL/G

- - - - - - - - -

NH4

MMOL/L

0.24

0*64

0*83

0.57

0.66

0.65

0*60

0.54

0.50 .

0*34

KGMMOL/L

0.7

0.8

0.9

1.1

1*1

1.3

1.6

1.8

1.8

1*6

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

UHOL/L

160 51 42 50 56 56 52 25

42 MN

UMOL/L

24

129

121

102

96

87 76 71 63 59

-

SILICA

TOT C

ORG C

INORG C

UMOL/L

MG/L

MG/L

MG/L

....

....

...

- -

- .

. .

. .

....

....

- -

- .

.

. .

. .

.

.

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

UHOL/L

1 ...

162 ...

134 ...

105 ...

105 ...

113 ...

75

. -

.75 31

.

-13

POROSITY

- - - - - - - - -

Page 109: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

P5

-V2

0

N*

OF

OU

AN

TIC

O

5-2

4-7

8

8.8

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

U

AT

ER

D

AT

A -

- -

DEPTH

CM1 3 5 7 9

16 26 36 46

66

DEPTH

CM1 3 <j 7 9

lb 26 36 46 66

DEPTH

CM 1 3 5 7 916

26

36 46 66

PH

6* 7

77.32

7.22

7.19

7.13

7.01

7.C6

7.08

7.C7

7.12

CLMMOL/L

- - -18

.020.0

22.0

21.0

25.0

23.0

TOT C

UMOL/G

2520 - -

2440 - -

1840 - -

1270

PH SEO

- - - - - - - - -

S04

MMOL/L

- - - - - - 0.3

- C.3

~

ORG

CUMOL/G

2470

2370

2400

2380

22^0

2170

1800

1310

1370

1240

EH

MV

420

160

160 90 58 52 37 31 29 17

NAHMOL/L

0.9

1.6

2.3

4.4

7.4

9.9

9.1

in. 4

12.2

16.3

TOT N

UMOL/G

230

190

240

230

200

170

160 72 70 98

EH SEO

MV - - - - - - - - KMMOL/L

0.1

0.1

0.2

0.2

0.3

0.4

0.4

0.5

0.5

0.6

...

TOT P

UMOL/G

41 38 - 42 50 47 16 - 15 12

ALK

MEQ/L

2.6

3.8

4.0

5.5

7.6

10.1

11.3

10.8

12.0

12.5

CAMMOL/L

0.7

0.7

0.6

0.9

1.4

2.3 -

1.8 -

1.4

SEDIMENT

INORG P

UMOL/G

30 32 37 41 46 52 11 11 12 11

NH4

MMOL/L

0.12

0.30

0.46

0.79

1.32

2.37

2.47

2.20

2.10

2.13

MGHMOL/L

0.3

0.5

0.5

0.7

0.9

1.6

2.2

2.1

2.5

2.5

DATA -

-

UT LOSS

%11.1

10.4

10.4

10.5

10.3

10.2

7.8

7.0

8.5

7.8

P04

UHOL/L

534 42 40 41 29 33 18 32 34 MN

UMOL/L

25 61 45 75 125

182

120 51 43 30

-

SILICA

UHOL/L

234

376

433

507

592

660

565

548

594

639

FE AA

UHOL/L

447 69

161

340

645

681

519

663

627

TOT

CMG/L 8817

013

015

018

0210

210

260

230

270

FE FERRO

UMOL/L

442 60

143

285

551

603

447

596

544

ORG C

HG/L 59

133 94 91

100 98

89

140

100

140

S-2

UHOL/L

- - - - - - - - *

INORG C

MG/L 29 37 40 54 76

110

120

120

130

130

S-2 ELECT

UMOL/L

- - . ~ . . - . *

POROSITY

0.86

0.85

0.84

0.84

0.82

0.77

0.71

0.74

0.77

0.5*

Page 110: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V2PA N.

OF QUANTICO

9/5/78

7.6 METERS DEPTH

115 METERS SOUTH

- -

- INTERSTITIAL WATER DATA -

- -

o Ul

DEPTH

CM 1 3 5 7 91626 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46

66

DEPTH

CM 1 3 5 7 916 26 36 46

66

PH

7.12

7.12

7.07 -

7.03

6.98

6.96

6.95

6.91

6.91

CL

MMOL/L

0.3

1.2

1.6

3.0

4.2

11.8

8.0

9.2

10.6

13.8

TOT C

UMOL/G

2520

2480

2370

2350

2270

2113

1570

1610

2770

1470

PH SED

- - - - - - - - - ~

S04

MMOL/L

- - - - - - - - -

ORG C

UMOL/G

2450

2410

2330

22RQ

2260

-2090

1530

1570

1730

1450

EH

MV350 22 48 52

41 4743 40 41 42

NA

MMOL/L

0.7

1-5

2.4

3.4

4.6

6,5

7.2

8.9

10.9

13.2

TOT N

UMOL/6

- - - - - - - - - -

EH SED

MV - - - - - - - - - " KMMOL/L

0.2

0.2

0*2

0.3

0.3

0*3

0.4

0.4

C.4

0.4

...

TOT P

UMOL/G

40 40 47 50 52 53 23 18 18 18

ALK

MEQ/L

6.9

11.7

10.9

11.5

11.2

13.1

12*7

11.9

10.6

9.7

CA

MMOL/L

2.1

2.8

2.5

2.3

2.2

2.6

2.4

1.8

1.6

1*5

SEDIMENT

INORG P

UMOL/G

31 3239 44 48 50 15 12 12 13

NH4

MMOL/L

0.55

1.74

2.01

2.10

2.68

3.00

2.97

2.80

2.76

2.98

MG

MMOL/L

1.0

1.3

1.4

1.3

1.2

1*6

1.9

1.9

1.7

1.9

DATA -

-

. UT LOSS

X10*1

10.1

10.0

10.0

9.8

9,6

7.8

7.8

7.7

8*0

P04

SUMOL/L

Ul10 51 51 443524

32 36

31 31 MN

I

UMOL

/L'

62

291

237 -

200

200 93 45

31 20

-

POROSITY

0.89

0.86

0.83

0.82

0.81

0.79

0.74

0.71

0.64

0.71

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

UMOL/L

20

448

-501

- .

.

591

-698

- -

-698

-716

-698

-752

. -

Page 111: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

09

-V2

0R

N

. O

F O

UA

NT

ICO

9/6

/78

8.5

M

ET

ER

S

DE

PT

H

12

0

ME

TE

RS

E

AS

T

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

- -

-

DEPTH

CM 1 3 5 7 91626 36 46 66

DEPTH

CM

-

" 1

ON

3 5 7 916 26 36

46 66

DEPTH

CM 1 3 5 7 916 2636

46 66

PH

7.21

7.17

7.17

7.14

7.00

7.02

7.02

7.02

6*96

6.93

CL

MHOL/L

- -5.0

6,0

6.0

8.0

10.0

12.0

14.0

16.0

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - -.

S04

MMOL/L

_ - - - - - - - - "

ORG C

UMOL/G

- - - - .

- '

- - - - -

EH

MV

290 41 10 35 49 57 38 56 4R 58

NAMMOL/L

« - - - - - - - -

TOT N

UMOL

/G - - - - - - - - - -

EH SED

MV - - - - - - - - - K

MMOL/L

« - - - - -,

- -

- -

-

TOT P

UMOL/G

- - - - - - - - -

ALK

MEQ/L

fl.5

14.2

15.6

14.7

12.8

12.5

13.3

12*1

11.5

11*1

CA

MMOL/L

. - - - - - '- - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

HMOL/L

0.43

1. 74

2.24

2.53

2.35

2.78

3.06

2*73

2.63

2.71 MG

MHOL/L

.. - - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SILICA

UMOL/L UMOL/L

12 63 51 45 38 32 32 30 31 34 MN

UMOL/L

84

346

382

364

255

200

138 60 31 25

-

POROSITY

0.89

0.86

0.85

0.82

0.82

0.79

0.74

0.69

0.69

0.73

440

741

815

797

750

784

741

641

655

693

FE AA

UMOL/L

34

448

519

573

591

663

681

609

663

842

TOT C

MG/L

170

240

280

490

220

250

260

250

280

250

FE FERRO

UMOL/L

. - - - - - - - -

ORG C

MG/L

120

110

140

360

120

150

140

160

190

.170

S-2

UMOL/L

. - - - - - - -

INORG C

MG/L 58

130

1*0

130

100 97

120 94 87 83

S-2

ELECT

UMOL/L

. - - - - - - '

- ~

Page 112: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

C9

-V2

0C

N

- O

F G

UA

NT

ICO

9

/6/7

8

8.5

M

ET

ER

S

DE

PT

H

H5

M

ET

ER

S

NO

RT

H

- - -

INTERSTITIAL WATER DATA - -

-

DEPTH

CM 1 3 5 7 916 2t>

3646 66

DEPTH

CM I 3 5 7 916 26

36 4666

DEPTH

CM 1 3 5 7 916

26

364666

PH

7.16

7.09

7.09

7.10

7.03

7.02

7.00

6.96

7.05

6.98

CL

MMOL/L

0.6

2.2

2-6

3.6

4.fl

7*9

8.6

8.5

10.2

12.7

TOT C

UMOL/G

- - - - - - - - -

PH SED

- - - - - - - - - S04

MMOL/L

0.3

0.3

0.5

0.7

0.3

0.3

0.3

0.3

0.3

0.3

ORG C

UMOL/G

- - - - -

'.

- - - -

FH MU

420 8ft

69

49

56 55

60 62 4955

NA

MMOL/L

0.9

1.9

3.3

4.7

6.0

7.7

8.1

9.4

10.6

13.1

TOT N

UMOL/G

- - - - - - - - - -

EH SEO

MV - - - - - - - K

MMOL/L

0.2

0.3

0.3

0.4

0.4

0.3

0.4

0.4

0.4

0.5

- -

-

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

9.0

13.3

13.6

14.0

12.1

10.6

10.0

10.3

9.7

10.8

CA

MMOL/L

2.6

2.5

2.4

2.1

2.2

2.0

1.7

1.5

1.4

1.4

SEDIMENT

INORG P

UMOL/G

- - -

- - - - - -

NH4

MMOL/L

0.53

1.83

2.07

2.30

2.07

2.27

2.55

2.73

3.00

3.42

MGMMOL/L

1.1

1.5

1.7

1.8

1.6

1.7

1.8

1.7

1.5

1.9

DATA -

-

UT LOSS

X - - - -.

- - - - -

P04

SUMOL/L Ul

15

56

52 51 44 35 29

25

34 35 MN

UHOL/L

91

309

309

255

218

14975 4227

20

-

POROSITY

0.89

0.84

0.83

0.82

0.80

0.80

0.77

0.73

0.64

0.74

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

UMOL/L

14

448

-484

-537

-555

-484

-5l9

537

-501

-609 ...

Page 113: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78Q9-V20D N. OF QUANTICO 9/6/78

8.5 METERS DEPTH

230 METERS WEST

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916

26 36 46

66

DEPTH

CM 1

o

3 5 7 9 16 26 36

46 66

DEPTH

CM 1 3 5 7 916

26 36 46 66

PH

7. 07

7.22

7.15

7.17

7.12

7.03

7.02

7«03

7.03

7.03

CL

MMOL/L

-8.0

10.0

14.0

10.0

14.0

14.0

12.0

12.0

21.0

TOT C

UMOL/G

- - - - - - - - -

PH SED

7.15

7.10

7,08

7.10

7,01

6.94

6.89

6.89

6.93

6.88

S04

MMOL/L

- ~ -.

- - - - - -

ORG C

UMOL/G

- - - - -

- - - - -

EH MV

200 65

55 51 4a 5255 55 48

45

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV9

-5

-7 -5

« -m

-36

13 3

-15 K

MMOL/L

. . - - - - - -

...

TOT P

UMOL/6

- - - - - - - - -

ALK

MEQ/L

8.6

13.4

13.9

14.8

14.0

11.9

10.3

9.7

10.5

11.7

CA

MMOL/L

- - - - - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.85

1.89

1.96

2.21

2.25

2.45

2.82

3.30

3.60

4.07

M6

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

. X - - - - - - - - - -

P04

SILICA

UMOL/L UMOL/L

28 36

48 44

41 2822 21 25 33 HM

UMOL/L

157

'309

273

255

218

182

109 56

38 25

-

POROSITY

0.87

0.84

0.82

0.80

0.82

0.80

0.77

0.79

0.75

0.73

5C7

859

879

865

853

819

800

812

805

763

FE AA

UMOL/L

109

322

394

430

430

484

537

466

555

573

TOT C

MG/L

230

280

260

310

240

250

210

210

190

200

FE FERRO

UMOL/L

- - - - - - - - -

ORG C

MG/L

170

170

150

200

140

150

140

150

120

120

S-2

UMOL/L

- . - - - - - - -

INORG C

MG/L 58

110

120

120

110 97 66 66 78 80

S-2 ELECT

UMOL/L

- - - - - - -

Page 114: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

05

-V2

1

N.

OF

QU

AN

TIC

O

5-2

4-7

8

7.0

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

DEPTH

CM 1 3 c 7 916 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM 1 3 5 7 9

16 26 36 46 66

PH

7.13

7.36

7.40

7.30

7.44

7.17

7«13

7.11

7.14

7.12

CLHHOL/L

- - « 18.0 - - - «

27.0

TOT C

UHOL/G

- - - - » - - - - -

PH SED

- - - - - - - - -

S04

HMOL/L

- - - - - - - - -

ORG C

UHOL/G

- - - -

- - - - - '

EH MV350 85 61 82 74 58 33 13 16 15

NAHHOL/L

- - - - - - - - -

TOT N

UHOL/G

- - - - - - - - -

EH SED

MV - - - - - - - - - KMMOL/L

- - - - - - - - *

...

TOT

PUHOL/G

- - . - . - . . - -

ALK

HEQ/L

2.4

3.3

3.9

4.n

3.7

5.6

8.3

9.8

11.3

12.3

CAHHOL/L

- - - - - - - -

SEDIMENT

INORG P

UHOL/G

- - - - - - . . - -

NH4

MMOL/L

0.09

0.20

0.18

0.28

0.41

1.04

1.72

1.89

2.02

1.87

HGHHOL/L

- - - - - - . - -

DATA -

-

UT LOSS

X « . - - - - - -

P04

UHOL/L

649 52 34 32 37 35 31 35 28 MN

UHOL/L

45 92 59 27 26 41 51 55 76140

-

SILICA

UMOL/L

260

399

405

414

451

600

562

596

623

720

FE AA

UHOL/L

567 80 82 95

251

484

537

537

466

TOT C

HG/L 72

150

130

150

160

140

190

220

220

260

FE FERRO

UMOL/L

660 75 71 86

194

399

499

507

462

ORG C

HG/L 44

110 91

110

110 83

100

120 99

130

S-2

UMOL/L

- - . - - - - .

INORG C

MG/L 28 39 37 40 43 59 85

100

120

130

S-2 ELECT

UHOL/L

- - . - . -

POROSITY

0.81

0.77

0.82

0.81

0.80

0.77

0.76

0.75

0*75

0.78

Page 115: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78G5-V22 INDIAN HEAD

5-25-78

12.8 METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 91626

36 46

66

DEPTH

.CM 1 3 5 7 9

16

26 3fi

46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

7.21

7.20

7.21

7.28

7.32

7.15

7.13

7.13

7.07

CLMMOL/L

- - - -15.0 - -

15.0 -

TOT C

UMOL/6

- - - - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

- -.

- - - - - - -

ORG C

UMOL/G

- - - - -

- - - - -

EH MV110 42 24 135

28 14 11 24

NAMMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV- - - - -

- - - ~ K

MMOL/L

- - - - - - - - -

- -

-

TOT

PUMOL/G

- - - - *"

- - - - -

ALK

MEQ/L

9.1

18.7

24.9

25.9

25.4

21.1

21.3

21.7

17.7

15.3

CAMMOL/L

-

^- - - - - - -

SEDIMENT

INORG P

UMOL/6

- - - - - - - - '

- -

NH4

MMOL/L

0.80

1.79

2.57

2.63

2*60

2.94

4.60

4.71

4.13

3.17

MRMMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SUMOL/L U

12 27 26 29 21 16 14 17 6

18 MNUMOL/L

218

546

619

528

473

364

309

273 59 17

-

POROSITY

0.86

0.85

0.84

0.83

0.82

0.79

0.78

0.75

0.62

0.61

ILIC

,MOL/I

419

582

627

643

605

633

726

641

571

556

FE

A,UMOL

168

716

895

824

770

716

1020

1130 842

842

:E FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

174

706

806

791

645

625

932

1090

762

721

Page 116: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V23 INDIAN HEAD

5-25-78

4.0 METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916 26 36 46

66

DEPTH

CM 1 3 5 7 916

26 36 46 66

DEPTH

CM 1 3 5 7 9

16

26

36 46 66

PH

6.94

7.27

7*27

7.25

7.24

7.29

7.15

7.12

7.17

7.16

CL

MMOL/L

- _ - -12.0 - - -

14.0

TOT C

UMOL/G

- - - - - - - - -

PH SEO

- - - - - - - - -

S04

MMOL/L

- - - - - - - - - "

OR6 C

UHOL/G

- - - - '

- - - - -

EH MV

3flO 70 59 60 53 36 43

41 34 34

NA

MMOL/L

- - - - - - - » -

TOT N

UMOL/G

- - - - - - - - - -

EH SE

OMV - - - - - - - - - K

MMOL/L

- - - - - -. - - -

...

TOT P

UMOL/G

- - -_ - - - - - - -

ALK

MEO/L

3.5

5.0

4.3

4.3

4.1

4.3

4.3

4.3

4.5

4.5

CA

MMOL/L

- - - -'

- - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.11

0.41

0.48

0.55

0.59

0.68

0.73

0.76

0.70

0.74

MG

MMOL/L

- - - - . - - - -

DATA -

-

UT LOSS

X - - - . - - . - - -

P04

UMOL/L

142 44

42362822

21 24

21 HN

UMOL/L

19

150 73 66

61 87

127

125

112 81

-

SILICA

UMOL/L

329

470

550

621

618

627

605

572

614

591

FE AA

UMOL/L

0233

152

165

163

287

466

466

430

340

TOT C

MG/L

110

140

150

140

140

140

140

150

140

160

FE FERRO

UMOL/L

6199

155

159

159

255

436

418

414

318

ORG C

MS/L 738395

89

97 89

99

100 98

100

S-2

UMOL/L

- - - - - - -

INORG C

MG/L 37 59 50 49 47 51 42 45 42 56

S-2 ELECT

UMOL/L

- . . - - - - -. .

POROSITY

0.87

0.85

0.84

0.83

0.83

0.73

0.72

0.67

0.66

0.67

Page 117: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

8006-J-TH-A

INDIAN HEAD

6-10-80

3.2 METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CH 1 3 5 7 916 26 36

46

66

DEPTH

CM 1 3 fj 7 9

1626 36 46

66

DEPTH

CM 1 3 5 7 916 26 36

4666

PH

6,91

6.90

6.90

6.86

, 6.85

6.97

6.97

6.98

7.03

6.98

CL

MMOL/L

0.7

0.8

0.6

0.8

1.0

0.9

1.4

1.9

2.3

3.2

. TOT C

UMOL/G

- - - - - - - - - -

PH SEO

- - - - - - - - -

S04

MMOL/L

- - - - - - - - -

ORG C

UMOL/G

- - - - -

- - - - -

'

EHMV

140

140

110

130

140

110 94 796553

NA

MMOL/L

0.4

0.4

0.6

0*6

0,7

1.0

l.«5

2.0

2.7

5.1

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV 28 17 20 15 11 10 14 15

-25

-20 K

MMOL/L

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2

0.2

0.3

- -

.

TOT P

UMOL/G

36 38 37 37 41 3919

20 21 15

ALK

MEQ/L

3.2

3.7

3.8

3.8

3.6

4.8

5.3

4.9

6.0

7.1

CA

MHOL/L

1.0

1.0

0.9

0.9

0.9

1.1

1.2

1.1

1.1

1.7

SEDIMENT

INORG P

UMOL/G

25 28 30 31 35

36 12 13 14 10

NH4

MMOL/L

0.15

0.47

0.69

0.72

1.08

. 1.00

1.13

1.08

1.16

1.67

MG

MMOL/L

0*4

0.4

0.4

0.4

0*4

0.6

0.7

0.6

0.7

1.3

DATA -

-

yT L

OSS

%9.4

9.4

9.5

9.4

9.1

8.1

6.9

7.5

7.5

6.3

P04

SILICA

UMOL/L UMOL/L

- - - - - - - - - MN

UMOL/L

66

118

105

99

91 86 71 6454

29

-

POROSITY

0.90

0.85

0.83

0.83

0.81 -

0.76

0.64

0.73

0.68

- - - - - - - « -

FE AA

UMCL/L

37

285

346

337

285

313

407

518

561

589

^

TOT C

MS/L 44 84 61 63 65 78 74 61 79

100

FE F£RRO

UMOL/L

- - - - - - - - -

OR6 C

INORG C

HG/L

MG/L 30 42 39 41 44 64 68 73 82

110

S-2

S-2 ELECT

UMOL/L

UMOL/L

--

- «.

-- - - -

- .

Page 118: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

8006-J-IH-C

INDIAN MEAD

6-12-80

3*2 METERS

- -

- INTERSTITIAL WATER DATA -

- -

u>

DEPTH

CM 1 3 5 7 916

26 36 46 66

DFPTH

CM1 3 5 7 9

16 26 3C 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46

66

PH

7*17

7.05

7.02

7.05

7.16

7.10

7. CO

7,02

7,03

7.00

CL

MMOL/L

- -0.

4

0.4

0.4

0.6

1*1

1.4

1.6

2.6

TOT C

UMOL/G

- - - - - - - - -

PH SED

- - - - - - - - - S04

MHOL/L

0.10

0.06

0*01

0.01

0*01

0*01 - - - "

ORG C

UMOL/G

- - - - .

- '

- - «- - *

EH MV

360

180

140

120

100

100 90 58 54 41

NAMMOL/L

0,5

0.4

0.4

0.4

0*4

0.7

1.3

2.3

2.1

3.3

TOT N

UMOL/6

- - - - - - - - - *

EH SED

MV 29 56 45 36 26 19 20 -5 618 K

MMOL/L

0.1

0.1

0.1

0*1

0*1

0*1

0.1

0.1

0*1

0*2

...

TOT P

UMOL/G

. . . . . - - . . .

ALK

HEQ/L

2.7

2.5

2.1

2.1

2.1

2.8

4.7

5.1

5.5

7.5

CA

HMOL/L

1*1

0.7

0.5

0.5

0*5

0.7

0.9 -

1.0

1.2

SEDIMENT

INORG P

UMOL/G

. . . . . . . . . .

NH4

MMOL/L

0*05

0.01

0.06

0*12

0.14

0.24

0.65

0*81

1.10

1*58

MGMMOL/L

0.3

0.3

0.2

0.2

0.2

0.3

0*5

0.5

0.6

0*8

DATA -

-

UT LOSS

X - . . . . - - - - .

P04

UMOL/L

814 33 30 30 28 16 - MN

UMOL/L

25 53 37 31 28 32 55 54 53 37

-

SILICA

UMOL/L

- - - - - - - - -

. FE

AA* UMOL/L

475

102 88 76 95

317

417

507

587

TOT

CMG/L 49 58 61 62 64 75 82 71 46

120

FE FERRO

UMOL/L

- - . - . - - - -

POROSITY

.

. - - . . - - . .

ORG C

INORG C

MG/L

MG/L 2527 23 21 22 29

59 67

62 89

S-2

S-2 ELECT

UMOL/L

UHOL/L

Page 119: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

Q5

-V2

4

OF

F

GU

NS

TO

N

CO

VE

5

-25

-78

1

0*7

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

- -

-

DEPTH

CM 1 3 5 7 916

26 36 46

66

DEPTH

CM 1 3 5 7 916

26 36 46 66

DEPTH

CM 1 3 5 7 91626

36 46 66

PH

7.18

7,05 -

7.08

' 7.00

6.99

6.95

6.93

6.88

6.90

CLMMOL/L

- - - - - - - -16.0

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

- - - - - - - - -

ORG C

UMOL/G

- - - -'.

- - - - - -

EHMV

290

190 - 47 58 84 61 52

5843

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - -

EH SED

MV- - - - - - - - - K

MMOL/L

- - - - - - - - -

. -

-

TOT P

UMOL/G

- - - - - - - - -

ALK

MEQ/L

1.6

2.1

3.0

3.8

4.5

6.1

8.0

8.8

9.*

10.1

CA

HHOL/L

- -'

- « ~ - - -

SEDIMENT

INOR6 P

UMOL/G

- - - - - - -'

- -

NH4

MMOL/L

0.02

0.64

0.63

1.10

1.55

2.39

3.26

3.58

3.70

4*14

MG

MMOL/L

- - - - - - - -

DATA -

-

UT LOSS

X - - -

- - - - - -

P04

UMOL/L

212

20 36

39 32 39

39

37 39 MN

UMOL/L

3 8 9 810 24 14 15

12 13

-

SILICA

UMOL/L

146

293

532

697

780

792

775

777

845

777

FE AA

UMOL/L

050

136

251

251

340

448

537

519

5S1

TOT C

MG/L

140

170

190

190

180

220

280

300

290

270

FE FERRO

UMOL/L

362

177

218

262

329

395

425

425

610

ORG C

MG/L

130

150

160

150

140

160

190

210

200

160

S-2

UMOL/L

- - - - - - - -

INORG C

MG/L14 18 2840 48

61 9293

97

110

S-2 ELECT

UMOL/L

- - - - - - - - - -

POROSITY

0.74

0.71

0.70

0.70

0.70

0.68

0.68

0.68

0.67

0.67

Page 120: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V25 MARSHALL HALL

5-26-78

7.3 METERS

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916 re 36 4666

DEPTH

CM 1 3 5 7 9

16

2fi

36 46

66

DEPTH

CM 1 3 5 7 9

16

26 36 4f 66

PH

7.18

7.40

7.44

7.23

7.17

7.10

7.12

6.91

6.95

6.79

CL

MMOL/L

- - - - -14

.0 - -

TOT C

UMOL/G

- - - - -

- - -

PH SED

- - - - - - - - - S04

MMOL/L

- -

- - - - - -

ORG C

UMOL/G

- - - - -

- - - - -

EHMV

340 40 -?6 2

1216 32 29 43

NA

MHOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV -

.- - - - - - - K

MHOL/L

- - - -

» - -

...

TOT P

UMOL/6

- - - - - - - - - -

ALK

MEO/L

10.7

21.7

22.5

18.0

15.7

18.8

18.8

16.0

14.6

14.6

CA

MMOL/L

- - - - - - - - -

SEDIMENT

INORG P

UMOL/G

- . - - - - - - - -

NH4

MHOL/L

0.46

1.62

1.^9

2.07

2.48

4.33

4.38

4.34

4.51

5.52

MG

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

UHOL/L

431 27

23

23

21 20 22 19 19

HN

UHOL/L

118

437

528

455

273

255

237 94

27 11

-

SILICA

UMOL/L

357

568

605

625

693

706

658

682

653

568

FE AA

UMOL/L

18

519

645

788

770

931

1020

788

752

788

TOT

CMS/L

180

330

340

300

270

340

350

340

360

320

FE FERRO

UMOL/L

18444

556

675

612

1000

895

626

570

651

ORG C

HG/L 47

120 9794

100

120

140

160

190

160

S-2

UMOL/L

- - - -,

- - -

INORG C

HG/L

140

210

240

210

170

220

210

180

170

170

S-2 ELECT

UMOL/L

- * - - - - ~ -. *

POROSITY

0.85

0.79

0.78

0.76

0.73

0.70

0.68

0.63

0.63

0*53

Page 121: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7805-V26 MT.

VERNCN

5-26-78

9.1

METERS

- -

- INTERSTITIAL WATER DATA - - -

DEPTH

CM1 3 5 7 9 16 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

6,90

7.18

7.16

7.12

7.18

6.91

6.96

6.87

6.96

6,84

CL

MMOL/L

- - - - - - - -15.0

TOT C

UMOL/G

2700

2790

2580

2840

2680

2520

2500

25"5

02420

2170

PH SED

- - - - - - - -

S04

MMOL/L

- - - - - - - - -

0«G C

UMOL/G

2620

2640

2440

2640

2*i2

02430

2380

2430

2350

2270

EH MV240 8

-16

-29

-21 2 5-3

-14 14

NAMMOL/L

0.4

0.7

0.8

0.8

0.9

1.1 - 1.0 - 1.2

TOT

NUMOL/G

170

110

160

210

210

210

190

190

190

180

EH SED

MV- - - - - - - - - K

MMOL/L

0.2

0.3

0.4

0.5

0.6

0.4 -

0.4 -

0.3

...

TOT

PUHOL/G

26 31 27 27 27 37 45 45 56 34

ALK

MEQ/L

9.9

23.0

27.2

30.4

34.0

26.1

29.0

31.0

28.1

18.5

CAMMOL/L

3.1

6.7

6.5

7.6

8.1

5.1 -

6.1 -

3.0

SEDIMENT

INORG P

UMOL/G

19 22 18 17 18 30 39 40 50 31

NH4

MMOL/L

0.37

1.70

2.36

3.24

4.22

5.12

7.34

8.06

7.73

6.24

MGHMOL/L

1.2

2.5

2.7

2.8

2.9

2.1 «

2.4 .

1.6

DATA -

-

UT LOSS

*8.4

9.5

8.6

9.5

8.6

9.2

9.7

9.3

8.3

8.3

P04

UMOL/L

327 27 19 23 27 18 24 24 26 MN

UMOL/L

155

491

619

673

655

473

273

291

237 28

-

SILICA

UMOL/L

356

564

663

731

781

765

783

759

780

745

FE AA

UMOL/L

27698

1020

1220

1430

1330

1270

1430

1310

860

TOT

CMG/L

240

360

460

470

530

410

420

430

390

350

FE FERRO

UMOL/L

2766

1892

1070

1250

1160

1100

1230

1160

752

ORG

CMG/L

110

240

160

160

160

120 92

110

200

.150

S-2

UMOL/L

- - r

- - . - -

INORG C

MG/L

130

120

300

300

370

290

330

320

190

200

S-2 ELECT

UKOL/L

- . - . - . . - .

POROSITY

0.77

0.78

0.75

0.74

0.72

0.76

0.77

0.74

0.74

0.68

Page 122: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7808-H2 AT V26, 10

METERS OFF PTER

8/30/78

9*1 METERS DEPTH

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DFPTH

CM1 3 5 7 9

16 26 36 46

66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

6.96

6.90

6.91

6.93

6.96

6.84

6.91

6*96

7.05

7.18

CL

MHOL/L

- - - » - « - - -

TOT C

UMOL/G

- - - - - - - - - -

PH SED

6*83

6.86

6*78

6.83

6.78

6.84

6.67

6.86

6.84

6.93

S04

MMOL/L

- - - « - - - - -

ORG C

UMOL/G

- - - - -

- - - - -

EH MV

130

-19 24

-13 1313 5

-53

-53

-13

NAMMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV 102 0

-36-7 9 5 4 2

-4 K

MMOL/L

- - - - - - - -

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

8.5

14.4

25.5

27.3

28.0

30.1

30.3

31.1

41.2

31.7

CA

MMOL/L

- « -'

- - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

HMOL/L

0.50

2.38

4.48

4.98

6.10

7.20

8*23

9.36

10*30

10*40

MG

HMOL/L

- - - - - - - - - *

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SUMOL/L U

14 17 16 12 10 11 118 6 9

MN

iUMOL/L

169

546

619

546

400

309

133

118

11695

-

POROSITY

0*85

0.78

0.79

0.74

0.77

0.74

0.74

0.68

0*72

0*73

SILICA

IOL/L

460

8UO

820

800

760

760

810

750

700

720

TOT C

MG/L

290

440

390

420

450

450

430

400

490

450

ORG C

MG/L

230

250

140

150

170

140

110

160

130

130

INORG C

MG/L 65

190

260

260

280

310

320

250

350

320

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UHOL/L

UMOL/L

UMOL/L

95

1040

- 1270

- 1270

- 1250

- 1340

- 1240

- 1000

-1040 ...

895 ...

Page 123: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V

26A

M

VE

RN

ON

9

/12

/78

1

0.4

M

ET

ER

S

DE

PT

H

135

ME

TE

RS

S

OU

TH

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

oo

DEPTH

CM1 3 5 7 9

16

26 364u

66

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

£,96

6.91

6.95

6.88

6.96

6.89

6.84

6.88

6.89

6.72

CLMMOL/L

- - - - - - - - - "

TOT

CUMOL/G

- - - - - - - - -

PH SED

6, 88

6.79

6.96

6.78

6.83

6.83

6.63

6.74

6.64

6*49

' S04

MMOL/L

- - - - - - - - -

ORG C

UMOL/G

- - - - -

- - - - -

EH MV

240 57 31 30 23 30 42 35 58 68

NAHMOL/L

- - - - - - - - -

TOT

NUMOL/G

- - - - - - - - - -

EH SED

MV225

-11

-26 -1

-14

-64 12 49 57 K

MMOL/L

- - - - - - - -

.

.

TOT

PUMOL/G

- - - - - - - - -

ALK

MEQ/L

5.8

17.9

23.8

25.8

28.7

31.5

33.2

27.4

26.0

14.5

CA

MMOL/L

- - - --

- - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.38

3.99

4.25

5.07

5.57

7.31

8.10

fi.42

6.63

5*01

MGMMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

% - - - - - - -' - - -

P04

SILICA

UMOL/L UMOL/L

857 58 43 29 41 37 30 23 32 MN

UMOL/L

106

437

582

510

437

291

200

237 49 11

-

POROSITY

0.83

0.81

0.78

0.78

0.72

0.77

0.75

0*73

0.60

0*59

274

787

771

780

738

777

831

771

644

653

FE AA

UHOL/L

47

1020

1330

1380

1253

1340

1290

1150

609

878

TOT C

MG/L

200

320

350

390

380

410

400

420

370

310

FE FERRO

UHOL/L

- - - - - - - - -

ORG C

MG/L

160

180

170

180

170

160

150

210

220

210

S-2

UMOL/L

- - - - - - -

- -

INORG C

MG/L 32

130

180

200

200

250

250

210

150 96

S-2 ELECT

UMOL/L

- - - - - - - *

Page 124: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V26B MT

. VERNON 9/13/78

10.1 METERS DEPTH

135 METERS EAST

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM 1 3 5 7 916 2636 46 66

DEPTH

CM 1 3 5 7 916

26 36 46 66

DEPTH

CM 1 3 5 7 916

26 36 4666

PH

6*74

6.86

6.95

7.03

£.83

6.84

6*93

6.95

6.95

6*81

CL

MHOL/L

- - - - - - - -

TOT C

UMOL/6

2810

2750

3260

2560

2570

2720

2550

2790

3130

792

PH SED

6.69

6. 74

6.84

6.79

6,76

6.74

6.72

6.72

6.88

6.59

S04

HMOL/L

- - - - - - - - -

ORG C

UMOL/G

2570

2600

3C90

2420

2480

2620

2540

2600

2970

825

F.H MV230 9453 27 5272 41 45 43 55

NA

MMOL/L

0.7

0.7

0.7

0*8

0.8

0.9

0.8

0*8

0.8

0.9

TOT N

UMOL/G

140

180

180

200

470 63 40 53

130 2

EH SED

MV 46

28 2189

1623

21 -5

40 KMMOL/L

0.4

0.4

0.5

0.7

0.7

0.7

0.8

0.7

0.8

0.6

. -

.

TOT P

UMOL/6

32 34 333346 40 35 36

41 12

ALK

HEQ/L

8.2

19.4

23.8

27.8

32.9

34.6

33.6

30.7

35.5

26.1

CA

MMOL/L

2.3

4.6

5.6

6.9

7.5

8.1

7.1

7.1

7.4

4.9

SEDIMENT

INORG P

UMOL/G

23 23 26 24 40 32

25 27 31 10

NH4

MMOL/L

0.88

3.61

5.61

5.93

6.65

8.38

9.50

10.50

11.50

8.14

MG

HMOL/L

1.0

1.7

1.9

2.5

2.8

2.9

2.9

2.8

2.9

2.3

DATA -

-

UT LOSS

X9.5

10.4

11.5

10.0

9.8

10.1

10.4

9.7

10.6

2.8

P04

SILICA

UMOL/L UMOL/L

1546

44

3635

33 33 28 24 34 MN

UMOL/L

173

328

309

309

273

200

127

166

120

106

-

POROSITY

0.85

0.83

0.79

0*78

0.77

0.76

0.76

0.73

0*74

0.73

413

708

701

673

726

723

791

701

666

647

FE AA

UKOL/L

197

1070

1200

1330

1310

1410

1340

1240

1150

1240

TOT C

MG/L

190

320

510

370

370

410

350

420

480

410

FE FERRO

UMOL/L

- - - - - - - - -

ORG C

INORG C

MG/L

130

180

330

180

260

160 99

170

190

210

S-2

S-UMOL/L

- - - - - - - - - «»

MG/L 52

140

190

190

110

250

250

250

290

210

2 ELECT

UMOL/L

- - - - - - - - -

Page 125: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7B

09

-V2

6C

M

T.

VE

RN

ON

9/1

3/7

8

9.1

M

ET

ER

S

DE

PT

H

130

ME

TE

RS

N

OR

TH

- -

-

INT

ER

ST

ITIA

L

WA

TE

R

DA

TA

- -

-

to o

DEPTH

CM 1 3 5 7 9

1626

3646

66

DEPTH

CM 1 3 5 7 916

26 36 46

66

DEPTH

CM 1 3 5 7 916

26 '

36 46 66

PH

7.17

7.00

7.02

7.19

7.17

6.93

6.96

6.96

6.93

6.98

CL

MMOL/L

- - - - - - - - - *

TOT C

UMOL/6

- - - - - - - - - -

PH SED

7.08

7.24

7.00

6.91

6,93

6.84

6.83

6.77

6.77

6.84

S04

MMOL/L

- -

_

- - - - - - ~

ORG C

UMOL/G

- - - -

- - - - -

EH MV

280

130 86 33 43 79 56

62 7372

NA

MMOL/L

- - - - - - - - -

TOT N

UMOL/6

- - - - - - - - - -

EH SED

MV 18 18 149

23 15 10 36

2616

KMMOL/L

- - - - - - - - - *

. -

-

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

7.9

15.1

21.3

23.5

23.6

27.6

26.0

22.3

18.4

16.4

CA

MMOL/L

- - - - - - - - -

SEDIMENT

INOR6 P

UMOL/6

- - - - - - - - -

NH4

MMOL/L

0.58

1.68

3.09

4.25

5.05

6.78

7.14

6.90

6.98

7«33

MG

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - -

P04

SILICA

UMOL/L UMOL/L

18 68 56

4444

41 3936

37

36

MN

UMOL/L

164

382

491

491

455

346

273

135 24 10

-

POROSITY

0.86

0.79

0.76

0.70

0.79

0.75

0.74

0.70

0.72

0.69

304

7S8

842

749

774

769

752

684

738

673

FE

Aft

UFOL/L

109

734

1000

1000

1070

1150

1150

949

734

573

TOT C

MG/L

260

270

350

290

370

450

450

390

320

460

FE FERRO

UMOL/L

- - - - - - - - -

ORG C

MG/L

220

150

180

100

160

230

240

210

180

330

S-2

UMOL/L

- . - - - - - - - *

INORG C

MG/L 42

120

170

180

210

220

220

180

140

130

S-2 ELECT

UMOL/L

- - » - - - - - ..

Page 126: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7809-V

26D

M

T.

VE

RN

ON

9/1

4/7

8

9.8

M

ET

ER

S

DE

PT

H

18

5

ME

TE

RS

W

ES

T

- -

- IN

TE

RS

TIT

IAL

U

AT

ER

D

AT

A - -

-

DEPTH

CM 1 3 5 7 916 26 36 46

66

DEPTH

CM 1 3 5 7 916 2(>

36 46 66

DEPTH

CM 1 3 5 7 916 26

36 46 66

PH

7.05

6.91

6.81

7.02

6.88

6.83

6.86

6.86

6«93

7.02

CL

MMOL/L

- - - - - - - - - ~

TOT C

UMOL/G

- - - - - - - - - -

PH SED

6.83

6.81

6.34

6. 76

6.81

6.88

6.72

6.64

6.67

7.08

' S04

MMOL/L

- - - - - - - - -

ORG C

UMOL/G

- - - - - .

- - - - -

EHMV

290 89 76 44 65

220 726759

46

NA

MMOL/L

- - - - - - - - - ~

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV2225 184

21 3533

26 5

11 KMMOL/L

- - - - - - - - -

...

TOT P

UMOL/G

. - - - - - . . - -

ALK

MEQ/L

8.4

19.0

26.7

29.2

32.2

32.7

33.2

34.9

35*2

30.0

CA

MMOL/L

- - - - wr -.

- - . "

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.56

1.76

4.06

4.97

6.67

7.74

8.50

9.89

9.93

9.05

MGMMOL/L

- - - . - - - - .

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

UMOL/L

854

50 36

38 23 31 3627

27 MN

UMOL/L

157

473

710

601

437

326

144

153

155

133

-

SILICA

UMOL/L

340

635

815

786

792

759

754

745

706

686

FE AA

UMOL/L

841040

1563

1410

1470

1410

1310

1310

1200

1130

TOT C

MG/L

190

330

430

430

440

460

470

450

490

460

FE FERRO

UMOL/L

- - - - - -» - - - '

ORG C

MG/L

130

180

220

190

170

180

210

210

190

210

S-2

UMOL/L

- - - - - - -

- -

INORG C

MG/L 56

150

210

240

270

280

260

240

290

240

S-2 ELECT

UMOL/L

- - ~ - - - -

POROSITY

0.87

0.81

0.77

0.73

0.74

0.74

0.77

0.70

0.71

0.70

Page 127: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7903-V26B

MT.

VERNON

8.8 METERS

3/22/79

- -

- INTERSTITIAL UATER DATA -

- -

DEPTH

CM 1 3 5 7 916263646

66

DEPTH

CM 1 3 5 7 9

*16

26

364666

DEPTH

CM 1 3 5 7 916

26 36 46 66

PH

6.99

7.06

7.10

7.24

7-19

7.06

7.01

6.99

7.03

7.08

CL

MMOL/L

0.5

0.5

0.6

0.6

0.7

0.7

0*6

0.6

0.6

0.5

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

0.62

0.04

0.67

0.37

0.27

0.08

0.00

0*00

0.02

0.02

ORG C

UMOL/G

'

- - - -

- - - - -

EH

MV420 97 63

20 27

34 39 44 55

49

NA

MMOL/L

0.5

0.6

0.7

0.9

0.9

1.0

1.0

1.0

1.0

1.3

TOT N

UMOL/G

- - . . - - - - - -

EH SED

MV93 64 26

16 5

12 22 19 32 27 K

MMOL/L

0.1

0.2

0.2

0.2

0.3

0.3

0*3

0.3

0.3

0.3

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

5.4

8.3

15.8

19.7

22.9

24.0

29.6

25.3

20.3

18,0

CA

MMOL/L

1.8

2.4

3.8

5.0

5.3

5.9

6.1

5.5

4.1

2.8

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MHOL/L

0.36

1.47

2.65

3.56

4.05

5.22

5.78

5*51

5.50

5.55

MG

MMOL/L

0.7

0.8

1.3

1.6

1.8

1.9

2*0

1.8

1.6

1.4

DATA -

-

UT LOSS

X - - - - - -. - - - -

P04

UMOL/L

123

22 25 13

22 25

2223 29 MN

UMOL/L

13220

371

431

437

371

306

193 35

14

-

SILICA

UMOL/L

287

3fl8

508

516

492

558

562

542

585

483

FE AA

UMOL/L

1480

829

1040

999

1270

1340

1220

754

688

TOT

C ORG C

INORG C

MG/L

MG/L

MG/L

...

...

...

...

...

- .

.

...

...

-

. .

.

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

5458

- -

'759

982

932

939

1280

1140

723

586

POROSITY

- - - - - - - - - -

Page 128: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

79G3-V260

HT.

VERNON

8.5 METERS

3/22/79

- -

- INTERSTITIAL WATER DATA -

- -

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM 1 3 5 7 916 26 36 46 66

PH

6.97

7.30

7.15

7.14

7.10

7.03

6.97

6.90

6.97

7.14

CL

MMOL/L

390.0

540.0

590.0

620.0

680.0

680.0

680.0

760.0

760.0

B50.0

TOT C

UMOL/G

- - - - - - - - - -

PH SED

- - - - - - - - -

' S04

MMOL/L

0.10

0.02

0.10

0.02

0.02

0.02

0.00

0.02

0.02

0.02

ORG C

UMOL/G

- - - - -

- - - - -

EH MV

200 5256 37 45 56 53

50 60 26

NA

MMOL/L

0.5

0.7

0.8

0.8

0.9

0.9

0.9

1.0

1.0

1.0

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV - - - - - - - - - ~ K

MMOL/L

0.2

0.2

0.2

0.2

0.2

0.2

0.3

0.3

0.3

0.3

- ...

TOT P

UMOL

/G - - - - - - - - - -

ALK

MEO/L

5.8

10.9

11.1

11.6

13.5

15.0

19.1

16.7

12.7

9.4

CA

MMOL/L

2.0

3.0

3.0

3.0

3.5

3.7

3.7

3.1

3.0

2.3

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

0.30

1.19

1.70

2.37

2.80

3.82

4.45

5.27

4*87

4.57

MG

MMOL/L

0*7

0.9

0.9

1*0

1.1

1.1

1.2

1.3

1.1

1.0

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

SUHOL/L U

438 2929 29 28

24 21 24

28 MN

UMOL/L

47

222

211

218

198

161

128 77 36

-

POROSITY

O.RO

0.7«

0.75

0.73

0.74

0.73

0.74

0.72

0.70

0.68

ILIC

MOL/I

255

477

477

488

489

529

503

541

517

538

FE

A,UMOL 14

390

530

623

652

736

838

858

754 "

TOT C

MG/L

ORG C

MG/L

INORG C

MG/L

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

17

399

522

716

716

709

802

1130

788

68'7

Page 129: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7908-V2*

MT,

VERNON

8/3/79

8.8 METERS

- -

- INTERSTITIAL yATER DATA -

- -

DEPTH

CM 1 3 5 7 916 26 36 46 66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

DEPTH

CM 1 3 5 7 91626 36 46 66

PH

6.80

6.95

7.14

6.98

7.02

6.86

6.95

6.97

6.90

6.88

CLMMOL/L

1.2

0.8

0-8

0.6

0.8

0.6

0.8

1.0

0.8

0.7

TOT C

UMOL/G

2420

2300

2040

2060

2200

2250

2140

2230

2050

1980

PH SED

- - - - - - - - -

S04

MMOL/L

0.16 - - - - . - . -

ORG C

UMOL/G

- - - - - .

- - - - -

EH MV

170 625

-34 3280

-78

-53

-34

NAMMOL/L

0.8

0.9

0.9

0.9

0.9

0.3

1.0

1.0

1.0

1.1

TOT

NUMOL/G

91 86 71 27190

120

120 90

130

130

EH SED

MV -36

-42

-35

-52

-51

-23

-35

-33

-20

-42 K

MMOL/L

0.2

0.3

0.3

0.3

0.3

0.4

0.5

0.5

0.4

0.4

...

TOT

PUMOL/G

36 34 33 30 31 39 41 50 39 27

ALK

MEQ/L

7.4

12.3

14.3

15.2

14.8

18.8

22.8

23*5

17.5

13.3

CAMMOL/L

2.2

3.2

3.7

3.9

3.7

4.2

5.2

5.4

3.3

2.2

SEDIMENT

INORG P

UMOL/G

26 26 26 25 27 33 38 48 37 24

NH4

MMOL/L

0.68

1.43

1.83

2.30

3.00

5.32

7.95

7.81

6.55

6.24

MGMMOL/L

0.9

1.3

1.4

1.4

1.2

1.4

1.8

1.8

1.4

1.1

DATA -

-

UT LOSS

X8.9

8.6

7.5

6.8

. 7.8

8.1

8.0

8.6

8.1

6.8

P04

UMOL/L

33 38 38 33 16 12 12 12 10 10 HNUHOL/L

72242

258

271

280

268

195

195 40 15

-

SILICA

TOT C

ORG C

INORG C

UMOL/L

MG/L

MG/L

MG/L

317 ...

650 ...

750

-683 ...

733 ...

800 ...

783

783

- .

-733 ...

717

- -

'

FE AA

FE FERRO

S-2

S-2 ELECT

UMOL/L

UMOL/L

UMOL/L

UMOL/L

17380

- .

-493 ...

570

-613

-811 ...

863 ...

928 ...

578 ...

527 ...

POROSITY

0.86

0.81

0.76

0.70

0.67

0.75

0.75

0.71

0.70

0*68

Page 130: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78

05

-V2

7

FT

. F

OO

TE

5-3

0-7

R

9.4

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

- - -

ro

DEPTH

CM 1 3 5 7 91626 36 46 66

DEPTH

CM 1 3 5 7 9

16 26 36 46 66

DEPTH

CM1 3 5 7 9

IS 263646

66

PH

6. SO

7.P4

6.88

6*69

6.95

7.04

6.94

6.91

7.02

6.89

CL

MMOL/L

- - - - - -13*0 -

TOT C

UMOL/G

- - - - - - - -

PH SED

- - - - - - - - -

S04

MMOL/L

- - - - - - - *

ORG C

UMOL/G

- - - -

- - - - - -

EH MV

200 42

44 47

37 27 36 44 42 39

NAHMOL/L

- - - - - «. - - -

TOT N

UMOL/G

- - - - - - - OP -

EH SED

MV- - - - - - - - - K

MMOL/L

- - - - - - - - -

...

TOT P

UMOL/G

- - - - - - - - - -

ALK

MEQ/L

9.8

20.8

23.0

23.6

22.8

26.6

28.3

28.2

26.2

21.0

CA

HHOL/L

- -

- - - - -

SEDIMENT

INORG P

UHOL/G

- - - - - - -

- -

NH4

MMOL/L

0.79

3.29

4.32

4.02

5.52

6.26

7.85

7.87

8.92

8.35

MG

MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X - - - - - - - - - -

P04

UHOL/L

423 16

20 18 13 13 15 25

26 MN

UMOL/L

163

564

510

491

455

328

291

237

182 66

-

SILICA

UMOL/L

- - - - - - - - -

FE AA

UMOL/L

93

1290

1310

1400

1470

1380

1400

1360

1180

1000

TOT C

MG/L

190

330

340

340

370

380

380

380

380

340

FE FERRO

UHOL/L

87

1230

1280

1370

1490

1350

1400

1320

1140

992

ORG C

MG/L 88

120

120

110

120

150

120

110

120

140

S-2

UHOL/L

- - - - - - - - - *

INORG C

MG/L

110

210

220

230

240

230

260

260

260

200

S-2

ELECT

UHOL/L

- - - - - - - - -

POROSITY

0.82

0.80

0.80

0.81

0.81

0.76

0.73

0.74

0.72

0.71

Page 131: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7*05-1/28

OFF BLUE PLAINS

5-30-78

8.2 METERS

- -

- INTERSTITIAL UATER DATA -

- -

ro

DEPTH

CM 1 3 5 7 916 2636 46 66

DEPTH

.CM 1 3 5 7 9

16

26 3646

66

DEPTH

CM 1 ? 5 7 916 26 36 46 66

PH

7.01

6.92

6.86

6.76

f.77

6.97

7.02

6.93

6.92

6.98

CL

MMOL/L

- - - - - - - -14.0 -

TOT C

UMOL/G

3220 - -

2720 - mm

3220 - -

3920

PH SED

- - - - - - - - -

S04

MMOL/L

- -.

- - - - - - - -

ORG C

UMOL/G

3080

3210

3150

2640

2570

2180

3110

3040

3100

3850

EHMV

2926

28 35

37 177 9

17 4

NA

MMOL/L

0.7

0.8 -

0.9

1.1

1*3

-1.1 -

1.1

TOT N

UMOL/G

340

320

300

240

260

170

340

310

290

370

EH SED

MV - - - - - - - - - K

MMOL/L

0.2

0.5

-0.3

0.4-

0.7

-0.8

- 0.8

...

TOT P

UMOL/G

34 3243

37 39

35 71 71 72

100

ALK

MEQ/L

10.7

26.8

29.4

22.7

22.7

34.7

38.7

43.9

49.2

54.3

CA

MMOL/L

3.0

6.9 -

4.1

4.2

5.5 -

5.4 -

5.3

SEDIMENT

INORG P

UMOL/G

22 17 32 32 31 40 73 78 71

100

NH4

MMOL/L

0.90

2.90

4.63

5.93

7.69

39.30

43.60

54.80

69.40

78.90

MG

MMOL/L

1.0

2.4 -

1.3

1*3

2*2

-2.1 -

2.4

DATA -

-

UT LOSS

X11.1

12.0

11.0

9.4

10.2

7.0

12.0

11.5

10.4

12.7

P04

UMOL/L

13

1422

31 27 32 17

4145

58 MN

UMOL/L

182

1000

928

364

273

116 77

118 82 92

-

SILICA

UHOL/L

- - - - - - - - -

FE AA

UMOL/L

376

1450

2060

2150

1500

1310

967

1400

1330

1160

TOT

CMG/L

210

460

440

280

300

430

430

470

560

590

FE FERRO

UMOL/L

350

1410

2300

2050

1460

1200

911

1240

1170

1020

ORG C

MG/L

110

280

200 75 72 75 64 79 82

100

S-2

UMOL/L

- - - -.

- - -

INORG C

MG/L

100

180

240

210

220

350

360

400

470

490

S-2 ELECT

UMOL/L

- - - - - - - -

POROSITY

0.87

O.B5

0.83

0.76

0.77

0*78

0.77

0.78

0.76

0.77

Page 132: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

78T9-V28A

BLUE PLAINS

9/11/78

8.8 M

DEPTH

45 M

SOUTH OF

BUOY 6

- -

- INTERSTITIAL WATER DATA -

- -

to

DEPTH

CM1 3 5 7 9

16

26 36

46

66

DEPTH

CM 1 3 5 7 916

26

3646

66

DEPTH

CM1 3 5 7 9

16 26 36 46 66

PH

7.17

7.31

7.17

7.17

6.98

7.24

7.00

7.13

7*17 '

CL

MMOL/L

- - -'

- - - - - - *

TOT C

UMOL/G

- - - - - - - - - -

PH SEO

7.15

7.23

7.00

7*64

- -6.71

6.88

6.84

S04

MMOL/L

- - - - - - - - -

ORG C

UMOL/G

- - - - '

- - - - «

EH MV

360 26 30 17 27 -7

18 -6 12

NAMMOL/L

- - - - - - - - -

TOT N

UMOL/G

- - - - - - - - -

EH SEO

MV -20 -6 16

-42 - - 10

-12 13 K

MMOL/L

- - - - » - - - -

...

TOT

PUMOL/G

- - - - - - - - -

ALK

MEQ/L

8.7

14.1

13.5

14.3

17.0

25.3

29.5

30.1

30.7

CAMMOL/L

- - -'

- - - - -

SEDIMENT

INORG P

UMOL/G

- - - - - - - - - -

NH4

MMOL/L

O.R3

1.84

1.92

2.44

3*40

10.20

13.60

17.00

17.00

M6MMOL/L

- - - - - - - - -

DATA -

-

UT LOSS

X » - - -

- - - - -

P04

SILICA

UMOL/L UMOL/L

14 46 37 33

33 25 53 32 51 MNUMOL/L

89

200

200

218

255

237 49 29 16

-

POROSITY

0.72

0.65

0.59

0.45

0.45

0.47

0.58

0.76

0.72

-

402

649

564

482

634

631

742

670

665

FE AA

UMOL/L

34376

448

681

967

1040

663

537

537

TOT

CMG/L

180

290

270

300

280

440

420

470

420

FE FERRO

UMOL/L

- - - - - - - . - *

ORG C

INORG C

MG/L

110

190

170

210

170

210

160

190

160

S-2

S-UMOL/L

- - - - - - - . -

MG/L 68 99 99 97

110

230

260

270

260

2 ELECT

UMOL/L

- - - - - - m - _

Page 133: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

7R

09-V

288

BLU

E

PL

AIN

S

9/1

2/7

8

7.9

H

DE

PT

H

230

M W

ES

T.O

F

NR

L

- -

- IN

TE

RS

TIT

IAL

W

ATE

R

DA

TA

-

- -

00

DEPTH

CM 1 3 5 7 9

16 26 36 46 66

DEPTH

CM1 3 5 7 9

16

26 36

46 66

DEPTH

CH 1 3 5 7 916 2636

46 66

PH

7.07

6.98

7.03

7.21

7.05

7.17

7.08

7. Of

7.10

6.91

CL

MMOL/L

- - - - - - - - -

TOT C

UMOL/G

2630

2820

2790

2870

3190

3100

3050

2650

2170

2400

PH SED

6,99

6.88

6.86

6.83

6,74

6.91

6.71

6.69

6.81

6.64

S04

MMOL/L

- -

- - - - - -

ORG C

UMOL/G

2540

2720

2720

2780

3070

3020

2960

2580

2060

2340

EH

MV

280 86 74 45 46

28 31 36 31 47

NA

MMOL/L

0*9

0.7

0*9

0.9

0.9

1.0

1.1

1.0

0.9

0.9

TOT N

UMOL/G

- - - - - - - - - -

EH SED

MV260

26

-6 114

-18

-10 319 K

MMOL/L

0.2

0.2

0.3

0.4

0.3

0.4

0.5

0*5

o.s

0.5

- -

_

TOT P

UMOL/G

3fl

53

54 62 76

8284732458

ALK

MEQ/L

6.3

10.9

13.5

14.1

15.9

21.9

24.6

27*0

24.8

23.7

CA

HMOL/L

1.9

2.6

2.9

2*7

3.0

3.2

3.4

3«3

2,6

2.9

SEDIMENT

INORG P

UMOL/G

28 51 46 58 86 89

80 68 17

47

NH4

MMOL/L

0.68

2*23

3.83

5-12

7*82

11.60

14.00

16.30

14.90

12.50

MG

MMOL/L

0.9

1.0

1.1

1*1

1.2

1.4

1.5

1.6

1.4

1.5

DATA -

-

UT LOSS

X10.5

10.4

9.7

10.0

11.2

11.6

10.6

9.6

7.5

9.8

P04

SILICA

UHOL/L UMOL/L

16 54

56 44 61 53 50 57

52 54 MN

UMOL/L

«102

167

102 58 45 35

24 1813 9

-

POROSITY

0.86

0.79

0.78

0.78

0.74

0.76

0.73

0.66

0.70

0.70

371

617

648

635

671

667

641

661

609

644

FE AA

UMOL/L

73537

466

430

448

430

519

537

466

591

TOT C

MG/L

190

210

240

300

300

380

400

360

370

390

FE FERRO

UMOL/L

- - - - - - - - -

ORG C

MG/L

120

140

150

200 -

190

180

140

170

200

S-2

UMOL/L

- - - - - - - - -

INORG C

MG/L 63 62 91

100 - 190

230

220

200

200

S-2

ELECT

UMOL/L

- - - - - - - - -

Page 134: METHODS FOR THE COLLECTION OF GEOCHEMICAL ...METHODS FOR THE COLLECTION OF GEOCHEMICAL DATA FROM THE SEDIMENTS OF THE TIDAL POTOMAC RIVER AND ESTUARY, AND DATA FOR 1978-1980 by Steven

79Q

8-V

28

NA

VA

L R

ES

EA

RC

H

LAB

8

/3/7

9

8.5

M

ET

ER

S

- -

- IN

TE

RS

TIT

IAL

WA

TER

D

AT

A - -

-

DEPTH

CM1 3 5 7 9

16 26 36 46 61

DEPTH

CM

1 3 5 7 916 26 36 46 61

DEPTH

CM1 3 5 7 9

16 26 36 46 61

PH

7.02

6.95

7.00

7.27

7.21

7.19

7.22

7.14

7.09

7. OS

CLMMOL/L

0.6

0.6

0.6

0.6

0.6

0.6

0.7

0.8

0.8

0.8

TOT C

UMOL/G

2750

3200

2840

2790

2840

2820

3390

3100

2770

2920

PH SED

- - - - - - - - - ~ S04

MMOL/L

- - - ' - - - - - - *

ORG

CUMOL/G

-2840 - -

.-

'- -

2670 - -

EH MV

150 61 51 12 297

11 20 29 34

NAMMOL/L

0.8

0.7

0.8

0.8

0.8

0.9

1.0

1.0

0.9

0.8

TOT

NUMOL/G

- - - . - - - - - -

EH SED

MV -12

-13

-11

-29 -

-21

-22

-28

-35

-27 K

MMOL/L

0.2

0.2

0.2

0.3

0.3

0.4

0.5

0.5

0.5

0.6

...

TOT

PUMOL/G

49 73 56

60 91 94 90 90 62 64

ALK

MEQ/L

6.8

10.7

12.0

13.0

16.2

21.2

24.4

24.9

23.2

21.2

CAMMOL/L

1.8

2.2

2.3

2.1

2.4

2.8

3.0

3.1

2.7

2.4

SEDIMENT

INORG P

UMOL/G

41 66 49 53 83 88 87 88 57 61

NH4

MMOL/L

0.70

2.75

4.61

5.70

9.70

12.90

14.90

17.80

17.10

17.10

MGMHOL/L

0.8

0.9

0.9

0.3

1.0

1.2

1.3

1.4

1.3

1.2

DATA -

-

UT LOSS

' X

10.0

10.7

9.6

9.3

11.2

11.0

11.1

10.2

9.8

10.2

P04

UMOL/L

12 16 12 10 10 10 10 10 10 10 MNUMOL/L

94 88 36 29 31 31 19 15 118

-

SILICA

TOT C

UMOL/L

MG/L

367

600

633

667

650

633

600

650

583

£00

FE AA

FE FERRO

UMCL/L

UMOL/L

33279

296

233

224

322

322

430

387

378

ORG C

INORG C

MG/L

MG/L

- - . - - -

- .

- - -

. -

.

"

S-2

S-2 ELECT

UMOL/L

UMOL/L

.-

- - -

- - «.

- -

- .

- -

"

POROSITY

- - - - - - - - - -