19
1 Michael A. Fury, Ph.D. Director of Market Development [email protected] May 16, 2012

Michael A. Fury, Ph.D.€¦ · Michael A. Fury, Ph.D. Director of Market Development [email protected] May 16, 2012 Slurry monitoring practices today Introduction to Vantage

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • 1

    Michael A. Fury, Ph.D.Director of Market [email protected] May 16, 2012

  • Slurry monitoring practices today

    Introduction to Vantage SlurryScope™

    Sampling statistics

    Implications for fab operations

    Summary

    2

  • Full particle size distribution (PSD)◦ Offline lab tool (e.g. Horiba LA-950)◦ 0.01 µm to 3,000 µm ◦ Dilution to single particle passing through detector◦ Sample size 0.25 ml to 1.0 ml typical

    Large particle count (LPC) detectors◦ Offline and inline variations◦ 0.5 µm and above◦ Dilution to single particle passing through detector◦ Sample size 0.25 ml to 1.0 ml typical

    3

  • Particles < 0.3 µm◦ Many particles, by design◦ PSD is well-represented by small sample volumes

    Particles > 1.0 µm◦ Few particles, by design◦ PSD is poorly represented by small sample volumes◦ Particle counts are poorly represented by small sample

    volumes◦ Sampling count error increases as particle size

    increases (particle count decreases)

    4

  • 5

    Continuous, real-time measurement @ 15 ml/min

    Detection range 1-12 µm in 0.2 µm increments

    Undiluted CMP slurry, all types

    LFCSlurryScope™15 ml/min 15 ml/min

    Full flow less 15 ml/min Full flowFull flow

    Flow diverter directs slip stream to SlurryScopeS

    lurr

    ySco

    pe

    Inpu

    tS

    lurryScope

    Return

  • 6

    0.1

    1

    10

    100

    1000

    10000

    100000

    1000000

    1 2 3 4 5 6 7 8 9 10 11 12

    Tota

    l Par

    ticle

    s >1

    mic

    ron

    Particle Size (microns)

    Particle Size Distribution

    470000

    480000

    490000

    500000

    510000

    520000

    530000

    1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

    Tota

    l Par

    ticle

    s >1

    mic

    ron

    Time (arbitrary units)

    Total Particles vs. Time

  • Continuous measurement at a regulated flow of 15 ml/min◦ 0.25 ml in a 1 second measurement period◦ This simulates rapid sampling with other methods◦ Key difference: undiluted, so no risk of soft optical

    agglomerates

    Use a series of 1 second measurement intervals from SlurryScope to simulate many, many sample measurements by prior methods

    Ceria slurry used in these experiments

    7

  • 8

    1

    10

    100

    1000

    10000

    100000

    1000000

    1.2

    1.8

    2.4 3

    3.6

    4.2

    4.8

    5.4 6

    6.6

    7.2

    7.8

    8.4 9

    9.6

    10.2

    10.8

    11.4 12

    1

    10

    100

    1000

    10000

    100000

    1000000

    1.2

    1.8

    2.4 3

    3.6

    4.2

    4.8

    5.4 6

    6.6

    7.2

    7.8

    8.4 9

    9.6

    10.2

    10.8

    11.4 12

    1

    10

    100

    1000

    10000

    100000

    1000000

    1.2

    1.8

    2.4 3

    3.6

    4.2

    4.8

    5.4 6

    6.6

    7.2

    7.8

    8.4 9

    9.6

    10.2

    10.8

    11.4 12

    1

    10

    100

    1000

    10000

    100000

    1000000

    1.2

    1.8

    2.4 3

    3.6

    4.2

    4.8

    5.4 6

    6.6

    7.2

    7.8

    8.4 9

    9.6

    10.2

    10.8

    11.4 12

    Particle size (µm)

    Tota

    l par

    ticle

    s >(

    x-ax

    is) µ

    m

  • 9

    Each line of data = 1 second sampling interval = 0.25 ml slurry

    Particle size bin (µm)

    Tota

    l par

    ticle

    s co

    unte

    d in

    siz

    e bi

    n

  • 10

    0.1

    1

    10

    100

    1000

    10000

    100000

    1000000

    1.2

    1.4

    1.6

    1.8 2

    2.2

    2.4

    2.6

    2.8 3

    3.2

    3.4

    3.6

    3.8 4

    4.2

    4.4

    4.6

    4.8 5

    5.2

    5.4

    5.6

    5.8 6

    6.2

    6.4

    6.6

    6.8 7

    7.2

    7.4

    7.6

    7.8 8

    8.2

    8.4

    8.6

    8.8 9

    9.2

    9.4

    9.6

    9.8 10

    10.2

    10.4

    10.6

    10.8 11

    11.2

    11.4

    11.6

    11.8 12

    Part

    icle

    s/m

    L

    Particle Size (microns)

    50 simulated small-volume dilution measurements and 1 SlurryScope measurement (solid blue)

  • 11

  • 12

    0%

    1%

    10%

    100%

    1000%

    0.1 1 10 100 1000 10000 100000 1000000

    Percen

    t deviation

     (σ/

    μ)

    Average particle count (per mL)

    Percent deviation vs. Particle Count

    0.1%

  • 0%

    1%

    10%

    100%

    1000%

    0.1 1 10 100 1000 10000 100000 1000000

    Percen

    t deviation

     (σ/

    μ)

    Average particle count (per mL)

    Percent deviation vs. Particle Count

    13

    Low countsLarge particlesCMP scratches

    0.1%

  • 14

    Slurry Stock

    Sub-fab Operations

    Slurry Delivery System

    Fab Operations

    CMP Polisher

    Wafer In

    Pad Conditioner

    Defect-free Wafer Out

    CMP Pad

    SlurryScope In-line

    Measurement Domain

  • 15

    Slurry Stock

    Sub-fab Operations

    Slurry Delivery System

    Fab Operations

    CMP Polisher

    Wafer In

    Pad Conditioner

    Scratched Wafer Out

    CMP Pad

    SlurryScope In-line

    Measurement Domain

    Root causes unrelated to slurry events

    Root causes that may

    correlate to slurry events

  • Periodic online slurry monitoring can assist post-mortem diagnosis of wafer scratching◦ Cannot prevent wafer scratching from occurring

    Continuous online slurry monitoring can identify patterns and practices that contribute to LPC excursions◦ Identify and eliminate the root causes of LPC spikes◦ Reduce the incidence of slurry-induced wafer scratching◦ Apply six-sigma principles to prevent wafer scratching

    16

  • 17

    0

    500

    1,000

    1,500

    2,000

    2,500

    12:1

    4:51

    12:1

    5:31

    12:1

    6:11

    12:1

    6:51

    12:1

    7:31

    12:1

    8:12

    12:1

    8:52

    12:1

    9:32

    12:2

    0:12

    12:2

    0:52

    12:2

    1:32

    12:2

    2:12

    12:2

    2:52

    12:2

    3:32

    12:2

    4:12

    12:2

    4:52

    12:2

    5:32

    12:2

    6:13

    12:2

    6:53

    12:2

    7:33

    12:2

    8:13

    12:2

    8:53

    12:2

    9:33

    12:3

    0:13

    12:3

    0:53

    12:3

    1:33

    12:3

    2:13

    12:3

    2:53

    12:3

    3:33

    12:3

    4:13

    12:3

    4:54

    12:3

    5:34

    12:3

    6:14

    12:3

    6:54

    12:3

    7:34

    12:3

    8:14

    12:3

    8:54

    12:3

    9:34

    12:4

    0:14

    12:4

    0:54

    12:4

    1:34

    12:4

    2:14

    12:4

    2:55

    12:4

    3:35

    12:4

    4:15

    12:4

    4:55

    12:4

    5:35

    12:4

    6:15

    12:4

    6:55

    12:4

    7:35

    12:4

    8:15

    Periodic LPC Spikes Due to Sub-fab Equipment Cycling

    LPC Shifts Due to Filter Changes *

    *ASMC May, 2012; A. Kim, Mega Fluid Systems & M. Parkin, Vantage Technology Corp.

  • Small volume slurry sampling delivers the largest sampling error at low particle counts, typically the largest particles which are most critical for wafer scratching

    Continuous LPC monitoring with SlurryScope provides a more statistically meaningful representation of the largest particle counts

    Continuous monitoring of undiluted slurry provides new information allowing LPC origins to be traced and eliminated, bringing CMP closer to six-sigma process defect control

    18

  • ASMC May, 2012; A. Kim, Mega Fluid Systems & M. Parkin, Vantage Technology Corp.

    Feb 22 2012 webcast: http://techcet.com/presentations/ ICPT 2011 Solid State Technology, July 2011 http://www.vantagetechcorp.com/

    Upcoming:◦ Semicon West 2012: Malema booth, Levitronix booth◦ Semicon West 2012 CMPUG◦ Clarkson CAMP CMP August 2012◦ ICPT October 2012

    19