25
Transitions in Finite Systems Michael Bachmann Center for Simulational Physics, The University of Georgia, Athens GA, USA, UFMT, Cuiab´ a MT & UFMG, Belo Horizonte MG, Brazil CompPhys13, University of Leipzig, 28-30 November 2013

Michael Bachmann - physik.uni-leipzig.de

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Michael Bachmann - physik.uni-leipzig.de

Transitions in Finite Systems

Michael BachmannCenter for Simulational Physics, The University of Georgia, Athens GA, USA,

UFMT, Cuiaba MT & UFMG, Belo Horizonte MG, Brazil

CompPhys13, University of Leipzig, 28-30 November 2013

Page 2: Michael Bachmann - physik.uni-leipzig.de

Overview

Introduction

1. Crystallization of Polymers

2. Peptide Aggregation

3. Adsorption of Polymers at Solid Substrates

4. Protein Folding

Summary and Conclusions

1

Page 3: Michael Bachmann - physik.uni-leipzig.de

Introduction

Exemplified small molecular system: Proteins

• Heterogeneous linear chains of 40...3000 amino acids• Geometric structure ⇔ Biological function• Structure formation ⇔ Structural phase transition?• But: no thermodynamic limit, no scaling, no transition points• Finite-size, surface, and disorder effects

Hemoglobin

Oxygen transport inred blood cells,

4 units, 550 atomsATP synthase

Synthesis of ATP from ADP,2 units, 40,000 atoms

Ribosome

Protein synthesis,

2 units, 200,000 atoms

Herpes

Icosahedral virus,105–106 atoms

2

Page 4: Michael Bachmann - physik.uni-leipzig.de

Introduction

Definition of temperature

• canonical:

Theatbath ≡ T cansystem(〈E〉) =

(

∂Scan(〈E〉)

∂〈E〉

)

−1

N,V

,

Scan(〈E〉) =1

T cansystem(〈E〉)

[〈E〉 − F (T cansystem(〈E〉))]

• microcanonical:

Tmicrosystem(E) =

(

∂Smicro(E)

∂E

)

−1

, Smicro(E) = kB ln g(E)

thermodynamic limit: Tmicrosystem = T can

system

small systems: Tmicrosystem 6= T can

system, deviation due to finite-size effects

3

Page 5: Michael Bachmann - physik.uni-leipzig.de

Introduction

Canonical analysis

Indicators of thermal activity:Peaks and “shoulders” offluctuating quantities

• specific heat,• susceptibility,• order parameter flucts.

Phases of semiflexiblepolymers ⇒

E = ELJ + EFENE + Ebend

w/ Ebend = κ∑

i[1 − cos(θi)]

θi . . . bending angle

D. T. Seaton, S. Schnabel, D. P. Landau, M.B., Phys. Rev. Lett. 110, 028103 (2013).

4

Page 6: Michael Bachmann - physik.uni-leipzig.de

Introduction

Microcanonical analysis

• Central quantity: density of states g(E)

• Entropy: S(E) = kB ln g(E)

• Inverse temperature: β(E) = T−1(E) = ∂S(E)/∂E

S(E)

H(E)

Emin

∆Q

(a)

β(E)

βtr

EEo Etr Ed

so

sd

(b)

First-order scenario:

• Convex region:Eo < E < Ed

• Phase coexistence,latent heat ∆Q 6= 0

• Gibbs constructionHS(E) = S(Eo) + E/Td

• Transition temperatureTtr = [∂HS(E)/∂E]−1

• Entropy reduction∆S = HS(Etr) − S(Etr)

5

Page 7: Michael Bachmann - physik.uni-leipzig.de

Introduction

Classification of transitions by inflection-point analysis

2.5

βABtr

βBCtr

3.5

4.0

4.5

-4.8 -4.7 eABtr eBC

tr-4.5 -4.3 -4.2 -4.1-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

β(e

)=

dS

(e)/

de γ

(e)=

dβ(e)/d

e

e = E/N

∆qBCβ(e)

γ(e)

γ = 0

γABtr < 0

γBCtr > 0

A B C

β(E) = 1/T (E)

γ(E) = dβ(E)/dE

Transitions:

1st order:

γtr > 0 (∆qtr > 0)

2nd order:

γtr < 0 (∆qtr = 0)

S. Schnabel, D. T. Seaton, D. P. Landau, M.B., Phys. Rev. E 84, 011127 (2011).

6

Page 8: Michael Bachmann - physik.uni-leipzig.de

Introduction

Density of states (flexible polymer with 309 monomers)

-3500

-3000

-2500

-2000

-1500

-1000

-500

0

500

-3 -2 -1 0 1 2 3 4

log

10[g

(E)]

log10(E − E0)

S. Schnabel, W. Janke, M.B., J. Comp. Phys. 230, 4454 (2011).

7

Page 9: Michael Bachmann - physik.uni-leipzig.de

1. Crystallization of Polymers

Elastic model for flexible polymers

Vintra: Lennard-Jones type interaction between all pairs of monomers

Vbond: Finitely extensible nonlinear elastic (FENE) potential for theinteraction between bonded monomers

8

Page 10: Michael Bachmann - physik.uni-leipzig.de

1. Crystallization of Polymers

Nucleation: Liquid-solid transitions

Basic cores:

anti-Mackay(hcp)

Mackay(fcc)

Overlayer growth:

S. Schnabel, T. Vogel, M.B., W. Janke, Chem. Phys. Lett. 476, 201 (2009).S. Schnabel, M.B., W. Janke, J. Chem. Phys. 131, 124904 (2009).

9

Page 11: Michael Bachmann - physik.uni-leipzig.de

1. Crystallization of Polymers

Length-dependence of caloric temperatures T (E)(N = 13, . . . , 309)

0.1

0.2

0.3

0.4

0.5

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5

T(e

)

e = E/N• inflection points

black lines: N = 13, 55, 147, 309 (“magic” chain lengths)

10

Page 12: Michael Bachmann - physik.uni-leipzig.de

1. Crystallization of Polymers

Size dependence of transition temperatures

0.05

0.20

0.30

0.40

0.50

0.10

13 20 30 40 55 80 100 147 200 309100

Ttr

(N)

N

0.64 −1.42

N1/3

• 1st-order, × 2nd-order transitions

⇒ Unique identification of transitions points and order possible!

S. Schnabel, D. T. Seaton, D. P. Landau, M.B., Phys. Rev. E 84, 011127 (2011).

11

Page 13: Michael Bachmann - physik.uni-leipzig.de

1. Crystallization of Polymers

Interaction range dependence

(90-mer)

-1.0

−ǫsq

0.0

0.5

1.0

1.5

2.0

0.5 0.6 r1 r2 0.9 1.0 1.1 1.2 1.3 1.4 1.5

Vmod,r

LJ

(r),Vsq(r)

r

δ

−420 −360 −300 −240 −180 −120 −60

1.0

1.5

2.0

2.5

3.0

3.5

4.0

β(E

)

δ ≈ 0.220

δ ≈ 0.015

−420 −360 −300 −240 −180 −120 −60

E

−0.06

−0.04

−0.02

0.00

0.02

0.04

γ(E

)

δ ≈ 0.220 δ ≈ 0.015

Microcanonical indicators for collapse, freezing, and solid-solid transitions

12

Page 14: Michael Bachmann - physik.uni-leipzig.de

1. Crystallization of Polymers

Phase diagram0.00 0.05 0.10 0.15 0.20 0.25

0.2

0.4

0.6

0.8

1.0

T

G

L

Sfcc/deca Sico−M

Sico−aM

0.01 0.02 0.03

0.25

0.28

0.31

0.34

0.00 0.05 0.10 0.15 0.20 0.25

δ

0.0

0.5

1.0

pnic

T = 0.2

nic = 0

nic ≥ 1

Merger of collapse and liquid-solid transition for short-range interaction

J. Gross, T. Neuhaus, T.Vogel, M.B., J. Chem. Phys. 138, 074905 (2013).

G = “gas”

L = “liquid”

S = “solid”

13

Page 15: Michael Bachmann - physik.uni-leipzig.de

2. Peptide Aggregation

Coarse-grained model for the aggregation of proteins

• Heteropolymer chains of a sequence of amino acids (disorder!)

• Simple hydrophobic-polar protein aggregation model:

Vintra: interaction betweennon-bonded amino acids ofthe same chain

Vinter: interaction betweenamino acids of differentchains

Vbend: bending energy

Bond length is constant(stiff bonds)

14

Page 16: Michael Bachmann - physik.uni-leipzig.de

2. Peptide Aggregation

Microcanonical analysis (4 chains)

0.16

0.18

0.20

Tagg

0.24

0.26

0.28

-0.6 -0.5 eagg -0.3 -0.2 -0.1 0.0 efrag 0.2

T(e

)

e = E/N

nucleation transition region

∆qag

greg

ate

phas

e

frag

men

tphas

e

subphase1

subphase2

subphase3

fragment

subphase 1

subphase 2

subphase 3

aggregate

• hierarchy of subphase transitions (→ finite-size effects)

• 1st-order phase transition: infinite number of subphase transitionsC. Junghans, W. Janke, M.B., Comp. Phys. Commun. 182, 1937 (2011).

15

Page 17: Michael Bachmann - physik.uni-leipzig.de

2. Peptide Aggregation

Special example: GNNQQNY (4 chains)

1

1.5

2

2.5

3

3.5

100 120 140 160 180 200-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

β(E

) γ(E

)

E

β(E)

γ(E)

γ = 0

• same behavior: hierarchy of subphase transitions

• O(10) CPU years using parallel tempering MC (Lund model)

M.B., unpublished.K. L. Osborne, M.B., B. Strodel, Proteins 81, 1141 (2013).

16

Page 18: Michael Bachmann - physik.uni-leipzig.de

3. Adsorption of Polymers at Solid Substrates

Flexible polymer interacting with continuous substrate

E = 4

N−2∑

i=1

N∑

j=i+2

(

r−12ij − r−6

ij

)

+1

4

N−2∑

i=1

[1− cos (ϑi)]+ǫs

N∑

i=1

(

2

15z−9i − z−3

i

)

17

Page 19: Michael Bachmann - physik.uni-leipzig.de

3. Adsorption of Polymers at Solid Substrates

Adsorption transition AE2⇔DE (20mer, εs = 5)

0.0

0.5

1.0

1.5

2.0

0.0 1.0 2.0 3.0 4.0 5.0

T

ǫs

s(e)

Hs(e)∆s(e)

∆ssu

rf

∆q

edesesepeads 1-3-4-5

e

∆s(e

)

s(e

)

0.20

0.15

0.10

0.05

0.00

0.5

0.0

-0.5

-1.0

-1.5

M. Moddel, W. Janke, M.B., PhysChemChemPhys 12, 11548 (2010); Macromolecules 44, 9013 (2011).18

Page 20: Michael Bachmann - physik.uni-leipzig.de

3. Adsorption of Polymers at Solid Substrates

Polymer adsorption at nanowire; structural phase diagram ofground-state morphologies

B: barrellike (tube) C: clamshell

Gi: globular, included Ge: globular, excluded

T. Vogel, M.B., Phys. Rev. Lett. 104, 198302 (2010).19

Page 21: Michael Bachmann - physik.uni-leipzig.de

3. Adsorption of Polymers at Solid Substrates

Thermodynamics of polymer–nanowire interaction

E

β(E

)

β = 0.19, T = 5.31

β = 0.23, T = 4.31

β = 0.30, T = 3.30ǫf = 1

2

3

4

ǫf = 5

N = 100, σf = 3/2

0-50-100-150-200-250

1.21

0.8

0.6

0.4

0.20

T. Vogel, M.B., Comp. Phys. Commun. 182, 1928 (2011).

1st order: adsorption; 2nd order: collapse

20

Page 22: Michael Bachmann - physik.uni-leipzig.de

4. Protein Folding

Helix-coil transition, (AAQAA)n∆

S(E

)[k

B]

0.5

0.4

0.3

0.2

0.1

0

T−1µc (E)

T−1can(〈E〉can)

T−1c

T−

1µc,

T−

1can[k

B/E

]

0.95

0.85

0.75

Rg

[A] 9

8

7

dEsc/dE

dEhb/dE

E, 〈E〉can [E ]

dE

sc/d

E,

dE

hb/d

E

120100806040200

1.21

0.80.60.40.2

0

(a)

(b)

(c)

(d)

∆S

(E)

[kB]

0.5

0.4

0.3

0.2

0.1

0

Rg

[A]

29

25

21

17

dEsc/dE

dEhb/dE

E [E ]

dE

sc/d

E,

dE

hb/d

E

6005004003002001000

1

0.8

0.6

0.4

0.2

0tertiary

secondary

(a)

(b)

(c)

T. Bereau, M.B., M. Deserno, JACS 132, 13129 (2010).

n = 3: 1st order n = 15: 2nd order

21

Page 23: Michael Bachmann - physik.uni-leipzig.de

4. Protein Folding

Helix-coil transition, helix bundle α3d

∆S

(E)

[kB]

0.5

0.4

0.3

0.2

0.1

0

T−1can(〈E〉can)

T−1µc (E)

T−1c

T−

1µc,

T−

1can[k

B/E

]

0.82

0.79

0.76

H(E)

θ(E)

E, 〈E〉can [E ]

θ(E

),H

(E)

350300250200150100500

32.5

21.5

10.5

0

T. Bereau, M. Deserno, M.B., Biophys. J. 100, 2764 (2011).22

Page 24: Michael Bachmann - physik.uni-leipzig.de

Summary and Conclusions

• Goal: Understanding mechanisms of [molecular] structure formationprocesses

• Tool: Canonical and microcanonical statistical analysis

• Examples: Coarse-grained model for conformational transitions of elasticflexible homopolymers, aggregation transitions, adsorption of polymersat substrates, helix-coil transitions of peptides

• Result: Identification of structural transitions; 1st and 2nd order likebehavior ⇒ finite-size & surface effects

• Conclusion: Microcanonical entropy inflection-point analysis generalizestheory of cooperativity

• Outlook: Improving efficiency and accuracy by means of advancedsimulation and data analysis strategies; other applications

23

Page 25: Michael Bachmann - physik.uni-leipzig.de

Advertisement

Thermodynamics andStatistical Mechanics ofMacromolecular Systems

• modern review of stat mech

• statistical data analysis

• error calculation

• Monte Carlo methods

• transitions of macromolecules:

− folding and crystallization

− aggregation

− adsorption at solid substrates

Cambridge University Press,to be released in Spring 2014

24